首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
以可使人和敏感动物产生迟发性神经毒性的有机磷化合物三甲基苯基磷酸酯(TOCP)为测试药物,研究其在体外对成年产卵来航母鸡不同神经组织神经毒性酯酶(NTE)活性抑制的敏感性及其抑制的动力学.结果表明,外周神经NTE对于TOCP的抑制比中枢神经NTE敏感得多.TOCP对鸡脑、脊髓和坐骨神经中NTE抑制的I50值.分别为:1.9323、2.3950和0.0035mmol/L.NTE酶促动力学研究显示,鸡脑NTE催化分解底物戊酸苯酯(PV)的Vmax为62.10nmol·min-1·mg-1,Km为0.92mmol/L.TOCP对鸡脑NTE的抑制属竞争性抑制类型,并有"底物抑制"现象.  相似文献   

2.
The toxicity of trichlorfon (O,O-dimethyl-2,2,2,-trichloro-1-hydroxyethylphosphonate, Dipterex, Dylox), reported to elicit delayed neurotoxicity in man and chickens, was studied by administering single subcutaneous doses of 100 or 300 mg/kg to adult White Leghorn hens. At 24 h posttreatment, the birds were observed for visible signs of neurotoxicity, were euthanized, and samples of blood plasma, brain, and spinal cord (cervical and thoracic regions) were obtained for quantification of cholinesterase and neurotoxic esterase (NTE) activities. In subacute studies, hens were dosed with trichlorfon (100 mg/kg) every 72 h for a total of six doses. Seventy-two hours after the final dose the hens were euthanized, the brains, spinal cords, and distal sciatic nerves were removed for enzymatic and (or) histological examination. Parallel acute and subacute studies were conducted using diisopropyl phosphorofluoridate (DFP), a known neurotoxic agent, at subcutaneous dosages of 1.0 mg/kg. In the acute studies, both DFP and trichlorfon markedly inhibited tissue cholinesterase activities but only DFP elicited a significant inhibition of NTE. In the subacute studies, DFP produced a characteristic central-peripheral distal axonopathy in the 18-day period of study which was confirmed by clinical and morphological evidence and by marked inhibition of neuronal NTE. Trichlorfon caused little or no obvious neurotoxicity, an observation that was supported by minimal morphological changes and impairment of walking ability and no inhibition of brain or spinal cord NTE.  相似文献   

3.
The induction of central-peripheral distal axonopathy in hens singly dosed with some organophosphorus (OP) compounds, such as di-n-butyl-2,2-dichlorovinyl phosphate (DBDCVP), requires greater than 80% organophosphorylation and subsequent intramolecular rearrangement ("aging") of a protein [neuropathy target esterase (NTE)] in the axon. Suprathreshold biochemical reaction, 24 h after dosing with DBDCVP (0.75-1.00 mg/kg s.c.), is shown to be associated with progressive decrement of retrograde axonal transport in sensory and motor fibers. The maximum transport deficit (about 70% reduction) is reached 7 days after DBDCVP, prior to the appearance of axonal degeneration and the onset of clinical signs of neuropathy (day 10-11). By contrast, phenylmethylsulfonyl fluoride (30 mg/kg s.c.), an agent that prevents the development of OP neuropathy by inhibiting NTE without the "aging" reaction, had no effect on axon transport, nerve fiber integrity, or clinical status and, when administered prior to a neurotoxic dose of DBDCVP (1.00 mg/kg s.c.), prevented DBDCVP effects. Paraoxon (0.2 mg/kg s.c.) neither inhibited NTE nor caused deficits in retrograde transport or neuropathy. Taken in concert, these studies demonstrate that induced deficits in retrograde transport are associated with the pathogenesis of OP-induced nerve-fiber degeneration and the threshold-initiating mechanism thereof.  相似文献   

