首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flavocytochrome b (Cyt b) is a heterodimeric, integral membrane protein that serves as the central component of an electron transferase system employed by phagocytes for elimination of bacterial and fungal pathogens. This report describes a rapid and efficient single-step purification of Cyt b from human neutrophil plasma membranes by solubilization in the nonionic detergent dodecylmaltoside (DDM) and immunoaffinity chromatography. A similar procedure for isolation of Cyt b directly from intact neutrophils by a combination of heparin and immunoaffinity chromatography is also presented. The stability of Cyt b was enhanced in DDM relative to previously employed solubilizing agents as determined by both monitoring the heme spectrum in crude membrane extracts and assaying resistance to proteolytic degradation following purification. Gel filtration chromatography and dynamic light scattering indicated that DDM maintains a predominantly monodisperse population of Cyt b following immunoaffinity purification. The high degree of purity obtained with this isolation procedure allowed for direct determination of a 2:1 heme to protein stoichiometry, confirming previous structural models. Analysis of the isolated heterodimer by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry allowed for accurate mass determination of p22phox as indicated by the gene sequence. Affinity-purified Cyt b was functionally reconstituted into artificial bilayers and demonstrated that catalytic activity of the protein was efficiently retained throughout the purification procedure.  相似文献   

2.
We designed a simple procedure for the purification of type I protein kinase C, using immunoaffinity chromatography with a monoclonal antibody, MC-1b, obtained by rescreening hybridoma cells available for an affinity ligand. Western blotting demonstrated that MC-1b specifically reacted with type I protein kinase C, and the enzyme molecule dissociated from MC-1b-coupled Sepharose 4B with mild eluants such as thiocyanate retained the kinase activity. A 1148-fold purification was achieved and 210 micrograms of type I protein kinase C was obtained from three rabbit brains, by means of a two-step procedure, using DEAE-cellulose and immunoaffinity chromatography. The resultant preparation was homogeneous, as indicated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis hydroxylapatite chromatography, and immunological analysis using MC-1a, MC-2a, and MC-3a.  相似文献   

3.
4.
The catalytic core of the phagocyte NADPH oxidase is a heterodimeric integral membrane protein (flavocytochrome b (Cyt b)) that generates superoxide and initiates a cascade of reactive oxygen species critical for the host inflammatory response. In order to facilitate structural characterization, the present study reports the first direct analysis of human phagocyte Cyt b by matrix-assisted laser desorption/ionization and nanoelectrospray mass spectrometry. Mass analysis of in-gel tryptic digest samples provided 73% total sequence coverage of the gp91(phox) subunit, including three of the six proposed transmembrane domains. Similar analysis of the p22(phox) subunit provided 72% total sequence coverage, including assignment of the hydrophobic N-terminal region and residues that are polymorphic in the human population. To initiate mass analysis of Cyt b post-translational modifications, the isolated gp91(phox) subunit was subject to sequential in-gel digestion with Flavobacterium meningosepticum peptide N-glycosidase F and trypsin, with matrix-assisted laser desorption/ionization and liquid chromatography-mass spectrometry/mass spectrometry used to demonstrate that Asn-132, -149, and -240 are genuinely modified by N-linked glycans in human neutrophils. Since the PLB-985 cell line represents an important model system for analysis of the NADPH oxidase, methods were developed for the purification of Cyt b from PLB-985 membrane fractions in order to confirm the appropriate modification of N-linked glycosylation sites on the recombinant gp91(phox) subunit. This study reports extensive sequence coverage of the integral membrane protein Cyt b by mass spectrometry and provides analytical methods that will be useful for evaluating posttranslational modifications involved in the regulation of superoxide production.  相似文献   

5.
Diadenosine 5',5'-P1,P4-tetraphosphate (Ap4A) phosphorylase has been isolated previously using classical protein isolation techniques [A. Guranowski and S. Blanquet (1985) J. Biol. Chem. 260, 3542-3547]. A protein A-Sepharose immunoaffinity column was prepared to simplify the purification procedure. The immunoaffinity column was prepared using specific polyclonal antibodies to Ap4A phosphorylase covalently coupled to protein A-Sepharose with dimethyl pimelimidate by a modification of the procedure of C. Schneider et al. [(1982) J. Biol. Chem. 257, 10,766-10,769]. The specific activity of the immunoaffinity-purified enzyme showed an increase equivalent to the specific activity obtained by chromatography on DEAE-cellulose and hydroxyapatite columns.  相似文献   

