首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
2.
A Proteus vulgaris strain named T6 which produced lipase (PVL) with nonpositional specificity had been isolated in our laboratory. To produce the lipase in large quantities, we cloned its gene, which had an opening reading frame of 864 base pairs and encoded a deduced 287-amino-acid protein. The PVL gene was inserted into the Escherichia coli expression vector pET-DsbA, and active lipase was expressed in E. coli BL21 cells. The secretive expression of PVL gene in Bacillus subtilis was examined. Three vectors, i.e., pMM1525 (xylose-inducible), pMMP43 (constitutive vector, derivative of pMM1525), and pHPQ (sucrose-inducible, constructed based on pHB201), were used to produce lipase in B. subtilis. Recombinant B. subtilis WB800 cells harboring the pHPQ-PVL plasmid could synthesize and secrete the PVL protein in high yield. The lipase activity reached 356.8 U/mL after induction with sucrose for 72 h in shake-flask culture, representing a 12-fold increase over the native lipase activity in P. vulgaris. The characteristics of the heterologously expressed lipase were identical to those of the native one.  相似文献   

3.
To characterize the low molecular mass glutenin subunit gene 177-21 (AY994364) in wheat (Triticum aestivum L. cv. Jinan 177), we developed a specific PCR primer set to decide its locus with nullisomic-tetrasomic lines of Chinese spring wheat. The result showed that it was assigned to Glu-D3. The DNA fragment of 177-21 was then subcloned into the pGEX-4T-1 expression vector and expressed in E. coli with isopropyl-1-thio-β-D-galactoside induction. The result indicated that this gene encodes about 30 kD polypeptide and deduced amino acid sequence consists of eight cysteine residues. Of the eight, six may be related with the formation of intra-molecular disulfide bonds, the last two with the formation of inter-molecular disulfide bonds, which could be a potential extender in “glutenin polymer” to have positive influence on quality of wheat flour.  相似文献   

4.

Background  

Phospholipid biosynthesis commences with the acylation of glycerol-3-phosphate (G3P) to form 1-acyl-G3P. This step is catalyzed by the PlsB protein in Escherichia coli. The gene encoding this protein has not been identified, however, in the majority of bacterial genome sequences, including that of Bacillus subtilis. Recently, a new two-step pathway catalyzed by PlsX and PlsY proteins for the initiation of phospholipid formation in Streptococcus pneumoniae has been reported.  相似文献   

5.
6.
7.
The aim of this work was to determine the in vitro effect of the mixture between the lipopeptide surfactin, synthesized by Bacillus subtilis C4 (strain isolated from honey) and the most active vegetal extract from Achyrocline satureioides, a traditional medicinal plant, on local strains of Paenibacillus larvae, the agent of American Foulbrood in honeybees. Five P. larvae strains isolated in Córdoba, Argentina, were phenotypically characterized. These and 12 other P. larvae strains from different regions of Argentina were analysed. The antimicrobial activities of the essential oil, hexane (HE) and benzene extracts from A. satureioides were assessed against P. larvae and the HE showed the highest anti-P. larvae activity. A combination of the biosurfactant surfactin, produced by B. subtilis C4, and the HE of A. satureioides revealed a synergistic action on P. larvae. The effective surfactin concentration in the mixture decreased from 32 to 1 μg ml−1 and the HE concentration from 32 to 4 μg ml−1, values similar or equal to minimal inhibitory concentrations observed for oxytetracycline. The fractional inhibitory concentration index confirmed synergism in 4 strains and partial synergism in one strain. The combination of surfactin synthesized by B. subtilis C4 and the HE from A. satureioides could be a natural alternative to help beekeepers to combat the American foulbrood agent P. larvae.  相似文献   

8.
The divIVB operon of Bacillus subtilis includes the cell shape-associated mre genes, including the membrane-associated proteins MreC and MreD. TnphoA mutagenesis was utilized to analyze a topological model for MreC. MreC has a short cytoplasmic amino terminus, a single membrane-spanning domain, and a large carboxy terminal domain which lies externally to the outer leaflet of the cell membrane. Expression of the B. subtilis MreB protein, or the Mre C and D proteins, results in a morphological conversion of the Escherichia coli host cells from a rod to a roughly spherical cell, morphologically similar to mre-negative mutants of E. coli. Immunolocalization of the MreC protein in B. subtilis revealed that this protein is found at the midcell division site of the bacterial cells, consistent with the postulated role of the Mre proteins in the regulation of septum-specific peptidoglycan synthesis. RID= ID= <E5>Correspondence to: </E5>G.C. Stewart; <E5>email:</E5> stewart&commat;vet.ksu.edu Received: 5 August 2002 / Accepted: 7 October 2002  相似文献   