4.
Sarin S  Gill KD 《IUBMB life》2000,49(2):125-130
In vitro and in vivo studies were carried out to assess the delayed neurotoxicity potential of dichlorvos. In vitro, dichlorvos caused a concentration and time-dependent decrease in the activity of neuropathy target esterase (NTE). The Ki of dichlorvos for NTE was calculated to be 1.28 x 10(3) M-1 min-1. In vitro reactivation and ageing studies revealed that dichlorvos-inhibited NTE became refractory to activation by potassium fluoride after 5 min in the ageing medium, thus indicating the formation of an aged complex between dichlorvos and NTE. In vivo also, dichlorvos (200 mg/kg body wt) given as a single subcutaneous dose inhibited NTE in brain at various intervals after exposure (24 h, 10 days, and 21 days). The delayed neurotoxicity potential of dichlorvos was finally confirmed by the rota rod test, which revealed severe motor deficit in all the exposed animals.  相似文献   

5.
Slices from the brain and liver of rats were prepared and upon incubation exhibited a continuous and high capacity for incorporation of radioactive precursors into proteins and lipids. Using [3H]mevalonate as precursor, the rates of biosynthesis of cholesterol, ubiquinone, dolichol and dolichyl-P in brain slices were determined and found to be 5.5, 0.25, 0.0093 and 0.0091 nmol/h/g, respectively. Dolichol and dolichyl-P accumulate to a limited extent, but almost all of these lipids in the brain originate from de novo synthesis. The calculated half-lives for cholesterol, ubiquinone, dolichol and dolichyl-P were 4076, 90, 1006 and 171 h, respectively. The results indicate that lipids formed via the mevalonate pathway in the brain have an active and independently regulated biosynthesis.  相似文献   

6.
Neuropathy target esterase in hens after sarin and soman   总被引:1,自引:0,他引:1  
To estimate the potential of small doses of sarin (types I and II) and soman to cause delayed neuropathic effects, 400, 200, 61, and 0 micrograms/kg of sarin-I, 280, 140, 70, and 0 micrograms/kg of sarin-II, and 14.2, 7.1, 3.5, and 0 micrograms/kg of soman by gavage were compared with 510 mg/kg tri-o-cresyl phosphate (TOCP) in 14- to 18-month-old SPF white leghorn hens (4/dose) protected with atropine (100 mg/kg). The neuropathy target esterase (NTE) activity 24 hr after dosing was determined in brain, spinal cord, and lymphocytes and in plasma and brain for cholinesterase and carboxylesterase. None of the compounds showed statistically significant NTE decreases. Sarin-II showed a dose-related trend in the lymphocyte NTE (to 33% of control at 280 micrograms/kg), suggesting that longer exposure to lower doses might cause a cumulative neurotoxic insult. All of the agents decreased the activity of plasma and brain cholinesterase and carboxylesterase. Using more than 70% inhibition of brain NTE as a biochemical predictor of delayed neuropathy, sarin and soman appear unable to cause delayed neuropathy at nonlethal doses within this protocol.  相似文献   

7.
Tri-ortho-cresyl phosphate (TOCP) can cause a type of neurotoxicity known as organophosphate-induced delayed neuropathy (OPIDN). The characteristic axonal swelling containing aggregations of neurofilaments, microtubules, and multivesicular vesicles is consistent with a disturbance of axonal transport. We hypothesized that there existed a disturbance of molecular motor in the pathogenesis of OPIDN. In the present study, adult hens were treated with a dosage of 750 mg/kg TOCP by gavage, or pretreated 24h earlier with phenylmethanesulfonyl fluoride (PMSF) and subsequently with TOCP, then sacrificed on the time-points of 0, 1, 5, 10, and 21 days after dosing of TOCP, respectively. The level of kinesin-1, dynein, and dynactin in spinal cords and cerebral cortexes of hens was determined. Immunoblotting analysis showed a progressive decline of dynein and dynactin in spinal cords after dosing TOCP. Furthermore, a significant reduction in dynactin and dynein was observed in cerebral cortexes at several time-points post dosing TOCP. In contrast, no significant changes of kinesin-1 were observed throughout the period of experiment. When given before TOCP administration, PMSF could inhibit TOCP-induced motor protein disruption, while it protected hens against the delayed neuropathy. In conclusion, the reduction of the motor proteins, dynein and dynactin, might be associated with the disruption of retrograde neuronal axonal transport in OPIDN.  相似文献   