6.
A 110 fold purification of cytochrome b558 from resting bovine neutrophils has been achieved. The plasma membrane bound cytochrome b was extracted with aminoxide WS35, a non ionic detergent. The purification procedure included liquid column chromatography on CM-C50 Sephadex, chromatofocusing on the anion exchanger PBE94, and gel filtration on P30 Biogel. The purified preparation was characterized by an heme to protein (nmol/mg) ratio of 7.7. The isoelectric point of cytochrome b was at pH 6.5. Upon polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate three bands corresponding to apparent Mr 64,000, 56,000 and 20,000 were revealed by staining with Coomassie Blue.  相似文献   

7.
We have purified the protein for the enzyme sucrose phosphate synthase (SPS) from corn (Zea mays) leaves. Partially purified SPS protein was used to generate specific monoclonal antibodies. The following immunoaffinity chromatography allowed the isolation of pure SPS protein. The apparent molecular mass of the SPS polypeptide is 138 kilodaltons. By immunoblot, an SPS antigen was found to accumulate in mature leaves. SPS protein levels remain constant during the day/night cycle. The observed diurnal fluctuation of extractable enzyme activity, therefore, must be caused by modification of the specific activity of SPS in vivo.  相似文献   

8.
Soluble guanylyl cyclase was purified from bovine lung by an immunoaffinity chromatographic method using IgG fractions of antisera against a synthetic peptide of the C-terminus of the 70-kDa subunit of the enzyme. After anion-exchange chromatography, the enzyme was bound to an immunoaffinity column and was eluted with the synthetic peptide. This method allowed the convenient isolation of 2 mg of apparently homogeneous enzyme from 40 g cytosolic proteins. The enzyme had an apparent molecular mass of about 150 kDa and consisted of two subunits (70 kDa and 73 kDa) as determined by gel permeation fast protein liquid chromatography and SDS/PAGE. The basal activities determined in the presence of Mg2+ and Mn2+ were 10-20 nmol.min-1.mg-1 and 80-100 nmol.min-1.mg-1, respectively. The enzyme exhibited an ultraviolet-visible absorption spectrum typical for hemoproteins, with a Soret band at 430 nm. The purified enzyme was stimulated by NO-containing compounds. Maximal enzyme activities measured in the presence of sodium nitroprusside were 1.2-2.4 mumol.min-1.mg-1 (half-maximal effect of sodium nitroprusside at 1.3-1.9 microM) and 0.9-1.8 mumol.min-1.mg-1 (half-maximal effect at 0.28-0.41 microM sodium nitroprusside) in the presence of Mg2+ and Mn2+, respectively. The method developed for the large-scale purification of soluble guanylyl cyclase by immunoaffinity chromatography, using synthetic peptides for the elution of the enzyme, appears to be superior to previously described methods. As antibodies against synthetic peptides corresponding to deduced amino acid sequences of the respective protein are easily obtained, the described method may be suitable for a convenient large-scale purification of various proteins.  相似文献   

9.
Membrane proteins constitute about one third of proteins encoded by all genomes, but only a small percentage have their structures deposited in the Protein Data Bank. One bottleneck in the pipeline from expression to structure determination is the identification of detergents that maintain the protein in a soluble, stable, and active state. Here, we describe a small‐scale automated procedure to easily and rapidly screen detergents for the solubilization and purification of membrane proteins, to perform detergent exchange, or to identify conditions preserving protein interactions in complexes. Hundreds of conditions can be tested in a few hours to select detergents that keep proteins folded and nonaggregated, from single membrane preparations of cells overexpressing the protein(s) of interest. Thirty‐one prokaryotic, eukaryotic, and viral membrane proteins were analyzed by our small‐scale procedure to identify the best‐associated detergents. Examples of results obtained with a bitopic and multitopic membrane proteins and membrane protein complexes are presented in more detail. DDM, DM, DMNG, TritonX‐100, LAPAO, and Fos‐12 appeared effective for successful membrane solubilization and protein purification of most selected targets. Eukaryotic proteins are in general more difficult to extract and purify from Escherichia coli membranes than prokaryotic proteins. The protocol has been developed for His‐tagged proteins, but can readily be adapted to other affinity tags by adjusting the chromatography resin and the buffer composition.  相似文献   

