首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Flavocytochrome b (Cyt b) is a heterodimeric, integral membrane protein that serves as the central component of an electron transferase system employed by phagocytes for elimination of bacterial and fungal pathogens. This report describes a rapid and efficient single-step purification of Cyt b from human neutrophil plasma membranes by solubilization in the nonionic detergent dodecylmaltoside (DDM) and immunoaffinity chromatography. A similar procedure for isolation of Cyt b directly from intact neutrophils by a combination of heparin and immunoaffinity chromatography is also presented. The stability of Cyt b was enhanced in DDM relative to previously employed solubilizing agents as determined by both monitoring the heme spectrum in crude membrane extracts and assaying resistance to proteolytic degradation following purification. Gel filtration chromatography and dynamic light scattering indicated that DDM maintains a predominantly monodisperse population of Cyt b following immunoaffinity purification. The high degree of purity obtained with this isolation procedure allowed for direct determination of a 2:1 heme to protein stoichiometry, confirming previous structural models. Analysis of the isolated heterodimer by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry allowed for accurate mass determination of p22(phox) as indicated by the gene sequence. Affinity-purified Cyt b was functionally reconstituted into artificial bilayers and demonstrated that catalytic activity of the protein was efficiently retained throughout the purification procedure.  相似文献   

2.
Using a hydroxylapatite column chromatographic technique, we obtained the evidence for two subtype forms of protein kinase C in human platelets. These subtypes had a similar chromatographic property to Type II, Type III protein kinase C from the rabbit brain. In addition, in monoclonal antibodies (MC-1a, 2a, 3a) (1) which reacted with specifically Type I, II, III rabbit brain protein kinase C, respectively, only MC-2a and MC-3a reacted with human platelet protein kinase C. All these brain and platelet subtypes have a similar Km value for ATP, the range being from 8.0 to 20.0 microM and a similar IC50 value with regard to the effect of the protein kinase C inhibitor, H-7. Thus, the possibility that specific functions of platelet may be derived from a deficiency of Type I protein kinase C warrants attention.  相似文献   

3.
A rapid and efficient method for purifying cAMP-dependent protein kinase (PKA) holoenzyme based on immunoaffinity chromatography was developed. The affinity column was prepared by coupling a polyclonal antibody raised against the PKA regulatory subunit to NHS-activated Sepharose. The holoenzyme purified by this procedure from the bivalve molluskMytilus galloprovincialiswas shown to be fully active as judged by (1) its cAMP-binding activity, (2) its cAMP-dependent protein kinase activity, and (3) its autophosphorylation ability. Moreover, together with both regulatory and catalytic subunits, which constitute the PKA holoenzyme, a protein with a molecular mass of approximately 200 kDa was copurified, and results from gel-filtration chromatography showed that it was associated with a fraction of PKA. Therefore, this immunoaffinity purification technique could also be useful to isolate such proteins as interact with PKAin vivo.  相似文献   

4.
Diadenosine 5',5'-P1,P4-tetraphosphate (Ap4A) phosphorylase has been isolated previously using classical protein isolation techniques [A. Guranowski and S. Blanquet (1985) J. Biol. Chem. 260, 3542-3547]. A protein A-Sepharose immunoaffinity column was prepared to simplify the purification procedure. The immunoaffinity column was prepared using specific polyclonal antibodies to Ap4A phosphorylase covalently coupled to protein A-Sepharose with dimethyl pimelimidate by a modification of the procedure of C. Schneider et al. [(1982) J. Biol. Chem. 257, 10,766-10,769]. The specific activity of the immunoaffinity-purified enzyme showed an increase equivalent to the specific activity obtained by chromatography on DEAE-cellulose and hydroxyapatite columns.  相似文献   

