首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 179 毫秒
1.
RNA编辑是发生于双链RNA(dsRNA)上的一类重要转录后反应,可通过碱基插入、缺失或替换的方式改变RNA的核苷酸序列从而丰富转录组和蛋白质组水平的多样性。哺乳动物中最常见的RNA编辑是ADAR家族介导的腺嘌呤-次黄嘌呤编辑(A-to-I),其在碱基配对过程中被识别为鸟嘌呤。人类转录组中已报道了数百万个A-to-I编辑位点,而ADAR1是最主要的催化酶。在血液肿瘤中,ADAR1的失调将直接影响基因编码区、非编码区和miRNA前体的A-to-I编辑状态,从而导致一系列分子事件改变,如蛋白质编码序列改变、内含子滞留、选择性剪接和miRNA生物发生受抑制。近年来研究发现,异常的RNA编辑导致分子调控网络的紊乱,促进细胞增殖、凋亡受阻和细胞耐药,是白血病干细胞(LSCs)生成和干性维持的重要因素。目前,以RNA编辑为靶点的新药(如rebecsinib)已经在动物实验中取得良好疗效。有别于传统抗肿瘤药,表观遗传抗肿瘤药有望克服血液肿瘤的耐药、复发难题,为患者提供全新治疗选择。本综述总结了ADAR1介导的RNA编辑在血液肿瘤中的作用机制及其生物学功能研究的进展,并探讨了其在药物研发和临床应用中的价值。  相似文献   

2.
基于转录组测序数据识别黑猩猩RNA编辑位点   总被引:1,自引:1,他引:0  
使用转录组测序(RNA-Seq)数据识别黑猩猩RNA编辑位点,探索了RNA编辑的识别机制以及潜在的功能影响.基于黑猩猩RNA-Seq数据与基因组序列的比对信息发现RNA-DNA错配位点,并构建编辑位点候选集.从中滤除基因组或转录组测序质量低的位点,其他的过滤条件包括3′端测不准、覆盖度、SNP位点以及估算的编辑水平.构建二项分布统计模型和Bonferroni多重检验滤除候选集中的随机错误,得到RNA编辑位点.选取落在已知基因上的编辑位点进行功能分析,并用Two Sample Logo软件分析编辑位点上下游序列的特征.识别出黑猩猩12种碱基替换型RNA编辑位点8 334个,其中有41个编辑位点改变原有的氨基酸,另有3个编辑位点落在microRNA(miRNA)潜在靶基因的种子结合区.统计学分析表明,分别有640和872个RNA编辑位点存在组织和性别差异.上下游碱基频率分析表明,多种类型的编辑位点紧邻碱基具有显著偏好.结果显示, RNA编辑在黑猩猩体内大量存在,且潜在具有重要的生物学功能,为进一步深入研究灵长类RNA编辑的机制奠定了基础.  相似文献   

3.
RNA编辑是一个十分重要的生物细胞分子机制。作为转录后修饰的一步,它可以增加蛋白质组学多样性,改变转录产物的稳定性,调节基因表达等。RNA编辑失调会导致各种疾病,包括神经疾病和癌症。在动物中,腺苷到肌苷(A-to-I)的编辑是最普遍的。高通量测序技术的进步大大提高了在全局范围内检测和量化RNA编辑的能力,使得RNA编辑的大规模全基因组分析变得可行,产生了一系列基于高通量测序技术的RNA编辑位点预测方法。通过对这些方法进行介绍、总结和分析,为RNA编辑的进一步研究提供一些思路。  相似文献   

4.
RNA编辑是增加基因转录和功能多样性的重要形式。A至I RNA编辑是ADAR酶作用于双链RNA使腺苷脱氨基变成肌苷形成的。高通量测序技术的发展使得规模化鉴定RNA编辑位点成为可能,目前已在人和其他动物发现了大量的A至I RNA编辑位点,其中多数位于非编码RNA中。RNA编辑在体内具有重要生理功能,编辑异常可能导致一些疾病的发生发展。主要从ADAR介导的RNA A至I编辑的鉴定、分子机理、生理作用以及相关疾病等方面进行阐述。  相似文献   

5.
基于CRISPR的碱基编辑器是生物学研究的强大工具,并为遗传病的治疗带来新的希望.然而, DNA碱基编辑器的潜在脱靶效应却带来了治疗上的风险.相比之下, RNA水平的碱基编辑具有相对灵活、可逆且风险较低的特点,并在纠正疾病相关点突变方面取得了重大进展,对生物学基础研究和治疗学的发展产生了深远的影响.本文总结了新兴的基于A-to-I、C-to-U、假尿嘧啶修饰等的RNA碱基编辑器,全面概述了其设计、效率和在疾病治疗中的应用.最后,本文深入讨论了RNA碱基编辑在疾病治疗上的局限性和可能的发展方向,以期对RNA基因编辑实践提供理论参考.  相似文献   

6.
RNA编辑是一种转录后基因加工修饰现象,广泛存在于高等植物细胞器中。已有研究表明,RNA编辑与植物发生白化或者黄化有关。通过PCR、RT-PCR及测序的方法,对具有阶段性白化特性的小麦(Triticum aestivum)返白系FA85及其野生型矮变一号(Aibian 1)的叶绿体蛋白质编码基因RNA编辑位点进行了测定,在14个基因上发现了26个编辑位点。有5个编辑位点在2个株系之间存在编辑效率的差异,且这些差异的位点均位于编码叶绿体RNA聚合酶的基因上,其中3个位点编辑前后对应的蛋白质二级结构可能有差异。对2个株系叶绿体中PEP、NEP及PEP、NEP共同依赖基因转录水平的检测显示,除psbA和clpP外,其它基因在小麦返白系中的转录水平均有不同程度的下降。这种转录水平的显著下降及叶绿体RNA聚合酶基因上RNA编辑位点编辑效率的改变,可能与小麦返白系叶片的返白有关。  相似文献   

