首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
In the paper, the sensitivity of Penicillium notatum to surfactin and iturin was determined, and the optimization of the antifungal of surfactin and iturin to Penicillium notatum in syrup of peach by a response surface methodology (RSM) was researched. Results demonstrated that Penicillium notatum was sensitive to them, whose minimal inhibitory concentration (MIC) was 62.5 and 31.25 μg ml−1 respectively. In the optimization experiment, when the temperature was 2.37°C, the action time was 25.21 h, and the concentration (surfactin/iturin weight ratio 1:1) was 40.26 μg ml−1, Penicillium notatum could be sterilized by 5 orders of magnitude. All the results in the experiment indicated surfactin and iturin could kill remarkably Penicillium notatum in syrup of peach.  相似文献   

2.
The aim of this study was to assess the effect of a commercial green tea extract (TEAVIGO™) on the microbial growth of three probiotic strains (Lactobacillus and Bifidobacterium), as well as three pathogenic bacteria. MIC and co-culture studies were performed. The MICs of the green tea extract against Staphylococcus aureus and Streptococcus pyogenes (100 μg ml−1) were considerably lower than those against the probiotic strains tested (>800 μg ml−1) and Escherichia coli (800 μg ml−1). In co-culture studies, a synergistic effect of the probiotic strains and the green tea extract was observed against both Staph. aureus and Strep. pyogenes. Green tea extract in combination with probiotics significantly reduced the viable count of both pathogens at 4 h and by 24 h had completely abolished the recovery of viable Staph. aureus and Strep. pyogenes. These reductions were more significant than the reductions induced by probiotics or green tea extracts used separately. These results demonstrate the potential for combined therapy using the green tea extract plus probiotics on microbial infections caused by Staph. aureus and Strep. pyogenes. As probiotics and the green tea extract are derived from natural products, treatment with these agents may represent important adjuncts to, or alternatives to, conventional antibiotic therapy.  相似文献   

3.
4.
The purpose of the present study was to determine the inhibitory activities of two bacteriocins, produced by lactobacilli, against genital mycoplasmas. In this study, infections produced by genital mycoplasmas were studied; of these, 1.3% were caused by Mycoplasma hominis, 10.7% by Ureaplasma urealyticum and 5.6% by U. urealyticum + M. hominis. U. urealyticum was isolated from 75 out of 123 patients with genital mycoplasmas, while M. hominis was isolated from 9 patients (7.3%) and both U. urealyticum and M. hominis from 39 patients (31.7%). Bacteriocins, L23 and L60, produced by Lactobacillus fermentum and L. rhamnosus, respectively, appear to be two novel inhibitors of bacterial infection with potential antibacterial activity. Both bacteriocins proved to be active against 100% of strains tested; MICs of bacteriocin L23 ranged between 320 and 160 UA ml−1 for 78% of the M. hominis strains and between 320 and 80 UA ml−1 for 95% of the U. urealyticum strains. In addition, bacteriocin L60 was still active at 160 UA ml−1 for a high percentage (56%) of M. hominis strains, and at 80 UA ml−1 for 53% of the U. urealyticum strains. Interestingly, these antimicrobial substances produced by lactobacilli showed an inhibitory activity against genital mycoplasmas even when diluted. Altogether, our study indicates that the bacteriocins, L23 and L60, are good candidates for the treatment or prevention of genital infections in women.  相似文献   

5.
In this study, the effects of citrate addition on d-ribose production were investigated in batch culture of a transketolase-deficient strain, Bacillus subtilis EC2, in shake flasks and bioreactors. Batch cultures in shake flasks and a 5-l reactor indicated that supplementation with 0.2–0.5 g l−1 of citrate enhanced d-ribose production. When B. subtilis EC2 was cultivated in a 15-l reactor in a complex medium, the d-ribose concentration was 70.9 g l−1 with a ribose yield of 0.497 mol mol−1. When this strain was grown in the same medium supplemented with 0.3 g l−1 of citrate, 83.4 g l−1 of d-ribose were obtained, and the ribose yield was increased to 0.587 mol mol−1. Addition of citrate reduced the activities of pyruvate kinase and phosphofructokinase, while it increased those of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase. Metabolic flux distribution in the stationary phase indicated that citrate addition resulted in increased fluxes in the pentose phosphate pathway and TCA cycle, and decreased fluxes in the glycolysis and acetate pathways.  相似文献   

