首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 82 毫秒
1.
This study assesses whether the HNE accumulation we formerly observed in liver microsomes and mitochondria of BB/Wor diabetic rats depends on an increased rate of lipoperoxidation or on impairment of enzymatic removal. There are three main HNE metabolizing enzymes: glutathione-S-transferase (GST), aldehyde dehydrogenase (ALDH), and alcohol dehydrogenase (ADH). In this study we show that GST and ALDH activities are reduced in liver microsomes and mitochondria of diabetic rats; in contrast, ADH activity remains unchanged. The role of each enzyme in HNE removal was evaluated by using enzymatic inhibitors. The roles of both GST and ALDH were markedly reduced in diabetic rats, while ADH-mediated consumption was significantly increased. However, the higher level of lipohydroperoxides in diabetic liver indicated more marked lipoperoxidation. We therefore think that HNE accumulation in diabetic liver may depend on both mechanisms: increased lipoperoxidation and decreased enzymatic removal. We suggest that glycoxidation and/or hyperglycemic pseudohypoxia may be involved in the enzymatic impairment observed. Moreover, since HNE exerts toxic effects on enzymes, HNE accumulation, deficiency of HNE removal, and production of reactive oxygen species can generate vicious circles able to amplify the damage.  相似文献   

2.
We examined whether regulation of glutamine: fructose-6-phosphate amidotransferase (GFA), the rate-limiting enzyme of the hexosamine pathway, is tissue specific and if so whether such regulation occurs at the level of gene expression. We compared GFA activity and expression and levels of UDP-hexosamines and UDP-hexoses between insulin-sensitive (liver and muscle) tissues and a glucose-sensitive (placenta) tissue from 19 day pregnant streptozotocin diabetic and non-diabetic rats. In pregnant non-diabetic rats GFA activities averaged (1521+/-75 pmol/mg protein x min) in the placenta, 895+/-74 in the liver and 81+/-11 in muscle (p<0.001 between each tissue). In the diabetic rats, GFA activities were approximately 50% decreased both in the liver (340+/-42 pmol/mg protein x min, p<0.05 vs control rats) and in skeletal muscle (46+/-3, p<0.05) compared to control rats. In the placenta, GFA activities were identical between diabetic (1519+/-112 pmol/mg protein x min) and non-diabetic (1521+/-75) animals. In the liver, the reduction in GFA activity could be attributed to a significant decrease in GFA mRNA concentrations, while GFA mRNA concentrations were similar in the placenta between diabetic and non-diabetic animals. UDP-N-acetylglucosamine (UDP-GlcNAc), the end product of the hexosamine pathway, was significantly reduced in the liver and in skeletal muscle but similar in the placenta between diabetic and non-diabetic rats. In summary, GFA activity and expression and the concentration of UDP-GlcNAc are decreased in the liver but unaltered in the placenta, although GFA activity is almost 2-fold higher in this tissue than in the liver. These data provide the first evidence for tissue specific regulation of GFA and for its regulation at the level of gene expression.  相似文献   

3.
Production of 6-oxo-prostaglandin F1 alpha (6-oxo-PGF1 alpha) and prostaglandin E2 (PGE2) was measured by radioimmunoassay in supernatants of isolated glomeruli from rats with streptozocin-induced diabetes and non-diabetic rats. Production of 6-oxo-PGF1 alpha by discs of aortas from these rats was measured at the same time. As shown before, aortic discs from diabetic rats produced significantly less 6-oxo-PGF1 alpha than aortic discs from non-diabetic rats (diabetic 1.99 +/- SEM 0.27 ng v non-diabetic 2.92 +/- 0.46 ng/mg net weight aorta; p less than 0.05). In contrast production of 6-oxo-PGF1 alpha by isolated glomeruli was not reduced in the diabetic rats (diabetic 77 +/- 7 pg v non-diabetic 70 +/- 8 pg/micrograms glomerular DNA). Similarly production of PGE2 was not diminished in the diabetic glomeruli (diabetic 1.20 +/- 0.15 ng v non-diabetic 0.91 +/- 0.12 ng/microgram glomerular DNA). It is concluded that regional differences in production of prostacyclin and 6-oxo-PGF1 alpha occur in experimental diabetes. Diminished prostacyclin production may contribute to the increased susceptibility of diabetic patients to atherosclerosis but is less likely to have a role in the pathogenesis of microangiopathy.  相似文献   