5.
We intend to purify beta-glucuronidase from human liver in a large quantity in order to facilitate the study of its biochemical structure and pathophysiologic roles in cholelithiasis and carcinogenesis. The initial purification procedure involved: (1) liver homogenization, (2) 25-45% saturated ammonium sulfate fractionation, (3) heat denaturation of protein at 56 degrees C, (4) gel filtration with Bio-Gel P-300 gel, (5) anion exchange chromatography with DEAE agarose, (6) cation exchange chromatography with CM agarose, and (7) hydroxyapatite chromatography (overall yield, 1%; overall purification, 169X). The final product was used to immunize rabbits and BALB/c mice for production of polyclonal and monoclonal antibodies, respectively. The antibodies, mainly IgG, were purified by using gamma-Protein A agarose column chromatography. The purified IgG, after periodate oxidation, was coupled to hydrazide gel by formation of a stable covalent hydrazone bond linkage. The new purification procedure involved the initial first three steps, followed by (4) polyclonal IgG immunoaffinity chromatography and (5) monoclonal IgG immunoaffinity chromatography (overall yield, 6.1%; overall purification, 3720X). Polyacrylamide gel electrophoresis indicated minor contaminants in the final product which could be further purified by electroelution. It is concluded that beta-glucuronidase constitutes 0.016 mg per gram of wet liver tissue and can be obtained on a large scale in a highly purified form within a 2-day cycle.  相似文献   

6.
Flavocytochrome b (Cyt b) is a heterodimeric, integral membrane protein that serves as the central component of an electron transferase system employed by phagocytes for elimination of bacterial and fungal pathogens. This report describes a rapid and efficient single-step purification of Cyt b from human neutrophil plasma membranes by solubilization in the nonionic detergent dodecylmaltoside (DDM) and immunoaffinity chromatography. A similar procedure for isolation of Cyt b directly from intact neutrophils by a combination of heparin and immunoaffinity chromatography is also presented. The stability of Cyt b was enhanced in DDM relative to previously employed solubilizing agents as determined by both monitoring the heme spectrum in crude membrane extracts and assaying resistance to proteolytic degradation following purification. Gel filtration chromatography and dynamic light scattering indicated that DDM maintains a predominantly monodisperse population of Cyt b following immunoaffinity purification. The high degree of purity obtained with this isolation procedure allowed for direct determination of a 2:1 heme to protein stoichiometry, confirming previous structural models. Analysis of the isolated heterodimer by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry allowed for accurate mass determination of p22phox as indicated by the gene sequence. Affinity-purified Cyt b was functionally reconstituted into artificial bilayers and demonstrated that catalytic activity of the protein was efficiently retained throughout the purification procedure.  相似文献   

7.
A method is described for a rapid two-step purification of the membrane receptor for epidermal growth factor (EGF) from cultured human A-431 cells. After solubilization of the cells with Triton X-100, the receptor is immobilized on an immunoaffinity column containing a monoclonal antibody directed against the receptor. In the second step of purification, the receptor, eluted from the antibody column, is adsorbed and specifically eluted from a lectin-agarose column. The molecular species obtained is mainly the 170,000-dalton EGF receptor polypeptide. The activity of the pure receptor depends on the conditions used for the desorption from the immunoaffinity beads. High-yield elution is obtained with acidic buffer and the receptor so purified specifically binds EGF, but is devoid of the kinase activity. When the elution is done with alkaline buffers or with buffer containing urea, a fully active receptor kinase is purified (yield of 10%). The pure receptor binds 125I-EGF with a Kd of 4 X 10(-8) M and retains EGF-sensitive protein kinase activity which phosphorylates tyrosine residues on the receptor itself. An additional protocol is described for large-scale purification (yield of 55%) of EGF receptor for the analysis of its primary structure. In this procedure, the EGF receptor is first purified by immunoaffinity chromatography which is followed by preparative gel electrophoresis of the 32P internally labeled receptor to remove minor protein contaminants.  相似文献   