6.
Hyptis suaveolens L. (Poit.) essential oil was tested in vitro on the growth and morphogenesis of Fusarium oxysporum f.sp. gladioli (Massey) Snyder & Hansen, which causes Fusarium corm rot and yellows in various susceptible cultivars of gladiolus. The fungitoxicity of the oil was measured by percentage radial growth inhibition using the poisoned food technique (PF) and volatile activity assay (VA). The mycelial growth of the test fungus was completely inhibited at 0.998 and 0.748 μg ml−1 concentration of oil in PF and VA, respectively. Essential oil was found to be fungicidal in nature at 1.247 and 0.998 μg ml−1 concentration of oil in PF and VA, respectively. Determination of conidial germination in the presence of oil was also carried out and it was found that the oil exhibited 100% inhibition of conidial germination at 0.450 μg ml−1 concentration. The effect of essential oil on the yield of mycelial weight was observed and it was found that at 0.873 μg ml−1 concentration no mycelium was recorded and 100% inhibition was observed. The fungitoxicity of oil did not change even on exposure to 100°C temperature or to autoclaving, and the oil also retained its fungicidal nature even after storage of 24 months. The main changes observed under light microscopy after oil treatment were a decrease and loss of conidiation and anomalies in the hyphae such as a decrease in the diameter of hyphae and granulation of cytoplasm. The treatment of the oil also showed highly reduced cytoplasm in the hyphae, showing clear retraction of the cytoplasm from the hyphae and ultimately in some areas hyphae without cytoplasm were also found. GC-MS studies of the essential oil revealed that the oil consisted of 24 compounds with 1,8-cineole as major component accounting for 44.4% of the total constituents.  相似文献   

7.
This study was undertaken to explore the role of Trichoderma sp. in phosphate (P) solubilization and antagonism against fungal phytopathogens. All fungal isolates (SE6, KT6, KT28, and BRT11) and a standard culture of T. harzianum (Th-std) were able to antagonize two fungal phytopathogens (Sclerotium rolfsii and Rhizoctonia solani) of chickpea (Cicer arietinum L.) wilt complex. Transmission electron microscopic studies (TEM) further confirmed ultra-cytological changes in the sclerotia of S. rolfsii parasitized by Trichoderma sp. All fungal cultures exhibited production of NH3 and siderophore, but only BRT11, SE6, and Th-std could produce HCN. Among all the cultures tested, isolate KT6 was found to be most effective for solubilization of ferric phosphate releasing 398.4 μg ml−1 phosphate while isolates BRT11 and SE6 showed more potential for tricalcium phosphate (TCP) solubilization releasing 449.05 and 412.64 μg ml−1 phosphate, respectively, in their culture filtrates. Part of this study focused on the influence of abiotic stress conditions such as pH, temperature, and heavy metal (cadmium) on phosphate (TCP) solubilizing efficiency. Two selected cultures KT6 and T. harzianum retained their P solubilizing potential at varying concentrations of cadmium (0–1000 μg ml−1). Isolate KT6 and standard culture of T. harzianum released 278.4 and 287.6 μg ml−1 phosphate, respectively, at 1000 μg ml−1cadmium. Maximum solubilization of TCP was obtained at alkaline pH and at 28°C temperature. Isolate BRT11 was found most alkalo-tolerant releasing 448.0 μg ml−1 phosphate at pH 9.  相似文献   

8.
In industry, fosfomycin is mainly prepared via chemical epoxidation of cis-propenylphosphonic acid (cPPA). The conversion yield of fosfomycin is less than 50% in the whole process and a large quantity of waste is produced. Biotransformation by microorganisms is an alternative method of preparation. This kind of conversion is more delicate, environmentally friendly, and the conversion yield of fosfomycin would be higher. In this work, an aerobic bacterium capable of transforming cPPA to fosfomycin was isolated. The organism, designated as strain S101, was identified as Bacillus simplex by morphological and physiological characteristics as well as by analysis of the gene encoding the 16S rRNA. Fosfomycin was assayed by two means, bioassay and gas chromatography (GC). Glycerol was a good carbon source for growth and cPPA conversion of strain S101. When cPPA was used as the sole carbon source, neither growth nor conversion to fosfomycin occurred. The optimum cPPA concentration in the conversion medium was 2,000 μg ml−1. After 6 days of incubation, the concentration of fosfomycin reached its maximum level (1,838.2 μg ml−1), with a conversion ratio of 81.3%. Air was indispensable for the growth but not for the conversion to fosfomycin. Furthermore, vanadium ions were found to be essential for the conversion. High concentrations of cPPA had fewer inhibitory effects on the growth of strain S101.  相似文献   