4.
BACKGROUND: Two studies were designed to determine whether a single dose (80 mg) of the angiotensin II receptor blocker (ARB), valsartan, alters insulin sensitivity in obese, non-hypertensive subjects with and without Type 2 diabetes. METHODS: Insulin sensitivity (S(I)), glucose effectiveness (S(G)), and acute insulin response (AIR(0-10 min)) were measured by means of a 3-hour insulin-modified frequently sampled intravenous glucose tolerance test (FSIVGTT) before and after a single dose of valsartan. Study 1: obese, normotensive non-diabetic male subjects (n = 12), mean (SD) age 37.2 +/- 11.2 years, BMI 32.8 +/- 6.8 kg/m (2); Study 2: obese, normotensive Type 2 diabetic patients (n = 12), mean age 55.7 +/- 6.9 years, BMI 35.0 +/- 6.8 kg/m (2)/l. Both studies were randomised, double-blind, placebo-controlled, single-dose crossover group studies involving subjects in two study days, two weeks apart. After fasting samples were taken, a 300 mg/kg iv glucose bolus was injected at 0 min, and 0.05 U/kg iv insulin was given 20 min later. Blood samples for analysis of glucose and insulin were taken throughout the 3-hour study period. RESULTS: Study 1 (non-diabetic subjects) S(I) 2.81 vs. 2.63 x 10 (-4) min (-1) per microU/ml (p = 0.54), S(G) 0.020 vs. 0.020 min (-1) (p = 0.90), AIR(0-10) min 3305 vs. 3450 microU/min/ml (p = 0.71); Study 2 (patients with type 2 diabetes) S(I) 0.59 vs. 0.85 x 10 (-4) min (-1) per microU/ml (p = 0.15), S(G) 0.013 vs. 0.014 min (-1) (p = 0.71), AIR(0-10) min 65 vs. 119 microU/min/ml (p = 0.14), placebo vs. valsartan, respectively. CONCLUSION: In obese, non-hypertensive non-diabetic and Type 2 diabetic subjects a single dose of valsartan does not alter insulin sensitivity.  相似文献   

5.
Urinary epidermal growth factor (EGF) excretion was calculated as ng EGF per mg creatinine and ng EGF per 24 hr. It was increased 4-9 fold in rats with genetic (BB) or streptozotocin-induced diabetes. It decreased to 2-3 fold control values in insulin-treated animals. In contrast, EGF concentration in serum was lower in diabetic than in control rats (360 +/- 72 vs 524 +/- 150 pg/ml, P .086); EGF level in plasma was unchanged (319 +/- 67 vs 313 +/- 96 pg/ml). In diabetic rats EGF content was increased in submaxillary glands (1018 +/- 259 vs 738 +/- 122 pg/mg protein, P .060) but unchanged in the kidneys (70 +/- 18 vs 65 +/- 6 pg/mg protein in controls). EGF binding to the liver microsomes in diabetic rats was decreased by 30-40% and was not restored by insulin therapy. Binding to the kidneys also showed a tendency to decrease in diabetic animals. The EGF excretion and receptor binding were normal in obese normoglycemic Zucker fa/fa rats. We suggest that hyperglycemia and/or glucosuria may affect EGF synthesis and/or excretion in the kidneys and EGF synthesis or accumulation in the megakaryocytes. The mechanism of decreased EGF receptor binding remains to be clarified.  相似文献   