10.
The human voltage‐gated proton channel (Hv1) is a membrane protein consisting of four transmembrane domains and intracellular amino‐ and carboxy‐termini. The protein is activated by membrane depolarization, similar to other voltage‐sensitive proteins. However, the Hv1 proton channel lacks a traditional ion pore. The human Hv1 proton channel has been implicated in mediating sperm capacitance, stroke, and most recently as a biomarker/mediator of cancer metastasis. Recently, the three‐dimensional structures for homologues of this voltage‐gated proton channel were reported. However, it is not clear what artificial environment is needed to facilitate the isolation and purification of the human Hv1 proton channel for structural study. In the present study, we generated a chimeric protein that placed an enhanced green fluorescent protein (EGFP) to the amino‐terminus of the human Hv1 proton channel (termed EGFP‐Hv1). The chimeric protein was expressed in a baculovirus expression system using Sf9 cells and subjected to detergent screening using fluorescence‐detection size‐exclusion chromatography. The EGFP‐Hv1 proton channel can be solubilized in the zwitterionic detergent Anzergent 3–12 and the nonionic n‐dodecyl‐β‐d ‐maltoside (DDM) with little protein aggregation and a prominent monomeric protein peak at 48 h postinfection. Furthermore, we demonstrate that the chimeric protein exhibits a monomeric protein peak, which is distinguishable from protein aggregates, at the final size‐exclusion chromatography purification step. Taken together, we can conclude that solubilization in DDM will provide a useable final product for further structural characterization of the full‐length human Hv1 proton channel.  相似文献   

11.
Defects in the cystic fibrosis transmembrane conductance regulator (CFTR) protein cause cystic fibrosis (CF), an autosomal recessive disease that currently limits the average life expectancy of sufferers to <40 years of age. The development of novel drug molecules to restore the activity of CFTR is an important goal in the treatment CF, and the isolation of functionally active CFTR is a useful step towards achieving this goal.We describe two methods for the purification of CFTR from a eukaryotic heterologous expression system, S. cerevisiae. Like prokaryotic systems, S. cerevisiae can be rapidly grown in the lab at low cost, but can also traffic and posttranslationally modify large membrane proteins. The selection of detergents for solubilization and purification is a critical step in the purification of any membrane protein. Having screened for the solubility of CFTR in several detergents, we have chosen two contrasting detergents for use in the purification that allow the final CFTR preparation to be tailored to the subsequently planned experiments.In this method, we provide comparison of the purification of CFTR in dodecyl-β-D-maltoside (DDM) and 1-tetradecanoyl-sn-glycero-3-phospho-(1''-rac-glycerol) (LPG-14). Protein purified in DDM by this method shows ATPase activity in functional assays. Protein purified in LPG-14 shows high purity and yield, can be employed to study post-translational modifications, and can be used for structural methods such as small-angle X-ray scattering and electron microscopy. However it displays significantly lower ATPase activity.  相似文献   

12.
A rapid and efficient method for purifying cAMP-dependent protein kinase (PKA) holoenzyme based on immunoaffinity chromatography was developed. The affinity column was prepared by coupling a polyclonal antibody raised against the PKA regulatory subunit to NHS-activated Sepharose. The holoenzyme purified by this procedure from the bivalve molluskMytilus galloprovincialiswas shown to be fully active as judged by (1) its cAMP-binding activity, (2) its cAMP-dependent protein kinase activity, and (3) its autophosphorylation ability. Moreover, together with both regulatory and catalytic subunits, which constitute the PKA holoenzyme, a protein with a molecular mass of approximately 200 kDa was copurified, and results from gel-filtration chromatography showed that it was associated with a fraction of PKA. Therefore, this immunoaffinity purification technique could also be useful to isolate such proteins as interact with PKAin vivo.  相似文献   