8.
The major cytokinin binding protein of wheat germ (CBP) was extensively purified employing chromatography on Cibacron F3GA-Sepharose CL6B and concanavalin A-agarose as key purification steps. The major polypeptides present in the purified CBP preparations have molecular weights of 60,000 ± 4,000, 42,000 ± 3,000, and 37,000 ± 3,000, respectively. A protein kinase that catalyzes the phosphorylation of CBP (CBP kinase) was extensively purified from wheat germ by affinity chromatography on casein-Sepharose 4B and CBP-Sepharose 4B. The purification procedure resolves CBP kinase from an abundant casein kinase that does not phosphorylate CBP. CBP kinase catalyzes the phosphorylation of casein, phosvitin, CBP, and the wheat germ cyclic AMP-binding protein cABPII. CBP kinase phosphorylates the major 60,000 dalton subunit of CBP as well as 16,000 to 18,000 dalton polypeptides present in CBP preparations. CBP fractions with differing activities as substrates for CBP kinase were partly resolved by gel filtration and by chromatography on DEAE-Sephacel.  相似文献   

9.
Summary To confirm the possibility that protein kinase C is involved in compaction of mouse embryos, the presence and distribution pattern of Ca2+-dependent subspecies of this enzyme in mouse embryos, before and during compaction, were examined immunocytochemically with three different monoclonal antibodies. These were MC-1a, MC-2a and MC-3a, which selectively interact with the subspecies of the enzyme known as types I, II and III, respectively. Only when embryos were incubated with MC-3a, was immunofluorescence clearly detected in all cells of embryos before and during compaction. This result demonstrates the presence of type III protein kinase C in embryos before and during compaction and suggests the possibility that the type III enzyme may be involved in compaction. No marked differences were found in the distribution pattern of the type III enzyme between embryos examined before and during compaction.  相似文献   

10.
We report immunohistochemical evidence for the overexpression of protein kinase C in various proliferative diseases of human thyroid. Immunohistochemical characterization of various surgically removed thyroid tissues, viz., cancer tissues: papillary carcinoma and follicular carcinoma; adenoma tissues: tubular, trabecular and colloid adenomas; adenomatous goiter; and normal thyroid was done using the monospecific monoclonal antibodies MC-1a, MC-2a and MC-3a, each of which is specific for types I, II and III isozymes of protein kinase C, respectively. For protein kinase C type II, a remarkable difference in staining intensity was noted between the cancerous and normal tissues. The cytoplasm of papillary and follicular carcinoma cells stained more intensely than that of normal thyroid cells. In the benign tumor and adenomatous goiter tissues, stronger staining was noted in the papilliform-proliferating portion and cubic epithelial cells. In the normal thyroid tissues, epithelial cells of greater height were more strongly stained than simple squamous epithelial cells. These results indicated that protein kinase C type II isozyme is expressed in larger amounts in cancerous and proliferative tissues of the human thyroid.  相似文献   

11.
We report the immunohistochemical localization of protein kinase C isozymes (types I, II, and III) in the rabbit retina using the monospecific monoclonal antibodies MC-1a, MC-2a, and MC-3a. Using immunoblot analysis of partially purified protein kinase C preparations of rabbit retina, types II and III isozymes alone were detected. The activity of type III was the stronger. By light microscopic immunohistochemical analysis, retinal neurons were negative for type I and positive for type II and type III isozymes. Type II was more diffusely distributed through the retinal layers, but was distinctive in ganglion cells, bipolar cells, and outer segments. The immunoreactivity was stronger for type III isozyme, and it was observed in mop (rod) bipolar cells and amacrine cells. By using immunoelectron microscopy, the cytoplasm of the cell body, the axon, and dendrites of the mop bipolar cells were strongly immunoreactive for type III. The so-called rod bipolar cells were for the first time seen to form synapses with rod photoreceptor cells. These differential localizations of respective isozymes in retinal neurons suggest that each isozyme has a different site of function in each neuron.  相似文献   

12.
We have recently reported on the purification, subunit structure, and serological analysis of calf thymus ribonuclease H I and suggested a trimeric or tetrameric structure for the enzyme (Büsen, W., and Vogt, G. (1980) J. Biol. Chem. 255, 9434-9443). Continuation of our immunological analysis, using a protein blotting procedure for antigen detection and immunoaffinity chromatography, revealed that the native enzyme molecule is composed of polypeptides A and C with molecular weights of 31,600 and 24,800 respectively, in a molar ratio of 2 to 1. This is in accordance with a trimeric structure (A,A,C) for calf thymus ribonuclease H I. Polypeptides B and D, found in the most purified fraction, are shown to be generated during the early steps of the purification procedure, suggesting specific protein nicking which does not affect the native molecular weight of the enzyme.  相似文献   