6.
To reveal the importance of lysoposphatidylcholine (LPC) in patients with Type 2 diabetes (DM), LPC in low density lipoprotein (LDL) was determined by high performance liquid chromatography in 38 patients with Type 2 DM and 31 age and sex-matched non-diabetic controls. Stearoyl LPC (SLPC) and palmitoyl LPC (PLPC) were detected in LDL. The contents of both LPCs per gram protein in LDL were increased in diabetic patients compared with the non-diabetics (1.99+/-0.94mg SLPC and 3.02+/-1.81 mg PLPC vs 1.47+/-0.57 mg SLPC and 2.30+/-0.83 mg PLPC, mean +/- SD, p < 0.01 and p < 0.05, respectively). PLPC showed a weak correlation with the levels of fasting plasma glucose (FPG) and HbA1c (r=0.27 and r=0.33, p < 0.05 and p < 0.01, respectively). The diabetic patients with macroangiopathy showed higher levels of PLPC per gram protein compared to those without macroangiopathy (4.60+/-2.61 mg vs 2.53+/1.15 mg, respectively, p < 0.05). The LPC molecular species may participate in the atherogenicity of LDL in patients with Type 2 diabetes.  相似文献   

7.
The objective of the present study was to use the comet assay to evaluate the steady-state level of DNA damage in peripheral blood leukocytes from diabetic and non-diabetic female Wistar rats exposed to air or to cigarette smoke. A total of 20 rats were distributed into four experimental groups (n=5 rats/group): non-diabetic (control) and diabetic exposed to filtered air; non-diabetic and diabetic exposed to cigarette smoke. A pancreatic beta (beta)-cytotoxic agent, streptozotocin (40 mg/kg b.w.) was used to induce experimental diabetes in rats. Rats placed into whole-body exposure chambers were exposed for 30 min to filtered air (control) or to tobacco smoke generated from 10 cigarettes, twice a day, for 2 months. At the end of the 2-month exposure period, each rat was anesthetized and humanely killed to obtain blood samples for genotoxicity analysis using the alkaline comet assay. Blood leukocytes sampled from diabetic rats presented higher DNA damage values (tail moment=0.57+/-0.05; tail length=19.92+/-0.41, p<0.05) compared to control rats (tail moment=0.34+/-0.02; tail length=17.42+/-0.33). Non-diabetic (tail moment=0.43+/-0.04, p>0.05) and diabetic rats (tail moment=0.41+/-0.03, p>0.05) exposed to cigarette smoke presented non-significant increases in DNA damage levels compared to control group. In conclusion, our data show that the exposure of diabetic rats to cigarette smoke produced no additional genotoxicity in peripheral blood cells of female Wistar rats.  相似文献   

8.
In mice with streptozotocin-induced diabetes of 3 days' duration, the hexokinase/glucose-6-phosphatase (HK/G6Pase) ratio in the kidney was enhanced by 52% (mean +/- SEM: 0.40 +/- 0.04 vs. 0.26 +/- 0.03; p less than 0.02) compared to control mice as a result of a 25% increase of HK (16.68 +/- 0.93 vs. 13.31 +/- 1.04 nmol/min/mg protein; p = 0.05) and a 17% decrease of G6Pase (42.51 +/- 2.75 vs. 51.25 +/- 1.89; p less than 0.05). In contrast, as expected, the corresponding ratio (HK + glucokinase/G6Pase) was strikingly reduced in the liver. In 9-day diabetic mice, the kidney enzyme changes were much smaller; however, in a chronic disease such as diabetes, even minimal deviations from the normal may lead to significant metabolic changes with time. The enhanced HK/G6Pase ratio in the diabetic kidney suggests an increase in glucose utilization. This may contribute to the increased synthesis of glycogen, glycoproteins (including basement membrane) and RNA (via provision of ribose-phosphate) occurring in the diabetic kidney and supports the view that the kidney (as opposed to other tissues) shows an 'anabolic response' to diabetes.  相似文献   