7.
RNA编辑是指转录后RNA分子的编辑过程,包含核苷酸的插入、删除和替换。RNA依赖腺嘌呤脱氨酶(RNA dependent adenosine deaminases,ADARs)是一类可以将5-羟色胺2C受体基因(HTR2C)的前体mRNA特定位点上的腺苷酸(adenosine,A)脱氨基转化为肌苷酸(inosine,I)的酶。A-to-I RNA编辑最终引起氨基酸的改变。本篇综述主要阐述ADAR家族对HTR2C的RNA编辑作用的相关研究进展,为防治HTR2C的RNA编辑异常引起的相关疾病提供理论依据。  相似文献   

8.
【目的】本研究旨在利用已获得的PacBio单分子实时(single molecule real-time, SMRT)测序数据对蜜蜂球囊菌Ascosphaera apis菌丝(AaM)和孢子(AaS)中的转录因子(TF)、融合基因和RNA编辑事件进行鉴定和分析,以期丰富蜜蜂球囊菌的相关信息,并为进一步探究它们的功能提供理论依据。【方法】利用BLASTx工具将AaM和AaS的全长转录本序列比对到Nr, Swiss-Prot和KEGG数据库以获得一致性最高的蛋白序列,再利用hmmscan软件将上述蛋白序列比对到Plant TFdb数据库以获得TF的分类及注释信息。采用TOFU软件中的fusion_finder.py程序进行融合基因的预测,进而分析融合基因的序列和位置信息。使用SAMtools预测AaM和AaS中的RNA编辑事件,再利用ANNOVAR软件对RNA编辑事件进行注释,进而采用相关生物信息学软件对RNA编辑位点基因进行GO功能和KEGG通路注释。【结果】在AaS中共鉴定到17个TF家族的213个TF,其中C2H2家族包含的TF成员最多。在AaM和AaS中分别鉴定到921和510个融合基因,二者共有的融合基因为510个,特有的融合基因分别为411和0个。在AaM和AaS中分别鉴定到547和191次RNA编辑事件,其中AaM中同义单核苷酸突变的数量最多,AaS中非同义单核苷酸突变的数量最多。此外,在AaM中鉴定到12种碱基替换类型,其中发生C->T的RNA编辑事件数量最多,达到158次;在AaS中鉴定到9种碱基替换类型,其中发生C->T和G->T的RNA编辑事件数量最多,均有42次。AaM和AaS中RNA编辑位点基因分别涉及19和24个GO功能条目;此外还能注释到11和20条KEGG通路。【结论】蜜蜂球囊菌的菌丝和孢子中含有丰富的TF、融合基因和RNA编辑位点;转录因子C2H2家族与蜜蜂球囊菌菌丝和孢子的生长发育和细胞活动具有潜在关联;RNA编辑事件的碱基替换类型在蜜蜂球囊菌和其他物种中具有物种特异性;RNA编辑可能在蜜蜂球囊菌菌丝和孢子的生长和代谢中发挥作用。  相似文献   

9.
A~I RNA编辑可以改变氨基酸编码而增加蛋白质的多样性,但是其分子机制和在进化中的特征依然不清楚.通过对节肢动物门5个纲的物种Kv2基因RNA编辑的研究,检测到17个A~I RNA编辑位点,由保守和物种特异的编辑位点构成,其中编辑位点15(I/V)起源于4.5亿年前,是迄今为止非脊椎动物中最保守的;同时还发现一些A~I RNA编辑位点具有趋同进化现象.在此基础上,通过共转染实验表明了果蝇Kv2基因RNA编辑是RNA编辑酶和由外显子形成的RNA二级结构相互作用的结果,暗示一些外显子除了编码蛋白质的功能,本身也具有重要的基因表达调控功能.  相似文献   

10.
RNA编辑是一种发生在转录后核苷酸特异位点的加工修饰现象,包括核苷酸的插入、删除和改变.高等植物中RNA编辑主要发生在线粒体与叶绿体中,具有重要的生物学功能,其机制仍在探索中.而PPR蛋白作为RNA编辑的反式作用因子,成为近几年来分子生物学的研究热点.该文就PPR蛋白、RNA编辑及PPR蛋白参与RNA编辑的机制等进行了综述.  相似文献   

11.
12.
13.
Adenosine to inosine (A-to-I) RNA editing is the most abundant editing event in animals. It converts adenosine to inosine in double-stranded RNA regions through the action of the adenosine deaminase acting on RNA (ADAR) proteins. Editing of pre-mRNA coding regions can alter the protein codon and increase functional diversity. However, most of the A-to-I editing sites occur in the non-coding regions of pre-mRNA or mRNA and non-coding RNAs. Untranslated regions (UTRs) and introns are located in pre-mRNA non-coding regions, thus A-to-I editing can influence gene expression by nuclear retention, degradation, alternative splicing, and translation regulation. Non-coding RNAs such as microRNA (miRNA), small interfering RNA (siRNA) and long non-coding RNA (lncRNA) are related to pre-mRNA splicing, translation, and gene regulation. A-to-I editing could therefore affect the stability, biogenesis, and target recognition of non-coding RNAs. Finally, it may influence the function of non-coding RNAs, resulting in regulation of gene expression. This review focuses on the function of ADAR-mediated RNA editing on mRNA non-coding regions (UTRs and introns) and non-coding RNAs (miRNA, siRNA, and lncRNA).  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号