9.
A genetic transformation system has been developed for callus cells of Crataegus aronia using Agrobacterium tumefaciens. Callus culture was established from internodal stem segments incubated on Murashige and Skoog (MS) medium supplemented with 5 mg l−1 Indole-3-butyric acid (IBA) and 0.5 mg l−1 6-benzyladenine (BA). In order to optimize the callus culture system with respect to callus growth and coloration, different types and concentrations of plant growth regulators were tested. Results indicated that the best average fresh weight of red colored callus was obtained on MS medium supplemented with 2 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 1.5 mg l−1 kinetin (Kin) (callus maintenance medium). Callus cells were co-cultivated with Agrobacterium harboring the binary plasmid pCAMBIA1302 carrying the mgfp5 and hygromycin phosphotransferase (hptII) genes conferring green fluorescent protein (GFP) activity and hygromycin resistance, respectively. Putative transgenic calli were obtained 4 weeks after incubation of the co-cultivated explants onto maintenance medium supplemented with 50 mg l−1 hygromycin. Molecular analysis confirmed the integration of the transgenes in transformed callus. To our knowledge, this is the first time to report an Agrobacterium-mediated transformation system in Crataegus aronia.  相似文献   

10.

Background  

B. subtilis is an important organism in the biotechnological application. The efficient expression system is desirable in production of recombinant gene products in B. subtilis. Recently, we developed a new inducible expression system in B. subtilis, which directed by B. subtilis maltose utilization operon promoter P glv . The system demonstrated high-level expression for target proteins in B. subtilis when induced by maltose. However, the system was markedly repressed by glucose. This limited the application of the system as a high-expression tool in biotechnology field. The aim of this study was to further improve the P glv promoter system and enhance its expression strength.  相似文献   

11.
The structural gene for sphingomyelinase (SMase) from Streptomyces griseocarneus, was introduced into Streptomyces lividans using a shuttle vector, pUC702, for Escherichia coli/S. lividans. High-level secretory production of SMase was achieved using the promoter, signal sequence and terminator regions of phospholipase D from Streptoverticillium cinnamoneum. The transformant constitutively expressed a high specific activity of SMase extracellularly during batch culture. Maximum SMase activity (555 ± 114 U/mg protein) was with 1.75 M MgCl2 which was about 50-fold more than that with 10 mM MgCl2.  相似文献   

12.
This study first report to identify the mating type (−)-specific gene of alpha-box and the mating type (+)-specific gene of the high-mobility-group (HMG) DNA-binding domain in zoophilic dermatophytes of Arthroderma benhamiae in an effort to understand the epidemiological characteristics of Trichophyton mentagrophytes. The sequence of the alpha-box gene (1,387 bp) was found to contain two exons, from 184 to 475 bp and from 525 to 1,387 bp, coding a protein of 384 amino acids, beginning with a putative initiating methionine (ATG). The sequence of the HMG gene (1,910 bp) contained two exons, from 234 to 415 bp and from 479 to 1,457 bp, coding a protein of 386 amino acids, beginning with a putative initiating methionine (ATG).  相似文献   

13.
14.
Proline and glutamine-rich wheat seed endosperm proteins are collectively referred to as prolamins. They are comprised of HMW-GSs, LMW-GSs and gliadins. HMW-GSs are major determinants of gluten elasticity and LMW-GSs considerably affect dough extensibility and maximum dough resistance. The inheritance of glutenin subunits follows Mendelian genetics with multiple alleles in each locus. Identification of the banding patterns of glutenin subunits could be used as an estimate for screening high quality wheat germplasm. Here, by means of a two-step 1D-SDS-PAGE procedure, we identified the allelic variations in high and low-molecular-weight glutenin subunits in 65 hexaploid wheat (Triticum aestivum L.) cultivars representing a historical trend in the cultivars introduced or released in Iran from the years 1940 to 1990. Distinct alleles 17 and 19 were detected for Glu-1 and Glu-3 loci, respectively. The allelic frequencies at the Glu-1 loci demonstrated unimodal distributions. At Glu-A1, Glu-B1 and Glu-D1, we found that the most frequent alleles were the null, 7 + 8, 2 + 12 alleles, respectively, in Iranian wheat cultivars. In contrast, Glu-3 loci showed bimodal or trimodal distributions. At Glu-A3, themost frequent alleles were c and e. At Glu-B3 the most frequent alleles were a, b and c. At Glu-D3 locus, the alleles b and a, were the most and the second most frequent alleles in Iranian wheat cultivars. This led to a significantly higher Nei coefficient of genetic variations in Glu-3 loci (0.756) as compared to Glu-1 loci (0.547). At Glu-3 loci, we observed relatively high quality alleles in Glu-A3 and Glu-D3 loci and low quality alleles at Glu-B3 locus.  相似文献   