9.
PURPOSE: Recently, our laboratory group has reported that rats with Type 1 diabetes have decreased plasma homocysteine and cysteine levels compared to non-diabetic controls and that organic vanadium treatment increased plasma homocysteine concentrations to non-diabetic concentrations. However, to date, no studies have been done investigating the effects of organic vanadium compounds on plasma homocysteine and its metabolites in Type 2 diabetic animal model. These studies examined the effect of organic vanadium compounds [bis(maltolato)oxovanadium(IV) and bis(ethylmaltolato)oxovanadium(IV); BMOV and BEOV] administered orally on plasma concentrations of homocysteine and its metabolites (cysteine and cysteinylglycine) in lean, Zucker fatty (ZF) and Zucker diabetic fatty (ZDF) rats. ZF rats are a model of pre-diabetic Type 2 diabetes characterized by hyperinsulinemia and normoglycemia. The ZDF rat is a model of Type 2 diabetes characterized by relative hypoinsulinemia and hyperglycemia. METHODS: Zucker lean and ZF rats received BMOV in the drinking water at a dose of 0.19 +/- 0.02 mmol/kg/day. Lean and ZDF rats received BEOV by oral gavage daily at dose of 0.1 mmol/kg. The treatment period for both studies was 21 days. At termination, animals were fasted overnight (approximately 16 h) and blood samples were collected by cardiac puncture for determination of plasma glucose, insulin and homocysteine levels. Plasma homocysteine and its metabolites levels were determined using high-pressure liquid chromatography. Plasma glucose was determined using a Glucose Analyzer 2. Plasma insulin levels were determined by radioimmunoassay. Plasma triglycerides were determined by an enzymatic assay methodology. RESULTS: ZF (n = 4) and ZDF (n = 10) rats had significantly lower plasma homocysteine as compared to their respective lean groups (ZF 0.78 +/- 0.1 micromol/L vs. Zucker lean 2.19 +/- 0.7 micromol/L; ZDF 1.71 +/- 0.2 micromol/L vs. Zucker lean 3.02 +/- 0.3 micromol/L; p < 0.05). BMOV treatment in ZF rats restored plasma homocysteine levels to those observed in lean untreated rats (ZF treated: 2.04 +/- 0.2 micromol/L; lean 2.19 +/- 0.7 micromol/L). There was a modest effect of BMOV treatment on plasma glucose levels in ZF rats. BEOV treatment significantly decreased the elevated plasma glucose levels in the ZDF rats (lean 7.9 +/- 0.1 mmol/L; lean + vanadium 7.7 +/- 0.2 mmol/L; ZDF 29.9 +/- 0.4 mmol/L; ZDF + vanadium 17.4 +/- 0.3 mmol/L, p < 0.05). Organic vanadium treatment reduced cysteine levels in both ZF and ZDF rats. No differences in total plasma cysteinylglycine concentrations were observed. CONCLUSION: Plasma homocysteine levels are significantly reduced in a pre-diabetic model of Type 2 diabetes, which was restored to lean levels upon vanadium treatment; however, this restoration of plasma homocysteine levels was not seen in ZDF Type 2 diabetic rats following vanadium treatment. In the latter case vanadium treatment may not have totally overcome the insulin resistance seen in these animals.  相似文献   

10.
Many reports have demonstrated that birds show a low degree of fatty acid unsaturation and lipid peroxidation compared with mammals of similar body size. The aim of the present study was to examine fatty acid profiles, non-enzymatic lipid peroxidation and vitamin E levels of mitochondria and microsomes obtained from liver, heart and brain of goose (Anser anser). The unsaturated fatty acid content found in mitochondria and microsomes of all tissues examined was approximately 60% with a prevalence of C18:1 n9 + C18:2 n6 = 50%. The 20:4 n6 + C22:6 n3 content was significantly higher in brain organelles (approx. 16%) compared with mitochondria and microsomes of liver and heart (approx. 4%). Whereas these organelles were not affected when subjected to lipid peroxidation, brain mitochondria were highly affected, as indicated by the increase in chemiluminescence and a considerable decrease of arachidonic and docosahexaenoic acids. These changes were not observed during lipid peroxidation of brain microsomes. Vitamin E content was higher in liver and heart than in brain mitochondria (1.77 +/- 0.06 and 1.93 +/- 0.13 vs. 0.91 +/- 0.09 nmol/mg protein). The main conclusion of this paper is that a lower degree of unsaturation of fatty acids in liver and heart mitochondria and a higher vitamin E level than in brain mitochondria protect those tissues against lipid peroxidation.  相似文献   