8.
A new technique, the quantitative determination of total enzyme concentrations by specific immunoprecipitation with purified, radioiodinated antibodies, was used to investigate the presence and possible roles of inactive enzyme in the regulation of chalcone synthase. Dark-grown cell suspension cultures from parsley (Petroselinum hortense) contained neither catalytically active nor detectable amounts of immunoprecipitable chalcone synthase. Irradiation induced large increases and subsequent decreases of both. Significant differences in the peak positions and in the half-lives of active and total chalcone synthase indicated that induced cells contained inactive as well as active enzyme forms. The presence of inactive enzyme could be explained by two different modes of regulation, (i) simultaneous de novo synthesis of active and inactive enzyme (“Simultaneous Model”), or (ii) de novo synthesis of active enzyme only, with sequential steps of inactivation and degradation (“Sequential Model”). Both models were compatible with experimental results, as analyzed mathematically by investigating the relations between curves for rate of enzyme synthesis, enzyme activity, total enzyme, and half-lives of active and total enzyme. However, the “Simultaneous Model” postulated that de novo synthesis of inactive enzyme represented always the vast majority of total enzyme synthesis, while the Sequential Model integrated inactive enzyme with facility in a sequence of irreversible inactivation and degradation of active enzyme. Experiments with repeated induction indicated that cells containing large amounts of inactive enzyme increased enzyme activity by de novo synthesis rather than by activation of preexisting inactive enzyme.  相似文献   

9.
Abstract: Docosahexaenoate is important for normal neural development. It can be derived from α-linolenate, but carbon from α-linolenate is also recycled into de novo lipid synthesis. The objective of this study was to quantify the amount of α-linolenate used to produce docosahexaenoate versus lipids synthesized de novo that accumulate in the brain of the developing rat. A physiological dose of carbon-13-labeled α-linolenate was injected into the stomachs of mother-reared 6-day-old rat pups. Total lipids of brain, liver, and gut were extracted from rats killed 3 h to 30 days after dosing. Carbon-13 enrichment was determined by isotope ratio mass spectrometry. Carbon-13-enriched α-linolenate was not detected in the brain at any time point, and its levels in liver and gut exceeded detection limits at most time points, so tracer mass was quantified mainly for three end products—docosahexaenoate, palmitate, and cholesterol. Carbon-13-enriched cholesterol, palmitate, docosahexaenoate, and water-soluble metabolites were detected in brain, liver, and gut. Enrichment (in micrograms of carbon-13 per organ) in brain cholesterol exceeded that in brain docosahexaenoate by four- to 16-fold over the duration of the study. Enrichment in brain palmitate exceeded that in brain docosahexaenoate by three- to 30-fold over the first 8 days of the study. These results indicate that carbon from α-linolenate is not exclusively conserved for synthesis of longer n-3 polyunsaturates but is a readily accessible carbon source for de novo lipogenesis during early brain development in the suckling rat. Owing to a high rate of β-oxidation and carbon recycling, dependence on α-linolenate as the sole source of docosahexaenoate may incur a potential risk of providing insufficient docosahexaenoate for the developing brain.  相似文献   

10.
Previous studies of purine nucleotide synthesis de novo have suggested that major regulation of the rate of the pathway is affected at either the phosphoribosylpyrophosphate (PP-Rib-P) synthetase reaction or the amidophosphoribosyltransferase (amido PRT) reaction, or both. We studied control of purine synthesis de novo in cultured normal, hypoxanthine-guanine phosphoribosyltransferase (HGPRT)-deficient, and PP-Rib-P synthetase-superactive human fibroblasts by measuring concentrations and rates of synthesis of PP-Rib-P and purine nucleotide end products, proposed effectors of regulation, during inhibition of the pathway. Incubation of cells for 90 min with 0.1 mM azaserine, a glutamine antagonist which specifically blocked the pathway at the level of conversion of formylglycinamide ribotide, resulted in a 5-16% decrease in purine nucleoside triphosphate concentrations but no consistent alteration in generation of PP-Rib-P. During this treatment, however, rates of the early steps of the pathway were increased slightly (9-15%) in normal and HGPRT-deficient strains, more markedly (32-60%) in cells with catalytically superactive PP-Rib-P synthetases, and not at all in fibroblasts with purine nucleotide feedback-resistant PP-Rib-P synthetases. In contrast, glutamine deprivation, which inhibited the pathway at the amido PRT reaction, resulted in time-dependent nucleoside triphosphate pool depletion (26-43% decrease at 24 h) accompanied by increased rates of PP-Rib-P generation and, upon readdition of glutamine, substantial increments in rates of purine synthesis de novo. Enhanced PP-Rib-P generation during glutamine deprivation was greatest in cells with regulatory defects in PP-Rib-P synthetase (2-fold), but purine synthesis in these cells was stimulated only 1.4-fold control rates by glutamine readdition. Stimulation of these processes in normal and HGPRT-deficient cells and in cells with PP-Rib-P synthetase catalytic defects was, respectively: 1.5 and 2.0-fold; 1.5 and 1.7-fold; and 1.6 and 4.1-fold. These studies support the following concepts. 1) Rates of purine synthesis de novo are regulated at both the PP-Rib-P synthetase and amido PRT reactions by end products, with the latter reaction more sensitive to small changes in purine nucleotide inhibitor concentrations. 2) PP-Rib-P exerts its role as a major regulator of purine synthetic rate by virtue of its interaction with nucleotide inhibitors to determine the activity of amido PRT. 3) Activation of amido PRT by PP-Rib-P is nearly maximal at base line in fibroblasts with regulatory defects in PP-Rib-P synthetase.  相似文献   