9.
Sixteen Bacillus strains isolated from rhizosphere, histoplane and phyllosphere of different plant species were identified by 16S rDNA gene sequencing and evaluated for in vitro auxin production as well as growth stimulation of Vigna radiata (L.) Wilczek. Auxin production by Bacillus spp. in L-broth medium supplemented with 1,000 μg ml−1 L-tryptophan ranges from 0.60 to 3.0 μg IAA ml−1 as revealed by gas chromatography and mass spectrometric (GC–MS) analysis. Rhizospheric isolates exhibit relatively more IAA synthesis than histoplane and phyllosphere isolates. Plant microbe interaction experiments conducted under gnotobiotic conditions recorded 55.55, 46.46 and 46.20% increase in shoot length with Bacillus megaterium MiR-4, B. pumilus NpR-1 and B. subtilis TpP-1, respectively, over control. Bacillus inoculations also increased shoot fresh weight with B. megaterium MiR-4 (60.94%) and B. pumilus NpR-1 (37.76%). Highly significant positive correlation between auxin production analyzed by GC–MS and shoot length (r = 0.687**, P = 0.01) and shoot fresh weight (r = 0.703**, P = 0.01) was noted under gnotobiotic conditions. Similarly, significant correlation was also found between auxin production by Bacillus spp. (GC–MS analysis) and different growth parameters such as shoot length (r = 0.495*, P = 0.05), number of pods (r = 0.498*, P = 0.05) and grain weight (r = 0.537*, P = 0.05) at full maturity under natural wire house conditions. Results showed that auxin production potential of plant associated Bacillus spp. can be effectively exploited to enhance the growth and yield of V. radiata.  相似文献   

10.
Bacterial biofilms are associated with chronic infections due to their resistance to antimicrobial agents. Staphylococcus aureus is a versatile human pathogen and can form biofilms on human tissues and diverse medical devices. To identify novel biofilm inhibitors of S. aureus, the supernatants from a library of 458 Actinomycetes strains were screened. The culture supernatants (1% v/v) of more than 10 Actinomycetes strains inhibited S. aureus biofilm formation by more than 80% without affecting the growth. The culture supernatants of these biofilm-reducing Actinomycetes strains contained a protease (equivalent to 0.1 μg proteinase K ml−1), which both inhibited S. aureus biofilm formation and detached pre-existing S. aureus biofilms. This study suggests that protease treatment could be a feasible tool to reduce and eradicate S. aureus biofilms.  相似文献   

11.
Nisin production in continuous cultures of bioengineered Lactococcus lactis strains that incorporate additional immunity and regulation genes was studied. Highest nisin activities were observed at 0.2 h–1 dilution rate and 12.5 g l–1 fructose concentration for all strains. Recombinant strains were able to produce greater amounts of nisin at dilution rates below 0.3 h−1 compared to the control strain. However, this significant difference disappeared at dilution rates of 0.4 and 0.5 h–1. For the strains LL27, LAC338, LAC339, and LAC340, optimum conditions for nisin production were determined to be at 0.29, 0.26, 0.27, and 0.27 h–1 dilution rates and 11.95, 12.01, 11.63, and 12.50 g l–1 fructose concentrations, respectively. The highest nisin productivity, 496 IU ml–1 h–1, was achieved with LAC339. The results of this study suggest that low dilution rates stabilize the high specific nisin productivity of the bioengineered strains in continuous fermentation. Moreover, response surface methodology analysis showed that regulation genes yielded high nisin productivity at wide ranges of dilution rates and fructose concentrations.  相似文献   

12.
A protocol for the production of transgenic plants was developed for Lotus tenuis via Agrobacterium-mediated transformation of leaf segments. The explants were co-cultivated (for 3 days) with an A. tumefaciens strain harbouring either the binary vector pBi RD29A:oat arginine decarboxylase (ADC) or pBi RD29A:glucuronidase (GUS), which carries the neomycin phosphotransferase II (nptII) gene in the T-DNA region. Following co-cultivation, the explants were cultured in Murashige and Skoog medium supplemented with naphthalenacetic acid (NAA) and benzyladenine (BA) and containing kanamycin (30 μg ml−1) and cefotaxime (400 μg ml−1) for 45 days. The explants were subcultured several times (at 2-week intervals) to maintain the selection pressure during the entire period. About 40% of the explants inoculated with the pBiRD29:ADC strain produced eight to ten adventitious shoots per responsive explant through a direct system of regeneration, whereas 69% of the explants inoculated with the pBi RD29A:GUS strain produced 13–15 adventitious shoots per responsive explant. The selected transgenic lines were identified by PCR and Southern blot analysis. Three ADC transgenic lines were obtained from 30 infected explants, whereas 29 GUS transgenic lines were obtained from 160 explants, corresponding to a transformation efficiency of 10 and 18.1%, respectively. More than 90% of the in vitro plantlets were successfully transferred to the soil. The increase in the activity of arginine decarboxylase from stressed ADC- Lt19 lines was accompanied by a significant rise in the putrescine level. The GUS transgenic line driven by the RD29A promoter showed strong signals of osmotic stress in the leaves and stem tissues. All of the transgenic plants obtained exhibited the same phenotype as the untransformed controls under non-stress conditions, and the stability of the gene introduced into the cloned materials was established.  相似文献   