11.
Non-obese type 2 diabetic subjects in good metabolic control (n=6, HbA1c 7.0 +/- 0.3%, mean diabetes duration: 5.7 +/- 1 years) and matched non-diabetic subjects (control; n = 6) were studied during hyperinsulinemic (approximately 3 nmol/l)-hypoglycemic (approximately 3.1 mmol/l) clamp tests (0-120 min) and the subsequent recovery period (120-240 min). Plasma glucagon rose gradually but not significantly, whereas norepinephrine and epinephrine similarly increased approximately 2 and approximately 25-fold in both groups. Islet amyloid polypeptide (IAPP) decreased to approximately 41% and approximately 24% of basal values during hypoglycemia and rapidly rose approximately 4.7-fold during the recovery period, while plasma C-peptide remained suppressed in both groups. Within 140 min, plasma free fatty acids similarly decreased to approximately 70 micromol/l (p < 0.05), but then rose to values being approximately 50% higher in diabetic than in control subjects (240 min: 907 +/- 93 vs. 602 +/- 90 micromol/l; p < 0.05). Glucose infusion rates were comparable during hypoglycemia, but approximately 40% lower during recovery in diabetic patients (1.88 +/- 0.27 vs. 3.44 +/- 0.27 mg x kg(-1) x min(-1), p < 0.001). These results demonstrate that (i) hypoglycemia induced by high-dose insulin largely abolishes the counterregulatory response of glucagon, but not of catecholamines in nondiabetic and well-controlled type 2 diabetic subjects, (ii) the rapid posthypoglycemic increase of plasma IAPP occurs independently of plasma insulin, and (iii) the superior rise in plasma free fatty acids may account at least in part for the posthypoglycemic insulin resistance of type 2 diabetic patients.  相似文献   

12.
Liu J  Yu Y  Fan YZ  Chang H  Liu HM  Cui Y  Chen Q  Wang R 《Peptides》2005,26(4):607-614
Endomorphins, the endogenous, potent and selective mu-opioid receptor agonists, have been shown to decrease systemic arterial pressure (SAP) in rats. In the present study, responses to endomorphins were investigated in systemic vascular bed of alloxan-induced diabetic rats and in non-diabetic rats. Diabetes was induced by alloxan (220 mg/kg, i.p.) in male Wistar rats. At 4-5 weeks after the onset of diabetes, intravenous injections of endomorphins (1-30 nmol/kg) led to an increase of SAP and heart rate (HR) consistently and dosed-dependently. SAP increased 7.68+/-3.73, 11.19+/-4.55, 21.19+/-2.94 and 27.48+/-6.21% from the baseline at the 1, 3, 10 and 30 nmol/kg dose, respectively, of endomorphin 1 (n=4; p<0.05), and similar changes were observed in response to endomorphin 2. The hypertension could be antagonized markedly by i.p. 2 mg/kg of naloxone. On the other hand, bilateral vagotomy would attenuate the effects of hypertension and diminished the changes of HR in response to endomorphins. With diabetic rats, 6-10 weeks after the induction of diabetes, intravenous injections of endomorphins produced non-dose-related various changes in SAP, such as a single decrease, or a single increase, or biphasic changes characterized by an initial decrease followed by a secondary increase, or no change at all. These results suggest that diabetes may lead to the dysfunction of the cardiovascular system in response to endomorphins. Furthermore, the diabetic rats of 4-5 weeks after alloxan-treatment, the increase in SAP and HR caused by i.v. endomorphins might be explained by a changed effect of vagus and by a naloxone-sensitive mechanism.  相似文献   