11.
Kaur P  Raheja G  Singh S  Gill KD 《Life sciences》2006,78(25):2967-2973
Neuropathy target esterase (NTE) is an integral membrane protein in vertebrate neurons and a member of a novel family of putative serine hydrolases. Neuropathic organophosphates react covalently with the active site serine residue of NTE, causing degeneration of long axons in spinal cord and peripheral nerves which becomes clinically evident 1-3 weeks after exposure to OPs, hence termed as organophosphate induced delayed neuropathy. The present study reports the isolation and characterization of NTE protein from rat brain. Rat brain microsomes were solubilized with phospholipase A2 and they were fractionated by gel filtration chromatography in S-300 column. The sample was eluted in buffer containing polyoxyethylene W1 detergent, which yielded an active fraction of 200 kDa. The most enriched NTE active fraction was further purified by 3-9'-mercaptononylthio-1,1,1-trifluoropropan-2-one bound to sepharose CL4B. The SDS-PAGE confirmed the 155-kDa protein as the most likely candidate for NTE. Database searching of rat N-terminal protein revealed homology with variety of polypeptides from different organisms and suggested that NTE protein has function beyond the nervous system and mediates a biochemical reaction highly conserved through evolution.  相似文献   

12.
Lipases play key roles in nearly all cells and organisms. Potent and selective inhibitors help to elucidate their physiological functions and associated metabolic pathways. Organophosphorus (OP) compounds are best known for their anticholinesterase properties but selectivity for lipases and other targets can also be achieved through structural optimization. This review considers several lipid systems in brain modulated by highly OP-sensitive lipases. Neuropathy target esterase (NTE) hydrolyzes lysophosphatidylcholine (lysoPC) as a preferred substrate. Gene deletion of NTE in mice is embryo lethal and the heterozygotes are hyperactive. NTE is very sensitive in vitro and in vivo to direct-acting OP delayed neurotoxicants and the related NTE-related esterase (NTE-R) is also inhibited in vivo. KIAA1363 hydrolyzes acetyl monoalkylglycerol ether (AcMAGE) of the platelet-activating factor (PAF) de novo biosynthetic pathway and is a marker of cancer cell invasiveness. It is also a detoxifying enzyme that hydrolyzes chlorpyrifos oxon (CPO) and some other potent insecticide metabolites. Monoacylglycerol lipase and fatty acid amide hydrolase regulate endocannabinoid levels with roles in motility, pain and memory. Inhibition of these enzymes in mice by OPs, such as isopropyl dodecylfluorophosphonate (IDFP), leads to dramatic elevation of brain endocannabinoids and distinct cannabinoid-dependent behavior. Hormone-sensitive lipase that hydrolyzes cholesteryl esters and diacylglycerols is a newly recognized in vivo CPO- and IDFP-target in brain. The OP chemotype can therefore be used in proteomic and metabolomic studies to further elucidate the biological function and toxicological significance of lipases in lipid metabolism. Only the first steps have been taken to achieve appropriate selective action for OP therapeutic agents.  相似文献   