13.
The objective of this study was to evaluate the in vitro immunomodulating capacity of Lactobacillus coryniformis subsp torquens T3L (L. coryniformis T3L) isolated from traditional fermented yak’s milk in Tibet, China, and Lactobacillus paracasei supsp. paracasei M5L (L. paracasei M5L)isolated from kumiss in Sinkiang, China was used as control. The effects of live bacteria, cell wall and genomic DNA of the two Lactobacillus strains on human peripheral blood mononuclear cells (PBMCs) proliferation, production of interleukin-12 (IL-12 p70), interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α), and natural killer (NK) cell activity were assessed. The live bacteria, cell wall and genomic DNA of the two lactobacilli exerted proliferative effects on PBMCs. Live bacteria at 1 × 106 c.f.u. ml−1, cell wall at 20 μg protein ml−1 and DNA at 50 μg DNA ml−1 of the strainS induced the secretion of IL-12 (p70), IFN-γ and TNF-α by PBMCs. NK cell activities increased after cultivation of PBMCs with live bacteria, cell wall and DNA of the strains. Overall, these results demonstrate that the live bacteria, cell wall and genomic DNA of the two Lactobacillus strains exhibit immunomodulating activity.  相似文献   

14.
Two compounds, 2-hydroxymyristic acid (HMA) and cis-9-oleic acid (COA), were isolated from a chloroform extract of the marine bacterium, Shewanella oneidensis SCH0402. In a spectrophotometer-based chemotaxis assay, HMA completely eliminated the optical density (OD) of Alteromonas marina SCH0401 and Bacillus atrophaeus SCH0408, motile, fouling bacteria, at 100 and 1000 μg ml−1, respectively. COA similarly decreased the OD of A. marina and B. atrophaeus by 100% at 1000 μg ml−1. The commercially available, highly toxic anti-fouling compound, tributyltin oxide (TBTO) never reduced the OD of the target bacteria by 100% even at higher concentration. Instead, all the test bacterial cells were killed at higher than 1000 μg ml−1 of concentration. Both HMA and COA inhibited germination of Ulva pertusa spores completely at 10 and 100 μg ml−1, respectively, while TBTO inhibited germination at 0.01 μg ml−1. However, in field assays, both HMA and COA showed anti-fouling activities as potent as TBTO against a wide range of fouling organisms, including micro- and macro-algae, barnacles, and mussels. The average fouling coverage on the surface of the control panel was 93 ± 6% after 1.5 years but no fouling was observed on the surface of the test panel onto which each compound was applied separately. Thus, bacterial repellent compounds can be used as substitutes for potent toxic anti-fouling compounds, resulting in higher standards of environmental safety without loss of anti-fouling performance.  相似文献   

15.
The srfA operon is required for the nonribosomal biosynthesis of the cyclic lipopeptide, surfactin. The srfA operon is composed of the four genes, srfAA, srfAB, srfAC, and srfAD, encoding the surfactin synthetase subunits, plus the sfp gene that encodes phosphopantetheinyl transferase. In the present study, 32 kb of the srfA operon was amplified from Bacillus subtilis C9 using a long and accurate PCR (LA-PCR), and ligated into a pIndigoBAC536 vector. The ligated plasmid was then transformed into Escherichia coli DH10B. The transformant ET2 showed positive signals to all the probes for each open reading frame (ORF) region of the srfA operon in southern hybridization, and a reduced surface tension in a culture broth. Even though the surface-active compound extracted from the E. coli transformant exhibited a different R f value of 0.52 from B. subtilis C9 or authentic surfactin (R f = 0.63) in a thin layer chromatography (TLC) analysis, the transformant exhibited a much higher surface-tension-reducing activity than the wild-type strain E. coli DH10B. Thus, it would appear that an intermediate metabolite of surfactin was expressed in the E. coli transformant harboring the srfA operon.  相似文献   