13.
Ouabain-sensitive ATPase activity (expressed as nmol ADP produced/h/mg (wet) nerve +/- SEM) was measured in homogenates of sciatic nerve from control rats and rats with streptozotocin-induced diabetes of 8 wk duration. Nerves from diabetic rats showed activity (21.7 +/- 2.0) which was significantly (p less than 0.05) less than that of controls (34.6 +/- 4.8). These animals also showed a deficit in conduction velocity (m/sec +/- SEM) of sciatic nerve motoneurones (50.7 +/- 0.4 vs. 57.7 +/- 0.7 in controls; p less than 0.001). In parallel, matched control and diabetic groups were treated daily with mixed gangliosides extracted from bovine brain (10 mg/kg i.p.). After such treatment for 8 wk the deficit in ouabain-sensitive ATPase activity did not develop in the diabetic group (treated diabetics, 31.9 +/- 3.7; treated controls, 34.5 +/- 3.8). However, the treatment did not affect the deficit in motor nerve conduction velocity (treated diabetics, 50.9 +/- 1.1 vs. treated controls, 57.9 +/- 0.5; p less than 0.001). Accumulations of the polyol pathway metabolites--sorbitol and fructose--together with depletion of nerve myo-inositol were similar in both diabetic groups. These data indicate an etiology for the conduction velocity deficit which differs from that of the deficit in ouabain-sensitive ATPase.  相似文献   

14.
Total cytochrome P-450 levels rise in diabetic rats. Two specific forms of cytochrome P-450 that are elevated have been isolated from liver microsomes of streptozotocin-induced idabetic male rats. One enzyme, termed RLM6, metabolizes aniline and acetol, but not testosterone, in a reconstituted system with NADPH-cytochrome P-450 reductase. RLM6 is isolated as a high spin cytochrome with a minimum molecular weight of 53,500. It has a unique amino-terminal amino acid sequence lacking methionine at the amino-terminal position. Polyclonal antibodies to RLM6 recognized most other forms of cytochrome P-450 in Western blots, but could be made monospecific by adsorption to cross-reacting proteins coupled to Sepharose 4B. Using the monospecific antibodies, RLM6 was estimated to be present in microsomes of untreated male rats at 0.04 nmol/mg protein (5% of total P-450). In chronically diabetic rats this level rose to 0.35 nmol/mg protein and 24% of the P-450 content. Immunoreactive protein of molecular weight identical to RLM6 was elevated in microsomes of non-diabetic rats treated with ethanol, acetone, or isoniazid as well as in rats starved for 48 h. Insulin treatment of diabetic rats for 1 week lowered the immunologically detectable levels of RLM6 to levels found in the untreated rat. The other form of cytochrome P-450, RLM5b, does not metabolize aniline and only poorly metabolizes acetol and testosterone. This 52.5-kDa protein is isolated as a predominantly (60%) high spin enzyme. It has a unique NH2-terminal amino acid sequence with methionine as the terminal residue, and is present in untreated male rat liver microsomes at 0.16 nmol/mg protein. It is elevated in diabetes, like RLM6, but treatment with insulin for 1 week does not completely restore the microsomal content to that of the non-diabetic rat.  相似文献   