13.
Intact cells of Myxococcus xanthus were examined for de novo purine synthesis and salvage utilization. The cellular uptake rates of radioactive glycine (de novo purine precursor), adenine, and guanine were measured, and thin-layer chromatography and radioautography were used to examine cell extracts for de novo synthesized purine nucleotides. Intact vegatative cells, glycerol-induced myxospores, and germinating cells of M. xanthus CW-1 were able to carry out de novo purine and salvage synthesis. Germinating cells and glycerol-induced myxospores were metabolically more active or as active as vegetative cells with respect to purine anabolism. We conclude that M. xanthus is capable of synthesizing purine nucleotides and salvaging purines throughout the glycerol version of its life cycle.  相似文献   

14.
1. In vitro activities of glucose oxidation, de novo lipogenesis and lipolysis were compared in normal (Dw) and dwarf (dw) laying hens. 2. Dwarfism reduced the hepatic glucose oxidation while de novo lipogenesis was not altered. As liver weight was depressed, total liver lipogenesis capacity was probably reduced by dwarfism. 3. As compared to normal hens, de novo lipogenesis and basal or stimulated lipolysis were lower in dwarf adipose tissue while its lipid content was enhanced in dwarfs. 4. Results suggest that in laying hens dwarfism reduces the adipose tissue lipid mobilization but probably also the liver de novo lipogenesis.  相似文献   

15.
Neurotoxic esterase (NTE) is now regarded as the site of the primary biochemical lesion in the delayed neuronal degeneration produced by certain organophosphorus esters. Since hens are the species of choice in studies of this neuropathy the subcellular distribution of NTE and marker enzymes in adult hen brain was carried out. Up to 70%, of NTE was recovered in a microsomal fraction (P3) which was also enriched in 5′-nucleotidase (5′-ribonucleotide phosphohydrolase EC 3.1.3.5), a plasma membrane marker. The protein content of this fraction (31% of the parent homogenate) is double that of equivalent mammalian brain fractions. The LDH distribution suggests that the P3 fraction contained many small synaptosomes. Subfractionation of microsomes by rate and equilibrium centrifugation on sucrose density gradients segregated the RNA but failed to separate the NTE. 5′-nucleotidase and glucose-6-phosphatase (D-glucose-6-phosphate phosphohydrolase EC 3.1.3.9) from each other. NTE was considerably concentrated (2–5 times) in subfractions of the P2 fraction, which are believed to be enriched in synaptosomal membranes. A similar localization of NTE and AChE was found in subfractions of P2 from neonatal chick brain. Axon fragments contained a significant amount of NTE which was not associated with the myelin. Nuclear and mitochondrial fractions were low in NTE. Microsomes could be partitioned in biphasic aqueous polymer systems, but with little enrichment of NTE. The possible association of NTE with synaptosomal membranes suggests that early events in organophosphorus neuropathy may occur at the axonal (? synaptic) surface.  相似文献   

16.
The relationship between neuronal glutamate turnover, the glutamate/glutamine cycle and de novo glutamate synthesis was examined using two different model systems, freshly dissected rat retinas ex vivo and in vivo perfused rat brains. In the ex vivo rat retina, dual kinetic control of de novo glutamate synthesis by pyruvate carboxylation and transamination of alpha-ketoglutarate to glutamate was demonstrated. Rate limitation at the transaminase step is likely imposed by the limited supply of amino acids which provide the alpha-amino group to glutamate. Measurements of synthesis of (14)C-glutamate and of (14)C-glutamine from H(14)CO(3) have shown that (14)C-amino acid synthesis increased 70% by raising medium pyruvate from 0.2 to 5 mM. The specific radioactivity of (14)C-glutamine indicated that approximately 30% of glutamine was derived from (14)CO(2) fixation. Using gabapentin, an inhibitor of the cytosolic branched-chain aminotransferase, synthesis of (14)C-glutamate and (14)C-glutamine from H(14)CO(3)(-) was inhibited by 31%. These results suggest that transamination of alpha-ketoglutarate to glutamate in Müller cells is slow, the supply of branched-chain amino acids may limit flux, and that branched-chain amino acids are an obligatory source of the nitrogen required for optimal rates of de novo glutamate synthesis. Kinetic analysis suggests that the glutamate/glutamine cycle accounts for 15% of total neuronal glutamate turnover in the ex vivo retina. To examine the contribution of the glutamate/glutamine cycle to glutamate turnover in the whole brain in vivo, rats were infused intravenously with H(14)CO(3)(-). (14)C-metabolites in brain extracts were measured to determine net incorporation of (14)CO(2) and specific radioactivity of glutamate and glutamine. The results indicate that 23% of glutamine in the brain in vivo is derived from (14)CO(2) fixation. Using published values for whole brain neuronal glutamate turnover, we calculated that the glutamate/glutamine cycle accounts for approximately 60% of total neuronal turnover. Finally, differences between glutamine/glutamate cycle rates in these two model systems suggest that the cycle is closely linked to neuronal activity.  相似文献   