13.
Phagocyte NADPH oxidases generate superoxide at high rates in defense against infectious agents, a process regulated by second messenger anionic lipids using incompletely understood mechanisms. We reconstituted the catalytic core of the human neutrophil NADPH oxidase, flavocytochrome b (Cyt b) in 99% phosphatidylcholine vesicles in order to correlate anionic lipid-dependent conformational changes in membrane-bound Cyt b and oxidase activity. The anionic lipid 10:0 phosphatidic acid (10:0 PA) specifically induced conformational changes in Cyt b as measured by a combination of fluorescence resonance energy transfer methods and size exclusion chromatography. The fluorescence lifetime of a complex between Cyt b and Cascade Blue-derivatized anti-p22(phox) antibody (CCB-CS9), increased after exposure to 10:PA by ~50% of the change observed when the complex is dissociated, indicating a structural rearrangement of p22(phox) and/or the Cyt b heme prosthetic groups. Half of the quenching relaxation occurred at 10:0 PA concentrations permissive to less than 10% full NADPH oxidase activity, but saturated near the saturation in activity in a matched cell-free oxidase assay. We conclude that anionic lipids modulate the conformation of Cyt b in the membrane and suggest they may serve to modulate the structure of Cyt b as a control mechanism for the NADPH oxidase.  相似文献   

14.
So far, no efficient affinity chromatography for CCK receptor purification has been reported that prevented obtention of sequenceable amounts of purified receptor. In this work, 10% of plasma membrane receptor sites were specifically cross-linked with the photoreactive cleavable agonist 125I-ASD-[Thr28, Ahx31]-CCK-25-33, solubilized by NP-40, chromatographied on immobilized wheat germ agglutinin and further immunopurified using anti-CCK antibodies to an overall rate of 3000-3600-fold. Analysis of eluted material demonstrated a protein migrating at Mr 85,000-100,000 and the absence of 35S-labeled impurity. This single and efficient affinity chromatography should provide enough homogeneous receptor protein for microsequence determination and leads to consider immunoaffinity chromatography on immobilized anti-ligand antibodies as a potential tool for purification of membrane receptors.  相似文献   

15.
Vasilescu J  Guo X  Kast J 《Proteomics》2004,4(12):3845-3854
The purification of protein complexes can be accomplished by different types of affinity chromatography. In a typical immunoaffinity experiment, protein complexes are captured from a cell lysate by an immobilized antibody that recognizes an epitope on one of the known components of the complex. After extensive washing to remove unspecifically bound proteins, the complexes are eluted and analyzed by mass spectrometry (MS). Transient complexes, which are characterized by high dissociation constants, are typically lost by this approach. In the present study, we describe a novel method for identifying transient protein-protein interactions using in vivo cross-linking and MS-based protein identification. Live cells are treated with formaldehyde, which rapidly permeates the cell membrane and generates protein-protein cross-links. Proteins cross-linked to a Myc-tagged protein of interest are copurified by immunoaffinity chromatography and subjected to a procedure which dissociates the cross-linked complexes. After separation by SDS-PAGE, proteins are identified by tandem mass spectrometry. Application of this method enabled the identification of numerous proteins that copurified with a constitutively active form of M-Ras (M-Ras(Q71L)). Among these, we identified the RasGAP-related protein IQGAP1 to be a novel interaction partner of M-Ras(Q71L). This method is applicable to many proteins and will aid in the study of protein-protein interactions.  相似文献   

16.
The heterodimeric, integral membrane protein flavocytochrome b (Cyt b) is the catalytic core of the phagocyte NADPH oxidase and generates superoxide which plays a critical role in host defense. To better define the activation of superoxide production by this multisubunit enzyme complex, Cyt b-specific monoclonal antibodies (mAbs) and the p47phox SH3 domains (p47SH3AB) were used in the present study as probes to map surface structure and conformational dynamics in human neutrophil Cyt b. In pull-down and co-immunoprecipitation studies with detergent-solubilized Cyt b, the oxidase-inhibitory mAb CS9 was shown to share an overlapping binding site with p47SH3AB on the C-terminal region of the p22phox subunit. Similar studies demonstrated a surprising lack of overlap between the mAb 44.1 and CS9/p47SH3AB binding sites, and they indicated that the oxidase-inhibitory mAb NL7 binds a region physically separated from the p22phox C-terminal domain. Resonance energy transfer and size exclusion chromatography confirmed the above results for functionally reconstituted Cyt b and provided evidence that binding of both mAb CS9 and p47SH3AB altered the conformation of Cyt b. Further support that binding of the p47phox SH3 domains modulates the structure of Cyt b was obtained using a cell-free assay system where p47SH3AB enhanced superoxide production in the presence of a p67phox (1-212)-Rac1(Q61L) fusion protein. Taken together, this study further characterizes the structure of human neutrophil Cyt b in both detergent micelles and reconstituted membrane bilayers, and it provides evidence that the cytosolic regulatory subunit p47phox modulates the conformation of Cyt b (in addition to serving as an adapter protein) during oxidase activation.  相似文献   