15.
A Bacillus subtilis strain BEC-1 demonstrating high carboxymethylcellulose-degrading activity was isolated from the forest soil sample. In order to characterize the biochemical specialty of its cellulase, the endoglucanase gene egl173 was cloned from this strain and was expressed in Escherichia coli. The gene encoded a protein of 499 amino acids with a molecular weight of 64 kDa. The purified Egl173 could hydrolyze both soluble and insoluble celluloses with distinct activities. This enzyme showed the highest enzyme activity at pH 4, maintained at least 85% activity in the pH range of 3–7, displayed maximum activity at 60°C and was highly stable between 30 and 60°C. It was found that this endoglucanase was increasedly active and retained its high stability after incubation with 5 M NaCl or 3 M KCl for 24 h. Furthermore, after incubation with 10 mM of dithiothreitol, the enzyme activity was significantly enhanced (125% of the control level). In the presence of diverse metal ions (except mercury and manganese cations), organic solvents, surfactants (except SDS) and chelating agent, this enzyme kept more than 85% active. This halo-tolerant, acidophilic and highly stable endoglucanase is prospectively to be exploited as the advanced enzymatic product for diverse industrial applications.  相似文献   

16.
17.
A novel microbial transglutaminase (TGase) from the cultural filtrate of Streptomyces netropsis BCRC 12429 (Sn) was purified. The specific activity of the purified TGase was 18.2 U/mg protein with an estimated molecular mass of 38 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis. The TGase gene of S. netropsis was cloned and an open reading frame of 1,242 bp encoding a protein of 413 amino acids was identified. The Sn TGase was synthesized as a precursor protein with a preproregion of 82 amino acid residues. The deduced amino acid sequence of the mature S. netropsis TGase shares 78.9–89.6% identities with TGases from Streptomyces spp. A high level of soluble Sn TGase with its N-terminal propeptide fused with thioredoxin was expressed in E. coli. A simple and efficient process was applied to convert the purified recombinant protein into an active enzyme and showed activity equivalent to the authentic mature TGase. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
A genetic transformation protocol for green ash (Fraxinus pennsylvanica) hypocotyl explants was developed. Green ash hypocotyls were transformed using Agrobacterium tumefaciens strain EHA105 harboring binary vector pq35GR containing the neomycin phosphotransferase (nptII) and β-glucuronidase (GUS) fusion gene, and an enhanced green fluorescent protein gene. Pre-cultured hypocotyl explants were transformed in the presence of 100 μM acetosyringone using 90 s sonication plus 10 min vacuum-infiltration. Kanamycin at 20 mg l−1 was used for selecting transformed cells. Adventitious shoots regenerated on Murashige and Skoog medium supplemented with 13.3 μM 6-benzylaminopurine, 4.5 μM thidiazuron, 50 mg l−1 adenine sulfate, and 10% coconut water. GUS- and polymerase chain reaction (PCR)-positive shoots from the cut ends of hypocotyls were produced via an intermediate callus stage. Presence of the GUS and nptII genes in GUS-positive shoots were confirmed by PCR and copy number of the nptII gene in PCR-positive shoots was determined by Southern blotting. Three transgenic plantlets were acclimatized to the greenhouse. This transformation and regeneration system using hypocotyls provides a foundation for Agrobacterium-mediated transformation of green ash. Studies are underway using a construct containing the Cry8Da protein of Bacillus thuringiensis for genetic transformation of green ash.  相似文献   

19.
20.

Background  

High molecular weight glutenin subunits (HMW-GS) have been proved to be mostly correlated with the processing quality of common wheat (Triticum aestivum). But wheat cultivars have limited number of high quality HMW-GS. However, novel HMW-GS were found to be present in many wheat asymmetric somatic hybrid introgression lines of common wheat/Agropyron elongatum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号