17.
18.
Prostate cancer cells require high rates of de novo fatty acid synthesis and protein synthesis for their rapid growth. We report here that the growth of these cells is markedly diminished by incubation with activators of AMP-activated protein kinase (AMPK), a fuel-sensing enzyme that has been shown to diminish both of these processes in intact tissues. Inhibition of cell growth was observed when AMPK was activated by either 5-aminoimidazole-4-carboxamide riboside (AICAR) or the thiazolidinedione rosiglitazone. Thus, a 90% inhibition of the growth of androgen-independent (DU145, PC3) and androgen-sensitive (LNCaP) cells was achieved after 4 days of exposure to one or both of these agents. Where studied, this was associated with a decrease in the concentration of malonyl CoA, an intermediate of de novo fatty acid synthesis, and an increase in expression of the cell cycle inhibitor p21. In addition, AICAR inhibited two key enzymes involved in protein synthesis, mTOR and p70S6K, and blocked the ability of the androgen R1881 to increase cell growth and the expression of two enzymes for de novo fatty acid synthesis, acetyl CoA carboxylase and fatty acid synthase, in the LNCaP cells. The results suggest that AMPK is a potential target for the treatment of prostate cancer.  相似文献   

19.
The germination of conidiospores of wild-type Neurospora crassa was found to be dependent upon the function of the cytochrome-mediated electron transport pathway. The cyanide-insensitive alternate oxidase did not contribute significantly to the respiration of these germinating spores. The dormant spores contained all of the cytochrome components and a catalytically active cytochrome c oxidase required for the activity of the standard respiratory pathway, and these preserved components were responsible for the accelerating rates of oxygen uptake which began immediately upon suspension of the spores in an incubation medium. Mitochondria of the dormant spores contained all of the subunit peptides of the functional cytochrome c oxidase; nevertheless, de novo synthesis of these subunits began at low rates in the first stages of germination. Reactivation of the respiratory system of germinating N. crassa spores seems not to be dependent initially upon the function of either the mitochondrial or cytoplasmic protein-synthesizing systems. The respiratory activity of spores of three mutant cytochrome c oxidase-deficient strains of N. crassa also was found to depend upon the function of the cytochrome electron transport pathway; the dormant and germinating spores of these strains contained a catalytically active cytochrome c oxidase. Cytochrome c oxidase may be present in the dormant and germinating spores of these strains as the result of a developmental-phase-specific synthesis of and requirement for the enzyme.  相似文献   

20.
Our model of the animal fatty acid synthetase describes a head-to-tail arrangement of two identical subunits and predicts the presence of two centers for fatty acid synthesis. Current experiments which support this conclusion were conducted using the following approach. The thioesterase component of chicken liver fatty acid synthetase was either inhibited using phenylmethanesulfonyl fluoride or diisopropyl fluorophosphate, or released from the synthetase by limited proteolysis with alpha-chymotrypsin, thus ensuring that the fatty acyl products remain bound to the enzyme. Employing such preparations, the amount of NADPH oxidized in the initial burst of fatty acid synthesis was determined by stopped flow techniques. Gas-liquid chromatography showed that C20:0 and C22:0 constituted 85% of the fatty acids formed de novo, a result that was confirmed using [14C]acetyl-CoA in the reaction. These data showed that 1.0 mol of fatty acyl-enzyme product was formed per mol of phosphopantetheine; in addition, the measured stoichiometry of NADPH oxidation was sufficient to account for de novo fatty acid synthesis. Altogether, these results indicate that the two sites for fatty acid synthesis are active and function simultaneously. They also indicate that the thioesterase plays a key role in determining the chain specificity of fatty acid synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号