13.
We designed a simple procedure for the purification of Ca2+-activated, phospholipid-dependent protein kinase (protein kinase C) from rabbit brain, using affinity chromatography with a new affinity adsorbent. The adsorbent was synthesized by attaching the amino residue of N-(2-aminoethyl)-5-isoquinolinesulfonamide (H-9) to cyanogen bromide-activated Sepharose. H-9 is a potent competitive inhibitor of protein kinase C, cGMP-, and cAMP-dependent protein kinase with respect to ATP and exhibits inhibition constants of 18, 0.87, and 1.9 microM, respectively (Hidaka, H., Inagaki, M., Kawamoto, S., and Sasaki, Y. (1984) Biochemistry, 23, 5036). A 960-fold purification was achieved in the two-step procedure, which entailed DEAE-cellulose and the affinity chromatography. The resultant preparation was essentially homogeneous, as indicated by polyacrylamide gel electrophoresis under conditions of denaturation with sodium dodecyl sulfate. The affinity of protein kinase C for the H-9-Sepharose was high, and the enzyme could not be eluted either by a high concentration of sodium chloride or by 40% glycerol. The protein kinase C could be eluted from H-9-Sepharose by the buffer containing both 0.2 M NaCl and 20% glycerol, thereby suggesting that the binding between protein kinase C and H-9-Sepharose was due to both hydrophobic and electrostatic interactions. H-9 coupled to Sepharose retained both cyclic nucleotide-dependent protein kinases and protein kinase C, and these enzymes could be eluted separately by the buffer containing L-arginine, a potent inhibitor of these three kinases. The novel aspects of these three multifunctional protein kinases can thus be investigated using isoquinolinesulfonamide derivatives.  相似文献   

14.
Somatomedin-C/insulin-like growth factor I was purified from human plasma using a monoclonal antibody affinity column. Combining immunoaffinity chromatography with standard protein purification methods resulted in an overall recovery of 18%. The 35 micrograms of somatomedin-C/insulin-like growth factor I purified from 500 ml of plasma appeared as a single band when analyzed by polyacrylamide gel electrophoresis and could be used in radioimmunoassay and receptor binding studies.  相似文献   

15.
The ATP-binding cassette transporter protein, multidrug resistance protein MRP1, was purified from doxorubicin-selected H69AR lung tumor cells which express high levels of this protein. A purification procedure comprised of a differential two-step solubilization of MRP1 from plasma membranes with 3-(3-cholamidopropyl)dimethylammonio-1-propanesulfonate followed by immunoaffinity chromatography using the MRP1-specific monoclonal antibody QCRL-1 was developed. Approximately 300 microgram of MRP1 was obtained from 6 mg of plasma membranes at 80-90% purity, as indicated by silver staining of protein gels. After reconstitution of purified MRP1 into proteoliposomes, kinetic analyses indicated that its K(m) for ATP hydrolysis was 104+/-22 microM with maximal activity of 5-10 nmol min(-1) mg(-1) MRP1. MRP1 ATPase activity was further characterized with various inhibitors and exhibited an inhibition profile that distinguishes it from P-glycoprotein and other ATPases. The ATPase activity of reconstituted MRP1 was stimulated by the conjugated organic anion substrates leukotriene C(4) (LTC(4)) and 17beta-estradiol 17-(beta-D-glucuronide) with 50% maximal stimulation achieved at concentrations of 150 nM and 1.6 microM, respectively. MRP1 ATPase was also stimulated by glutathione disulfide but not by reduced glutathione or unconjugated chemotherapeutic agents. This purification and reconstitution procedure is the first to be described in which the ATPase activity of the reconstituted MRP1 retains kinetic characteristics with respect to ATP-dependence and substrate stimulation that are very similar to those deduced from transport studies using MRP1-enriched plasma membrane vesicles.  相似文献   