16.
The effects of medium exchange and methyl jasmonate addition on growth and production of shikonin and its derivatives acetylshikonin and isobutyrylshikonin in hairy root cultures of Lithospermum canescens were investigated. Responses varied depending on the transgenic line and stage of growth at which these lines were subjected to treatment. Shikonin itself was not detected, irrespective of the transgenic line and culture treatment used. A eightfold increase in acetylshikonin and isobutyrylshikonin accumulation was achieved when 32-day-old transgenic roots of Lc1D line were transferred from LS to M9 medium for the subsequent 3 weeks of culture. Methyl jasmonate exerted a detrimental effect on red naphthoquinones production. The extracts obtained from roots cultivated in M9 medium for 3 weeks were subjected to a cytotoxicity assay and displayed cytotoxic activity against human promyelocytic leukemia cells (HL-60) at the dose of 4 μg ml−1.  相似文献   

17.
A potential bacterial strain designated as NII-0928 isolated from Western ghat forest soil with multiple plant growth promoting attributes, and it has been identified and characterized. Plant growth promoting traits were analyzed by determining the P-solubilization efficiency, Indole acetic acid production, HCN, siderophore production and growth in nitrogen free medium. It was able to solubilize phosphate (76.6 μg ml−1), and produce indole acetic acid (58.9 μg ml−1) at 28 ± 2°C. Qualitative detection of siderophore production and HCN were also observed. At 5°C it was found to express all the plant growth promotion attributes except HCN production. The ability to colonize roots is a sine qua non condition for a rhizobacteria to be considered a true plant growth-promoting rhizobacteria (PGPR). 16S rRNA gene sequencing reveals the identity of the isolate as Serratia nematodiphila with which it shares highest sequence similarity (99.4%). Seed bacterization with black pepper cuttings in greenhouse trials using Sand: Soil: FYM with three individual experimental sets with their respective control showed clearly the growth promoting activity. Hence, Serratia nematodiphila NII-0928 is a promising plant growth promoting isolate showing multiple PGPR attributes that can significantly influence black pepper cuttings. The result of this study provides a strong basis for further development of this strain as a bioinoculants to attain the desired plant growth promoting activity in black pepper growing fields.  相似文献   

18.
Pellicle formation and lipopeptide production was analysed in standing cultures of different Bacillus subtilis strains producing two or three families of lipopeptides. Despite its ability to produce surfactin, B. Subtilis ATCC 6633 was unable to form stable pellicle at air–water interface. For the ATTC 21332 and ATCC 9943 strains, it was shown for the first time that the lipopeptides were also produced in standing cultures at productivities similar or lower than those obtained when the culture medium is agitated. A differentiated behaviour was observed between these strains in repetitive batch cultures. B. subtilis 9943 formed a wrinkled, thinner and more resistant pellicle than B. subtilis 21332. The structure of the pellicle determined by electron microscopy observations showed that cells of B. subtilis 9943 formed microcolonies whereas those of B. subtilis 21332 rapidly died. Under these conditions, surfactin production by strain 21332 decreased after 2 days whereas it remained stable for B. subtilis 9943 during the 6 days of the cultures. These data indicate that cells of B. subtilis strains growing in pellicle can produce lipopeptides differently depending on their cellular organisation. M. Chollet-Imbert and F. Gancel have contributed equally to the scientific work.  相似文献   

19.
West TP 《Biotechnology letters》2011,33(12):2463-2467
The ability of Aspergillus strains to utilize thin stillage to produce malic acid was compared. The highest malic acid was produced by Aspergillus niger ATCC 9142 at 17 g l−1. Biomass production from thin stillage was similar with all strains but ATCC 10577 was the highest at 19 g l−1. The highest malic acid yield (0.8 g g−1) was with A. niger ATCC 9142 and ATCC 10577 on the stillage. Thus, thin stillage has the potential to act as a substrate for the commercial production of food-grade malic acid by the A. niger strains.  相似文献   

20.
Gao Z  Li Z  Zhang Y  Huang H  Li M  Zhou L  Tang Y  Yao B  Zhang W 《Biotechnology letters》2012,34(3):507-514
The glucose oxidase (GOD) gene from Penicillium notatum was expressed in Pichia pastoris. The 1,815 bp gene, god-w, encodes 604 amino acids. Recombinant GOD-w had optimal activity at 35–40°C and pH 6.2 and was stable, from pH 3 to 7 maintaining >75% maximum activity after incubation at 50°C for 1 h. GOD-w worked as well as commercial GODs to improve bread making. To achieve high-level expression of recombinant GOD in P. pastoris, 272 nucleotides involving 228 residues were mutated, consistent with the codon bias of P. pastoris. The optimized recombinant GOD-m yielded 615 U ml−1 (2.5 g protein l−1) in a 3 l fermentor—410% higher than GOD-w (148 U ml−1), and thus is a low-cost alternative for the bread baking industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号