15.
The present study examines the effect of subcutaneous pancreatic tissue grafts (SPTG) on endocrine and metabolic functions in streptozotocin (STZ)-induced diabetic rats using radioimmunoassay and biochemical techniques. SPTG survived even after 15 weeks of transplantation and significantly improved the weight of STZ-diabetic rats over a 15-week period. Although blood glucose-, cholesterol-, and glycosylated-haemoglobin (GHb) levels were not significantly lower in STZ-diabetic rats treated with SPTG, the values of these biochemical parameters were lower than those in untreated diabetic rats. Plasma and pancreatic immunoreactive C-peptide (IRCP) levels did not improve after SPTG (IRCP expressed as mean +/- standard deviation were 0.22 +/- 0.07, 0.072 +/- 0.02 and 0.08 +/- 0.03 pg ml-1 in the plasma non-diabetic diabetic and treated rats respectively, while IRCP levels in the pancreas of the non-diabetic, diabetic and treated rats were 433.8 +/- 0.1, 22.9 +/- 0.01 and 10.4 +/- 0.01 pg mg tissue-1 respectively). SPTG, however, improved plasma immunoreactive insulin (IRI) levels in both plasma and pancreas. IRI values in plasma were 54.7 +/- 13.6, 18.0 +/- 5.0 and 22.1 +/- 4.3 microUI ml-1 in non-diabetic, diabetic and treated rats respectively and were 277.3 +/- 37.1, 14.7 +/- 1.8 and 30.3 +/- 15.9 microIU micrograms tissue-1 in the pancreas of non-diabetic, diabetic and treated rats respectively. There was improvement in immunoreactive glucagon (IRG) levels after SPTG. IRG values in the plasma of non-diabetic, diabetic and treated rats were 147.0 +/- 10.7, 408.0 +/- 76.5 and 247.7 +/- 3 pg ml-1 respectively whereas, IRG measured in the pancreas was 1642.25 +/- 424.23, 1899.0 +/- 290.4 and 1714.1 +/- 301.98 pg micrograms tissue-1 in non-diabetic, diabetic and treated rats, respectively. The pancreas:plasma ratio of pancreatic hormones was deranged in untreated diabetes but improved after SPTG. In conclusion, SPTG significantly improved the weight gain, pancreatic insulin content, plasma IRG and pancreas: plasma ratio of IRCP, IRI and IRG. It also reduced blood glucose-, cholesterol-, and glycosylated-hemoglobin levels in STZ-diabetic rats.  相似文献   

16.
The present study was conducted to see the effect of probucol on streptozotocin diabetes in rats. After 2 weeks of a 1% probucol diet, 35 or 50 mg/kg of streptozotocin were intravenously injected into male Wistar rats. All the rats became diabetic 2 days after treatment. Thereafter, in order to see the effect of probucol on spontaneous recovery from streptozotocin diabetes, 25 mg/kg of streptozotocin was injected into rats after two weeks of probucol diet and the diet was continued for additional two weeks. All the rats with a standard diet (group CS, n = 13) and 12 of 13 rats with probucol diet (group PS) became diabetic 2 days after streptozotocin injection. One rate from group PS did not develop diabetes. Two weeks after injection, only 4 of 13 rats in groups CS showed recovery, while 11 of 12 rats in group PS showed recovery from streptozotocin diabetes (p less than 0.05). The average blood glucose levels in group PS were significantly lower than group CS (10.5 +/- 4.6 vs 18.5 +/- 0.6 mM, p less than 0.05). In addition, the pancreatic insulin content of group PS was 8 times greater than that of group CS (0.75 +/- 0.24 vs 0.09 +/- 0.03 mmol/pancreas, p less than 0.01). Thus, the in vivo diabetogenic action of streptozotocin could not be reduced by pretreatment with probucol. However, recovery from streptozotocin diabetes was induced by subsequent treatment with probucol. The precise mechanisms for this phenomenon were not known; but the present findings suggest the protective effect of probucol on beta-cell damage induced by small dose of streptozotocin.  相似文献   

17.
Hyperglycemia causes protein glycosylation, oxidation and alterations in enzyme activities, which are the underlying causes of diabetic complications. This study was undertaken to test the role of vitamin E treatment on Ca2+-ATPase activity, protein glycosylation and lipid peroxidation in the brain of streptozotocin (STZ)-induced diabetic rats. Male rats weighing about 250-300 g were rendered diabetic by a single STZ injection of 50 mg/kg via the tail vein. Both the diabetic and non-diabetic rats were fed a vitamin E supplemented diet (500 IU/kg/day). Ca2+-ATPase activity was significantly reduced at week 10 of diabetes compared to the control group (p < 0.05), with 0.225+/-0.021 U/I (mean +/- S.E.M.) in the control group and 0.072 +/- 0.008 U/l (mean +/- S.E.M.) in the diabetic group. Vitamin E treatment prevented the enzyme activity from decreasing. The activities observed were 0.226 +/- 0.020 U/l and 0.172 +/- 0.011 U/I (mean +/- S.E.M.) in the vitamin E-treated control and diabetic group, respectively. STZ-induced diabetes resulted in an increased protein glycosylation and lipid peroxidation. Vitamin E treatment led to a significant inhibition in blood glucose, protein glycosylation and lipid peroxidation, which in turn prevented abnormal activity of the enzyme in the brain. This study indicates that vitamin E supplementation may reduce complications of diabetes in the brain.  相似文献   