16.
Crude salivary gland derived proteins from Amblyomma americanum ticks were analyzed by physiochemical (gel filtration and ion exchange chromatography) and immunochemical guinea pig IgG1 (anti-tick immunoaffinity column) techniques for the presence of antigens responsible for the induction of host immune resistance responses. Gel filtration (G-75 Sephadex) and ion exchange (diethyl aminoethyl cellulose) chromatography of crude salivary gland antigen yielded multiple fractions, but only one fraction from each procedure induced significant cutaneous anaphylaxis bluing reactions when used for skin tests in tick sensitized animals treated intravenously with 0.5% Evans blue dye. Salivary gland antigen (200 ng) eluted from the immunoaffinity column by 0.2 M Na2CO3, pH 11.3, and emulsified with incomplete Freund's adjuvant conferred a significant level of tick rejection (24%, P less than 0.001) on naive guinea pigs compared with that seen in controls, but less than (P less than 0.01) the level of immunity conferred by crude salivary gland antigen (380 micrograms). The immunizing dose of immunoaffinity purified salivary gland antigen was 1/1900 the dose of the crude antigen preparation representing 99.9% purification. Furthermore, engorged ticks from animals immunized with salivary gland antigen exhibited a significant decrease (P less than 0.001) in weight compared with ticks from naive animals. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of 125I labeled proteins in the Na2CO3 eluate and the skin reactive fraction from gel filtration and ion-exchange chromatography, after immunoprecipitation with a guinea pig IgG1 antibody to the tick that transferred resistance, revealed the presence of a 20 kDa weight protein reported previously to be the antigen responsible for the induction of host resistance. These studies present physiochemical and immunochemical procedures for the purification of an important tick protein that induces skin reactions in tick sensitized guinea pigs, is recognized by antibody to the tick, and most importantly, is capable of immunizing naive guinea pigs against tick challenge.  相似文献   

17.
The C-terminal catalytic domain (residues 704-1047) of the human ras GTPase-activating protein (GAP) has been engineered so as to incorporate the tripeptide, Glu-Glu-Phe, at its C terminus. This motif is recognized by the commercially available YL1/2 monoclonal antibody to alpha-tubulin and has previously been used for the immunoaffinity purification of HIV enzymes engineered to contain this epitope (Stammers, D. K., Tisdale, M., Court, S., Parmar, V., Bradley, C., and Ross, C. K. (1991) FEBS Lett. 283, 298-302). The engineered GAP catalytic domain (GAP-344) was obtained in high yield and purity from Escherichia coli extracts by means of a single affinity column of immobilized YL1/2, eluted under mild conditions with the dipeptide, Asp-Phe. The protein had similar activity to that previously described for full-length GAP, suggesting that the addition of the epitope did not grossly affect the activity. R903K and L902I mutants of GAP-344 were constructed, and the immunoaffinity purification procedure allowed their rapid characterization. The R903K mutant had less than 3% the activity of the normal protein, whereas the L902I substitution had less than 0.5% of normal activity, suggesting an important role for Leu-902 and Arg-903, residues absolutely conserved among GAP-related proteins. This work exemplifies the general utility of the C-terminal Glu-Glu-Phe motif for the rapid purification of proteins whose function is not altered by C-terminal modification.  相似文献   

18.
Purification and characterization of a protein kinase from pine pollen   总被引:1,自引:0,他引:1  
A kinase phosphorylating casein and phosvitin has been purified from pine pollen by a three-step procedure involving DEAE-cellulose chromatography, affinity chromatography on casein-Sepharose and Sephadex G-100. A purification of about 2000 fold was obtained by this procedure. The kinase is affected neither by cyclic nucleotides nor by Ca2+-calmodulin, whereas it is strongly inhibited by heparin. Using this purification procedure, we have isolated protein kinase exhibiting phosphorylating activity towards casein in the pollen of many other Pinaceae species.  相似文献   