17.
A novel, soluble cytochrome with an unusual visible spectral signature at 579 nm (Cyt(579)) has been characterized after isolation from several different microbial biofilms collected in an extremely acidic ecosystem. Previous proteogenomic studies of an Fe(II)-oxidizing community indicated that this abundant red cytochrome could be extracted from the biofilms with dilute sulfuric acid. Here, we found that the Fe(II)-dependent reduction of Cyt(579) was thermodynamically favorable at a pH of >3, raising the possibility that Cyt(579) acts as an accessory protein for electron transfer. The results of transmission electron microscopy of immunogold-labeled biofilm indicated that Cyt(579) is localized near the bacterial cell surface, consistent with periplasmic localization. The results of further protein analysis of Cyt(579), using preparative chromatofocusing and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, revealed three forms of the protein that correspond to different N-terminal truncations of the amino acid sequence. The results of intact-protein analysis corroborated the posttranslational modifications of these forms and identified a genomically uncharacterized Cyt(579) variant. Homology modeling was used to predict the overall cytochrome structure and heme binding site; the positions of nine amino acid substitutions found in three Cyt(579) variants all map to the surface of the protein and away from the heme group. Based on this detailed characterization of Cyt(579), we propose that Cyt(579) acts as an electron transfer protein, shuttling electrons derived from Fe(II) oxidation to support critical metabolic functions in the acidophilic microbial community.  相似文献   

18.
We have developed a simple, rapid method for purification of beta-glucuronidase from human liver in order to facilitate the study of its biochemical structure and pathophysiologic roles in both cholelithiasis and carcinogenesis. The procedure includes the following steps: (1) liver homogenization, (2) 25-45% saturated ammonium sulfate fractionation, (3) heat denaturation, and (4) immunoaffinity chromatography employing murine anti-human beta-glucuronidase monoclonal IgG binding to tresyl-activated agarose. beta-Glucuronidase constitutes 1.3 mg per 100 g of wet liver tissue. The enzyme can be purified with a 10% overall yield and overall purification of 5000-fold in a 2-day cycle on a fairly large scale by the method described. Polyacrylamide gel electrophoresis indicated minor contaminants in the final product which could be further purified by protein blotting.  相似文献   

19.
Peptidoglycan-associated lipoprotein (PAL) is a highly conserved structural outer membrane protein among Gram-negative bacteria. In some species, it is proinflammatory and released extracellularly. We purified a newly identified PAL (AaPAL) of a periodontal pathogen Actinobacillus actinomycetemcomitans by using AaPAL antipeptide antibodies coupled to immunoaffinity chromatography column. No protein impurities originating in A. actinomycetemcomitans were found in the final product. Sera from patients infected by A. actinomycetemcomitans recognized the purified AaPAL. The present purification method seems to be suitable for isolation of AaPAL and probably PALs of other bacterial species, and applicable in studies investigating proinflammatory mechanisms of A. actinomycetemcomitans.  相似文献   

20.
We intend to purify beta-glucuronidase from human liver in a large quantity in order to facilitate the study of its biochemical structure and pathophysiologic roles in cholelithiasis and carcinogenesis. The initial purification procedure involved: (1) liver homogenization, (2) 25-45% saturated ammonium sulfate fractionation, (3) heat denaturation of protein at 56 degrees C, (4) gel filtration with Bio-Gel P-300 gel, (5) anion exchange chromatography with DEAE agarose, (6) cation exchange chromatography with CM agarose, and (7) hydroxyapatite chromatography (overall yield, 1%; overall purification, 169X). The final product was used to immunize rabbits and BALB/c mice for production of polyclonal and monoclonal antibodies, respectively. The antibodies, mainly IgG, were purified by using gamma-Protein A agarose column chromatography. The purified IgG, after periodate oxidation, was coupled to hydrazide gel by formation of a stable covalent hydrazone bond linkage. The new purification procedure involved the initial first three steps, followed by (4) polyclonal IgG immunoaffinity chromatography and (5) monoclonal IgG immunoaffinity chromatography (overall yield, 6.1%; overall purification, 3720X). Polyacrylamide gel electrophoresis indicated minor contaminants in the final product which could be further purified by electroelution. It is concluded that beta-glucuronidase constitutes 0.016 mg per gram of wet liver tissue and can be obtained on a large scale in a highly purified form within a 2-day cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号