18.
In view of the antioxidant properties of melatonin, the effects of melatonin on the oxidative-antioxidative status of tissues affected by diabetes, e.g. liver, heart and kidneys, were investigated in streptozotocin (STZ)-induced diabetic rats in the present study. Concentrations of malondialdehyde (MDA) and reduced glutathione (GSH), and activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in the tissues were compared in three groups of 10 rats each (control non-diabetic rats (group I), untreated diabetic rats (group II) and diabetic rats treated with melatonin (group III)). In the study groups, diabetes developed 3 days after intraperitoneal (i.p.) administration of a single 60 mg kg(-1) dose of STZ. Thereafter, while the rats in group II received no treatment, the rats in group III began to receive a 10 mg kg(-1) i.p. dose of melatonin per day. After 6 weeks, the rats in groups II and III had significantly lower body weights and higher blood glucose levels than the rats in group I (p < 0.001 and p < 0.001, respectively). MDA levels in the liver, kidney and heart of group II rats were higher than that of the control group (p < 0.01, p < 0.05, p < 0.01, respectively) and diabetic rats treated with melatonin (p < 0.05). The GSH, GSH-Px and SOD levels increased in diabetic rats. Treatment with melatonin changed them to near control values. Our results confirm that diabetes increases oxidative stress in many organs such as liver, kidney and heart and indicate the role of melatonin in combating the oxidative stress via its free radical-scavenging and antioxidant properties.  相似文献   

19.
To evaluate the possible role of somatomedin-C, insulin-like growth factor I, in renal hypertrophy in early diabetes, kidney tissue SmC concentrations were measured in streptozotocin-induced (80 mg/kg ip) diabetic rats. Body weight, liver weight, plasma SmC concentration, and SmC concentration in the liver of diabetic rats were significantly lower than those of controls. Seven days after induction of diabetes, the kidney weight (898 +/- 95 mg) in diabetic rats was significantly greater than that in controls (755 +/- 69 mg), while SmC concentration in the kidney of diabetic rats (1.7 +/- 0.3 U/g kidney) was significantly lower than that of control rats (5.4 +/- 0.6 U/g kidney). These results suggest that renal SmC may not have an important role in renal hypertrophy in early stages of diabetes and that renal production of SmC may be impaired by insulin deficiency in rats.  相似文献   

20.
Microsomes and Golgi fractions were isolated from 13 human liver samples without local malignancy. Binding of insulin to microsomes (per cent per 0.5 mg protein) was 14.4 +/- 7.9% with two classes of receptors: K1 = 1.4 nM, R1 = 0.28 pmol/mg; K2 = 8.1 nM, R2 = 0.62 pmol/mg. The binding was insignificantly lower than in rats. Binding of EGF was only 3.4 +/- 1.7% with two classes of receptors: K1 = 1.4 nM, R1 = 0.06 pmol/mg; K2 = 10.8 nM, R2 = 0.22 pmol/mg; the binding was much lower than in rats (26.3 +/- 5.8%). Binding of insulin to Golgi fraction (per cent per 0.1 mg protein) was 5.5 +/- 0.4% with straight line Scatchard plot; Kd = 5.6 nM, Ro = 3.06 pmol/mg; it was only half of that found in rats. In one case of hepatoma, the binding of insulin to microsomes was normal but that of EGF very low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号