19.
We have previously reported that the cytochrome b6/f complex may be involved in the redox activation of light harvesting chlorophyll-a/b protein complex of photosystem II (LHCII) kinase in higher plants (Gal, A., Shahak, Y., Schuster, G., and Ohad, I. (1987) FEBS Lett. 221, 205-210). The aim of this work was to establish whether a relation between the cytochrome b6/f and LHCII kinase activation can be demonstrated in vitro. Preparations enriched in cytochrome b6/f obtained from spinach thylakoids by detergent extraction and precipitation with ammonium sulfate followed by different procedures of purification, contained various amounts of LHCII kinase activity. Analysis of the cytochrome b6/f content and kinase activity of fractions obtained by histone-Sepharose and immunoaffinity columns, immunoprecipitation and sucrose density centrifugation, indicate functional association of kinase and cytochrome b6/f. Phosphorylation of LHCII by fractions containing both cytochrome b6/f and kinase was enhanced by addition of plastoquinol-1. LHCII phosphorylation and kinase activation could be obtained in fractions prepared by use of beta-D-octyl glucoside but not when 3-[(cholamidopropyl)dimethyl-ammonio]-1-propanesulfonate was used as the solubilizing detergent. Kinase activity could be inhibited by halogenated quinone analogues (2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone and 2,3-diiodo-5-t-butyl-p-benzoquinone) known to inhibit cytochrome b6/f activity. However, kinase activity was inhibited by these analogues in all preparations including those which could not phosphorylate LHCII. We thus propose that the redox activation of LHCII phosphorylation is mediated by kinase interaction with cytochrome b6/f while the deactivation may be related to a distinct quinone binding site of the enzyme molecule.  相似文献   

20.
Cardiac cAMP-dependent protein kinases were compared between the spontaneously hypertensive rat and the age-matched normotensive Wistar-Kyoto rat by DEAE-cellulose chromatography, photoaffinity labeling with 8-N3[32P]cAMP, and Western blots using the antiregulatory and 125I-anticatalytic subunit antibodies. DEAE-cellulose chromatography revealed that the ratio of type I to type II cAMP-dependent protein kinase was 3:1 in the cytoplasmic soluble proteins from the heart of normotensive rat. In contrast, the ratio of type I to type II was 1:1 in the heart of hypertensive rat. Type I protein kinase was reduced by 3-fold in hypertensive rat compared to normotensive rat. The levels of type II protein kinase were similar in both normotensive and hypertensive rats. The ratio of regulatory subunits of type I (RI) to type II (RII) cAMP-dependent protein kinase was 2.5 in the soluble proteins from the heart of normotensive rat compared to a ratio of 0.62 for hypertensive rat. RI was reduced by 4-fold in hypertensive rat compared to normotensive rat. The decrease in RI from hypertensive rat was also demonstrated by photoaffinity labeling with 8-N3[32P] cAMP. Western blot analysis of the catalytic subunit revealed a 2-fold decrease in catalytic subunit (C) in the soluble proteins from the hypertensive rat compared to normotensive rat. These results show that the reduced level of activity of cardiac type I protein kinase in hypertensive rat was the result of a decrease in both the RI and C subunits, thus reducing the number of type I cAMP-dependent protein kinase holoenzyme molecules. Comparison of type I protein kinase from "prehypertensive" and "hypertensive" stages of hypertensive rat indicated that the type I protein kinase was reduced by 3-fold before an increase in the blood pressure was detectable. Cardiac type I protein kinase is predominantly associated with the cytoplasmic proteins in both the normotensive and hypertensive rats. The levels of RI, RII, and C associated with the membrane-solubilized proteins were not affected in the hypertensive rat. The levels of RII were similar in the brain tissue of normotensive and hypertensive rats, suggesting that the decrease in type I protein kinase is specific in hypertensive rat. In conclusion, a decrease in cardiac type I cAMP-dependent protein kinase may affect the degree of phosphorylation of cardiac regulatory proteins, thus impairing normal cardiac physiology in hypertensive rat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号