首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mice carrying a targeted disruption of BmprIB were generated by homologous recombination in embryonic stem cells. BmprIB(-/-) mice are viable and, in spite of the widespread expression of BMPRIB throughout the developing skeleton, exhibit defects that are largely restricted to the appendicular skeleton. Using molecular markers, we show that the initial formation of the digital rays occurs normally in null mutants, but proliferation of prechondrogenic cells and chondrocyte differentiation in the phalangeal region are markedly reduced. Our results suggest that BMPRIB-mediated signaling is required for cell proliferation after commitment to the chondrogenic lineage. Analyses of BmprIB and Gdf5 single mutants, as well as BmprIB; Gdf5 double mutants suggests that GDF5 is a ligand for BMPRIB in vivo. BmprIB; Bmp7 double mutants were constructed in order to examine whether BMPRIB has overlapping functions with other type I BMP receptors. BmprIB; Bmp7 double mutants exhibit severe appendicular skeletal defects, suggesting that BMPRIB and BMP7 act in distinct, but overlapping pathways. These results also demonstrate that in the absence of BMPRIB, BMP7 plays an essential role in appendicular skeletal development. Therefore, rather than having a unique role, BMPRIB has broadly overlapping functions with other BMP receptors during skeletal development.  相似文献   

2.
3.
The secreted protein encoded by the Sonic hedgehog (Shh) gene is localized to the posterior margin of vertebrate limb buds and is thought to be a key signal in establishing anterior-posterior limb polarity. In the Shh(-/-) mutant mouse, the development of many embryonic structures, including the limb, is severely compromised. In this study, we report the analysis of Shh(-/-) mutant limbs in detail. Each mutant embryo has four limbs with recognizable humerus/femur bones that have anterior-posterior polarity. Distal to the elbow/knee joints, skeletal elements representing the zeugopod form but lack identifiable anterior-posterior polarity. Therefore, Shh specifically becomes necessary for normal limb development at or just distal to the stylopod/zeugopod junction (elbow/knee joints) during mouse limb development. The forelimb autopod is represented by a single distal cartilage element, while the hindlimb autopod is invariably composed of a single digit with well-formed interphalangeal joints and a dorsal nail bed at the terminal phalanx. Analysis of GDF5 and Hoxd11-13 expression in the hindlimb autopod suggests that the forming digit has a digit-one identity. This finding is corroborated by the formation of only two phalangeal elements which are unique to digit one on the foot. The apical ectodermal ridge (AER) is induced in the Shh(-/-) mutant buds with relatively normal morphology. We report that the architecture of the Shh(-/-) AER is gradually disrupted over developmental time in parallel with a reduction of Fgf8 expression in the ridge. Concomitantly, abnormal cell death in the Shh(-/-) limb bud occurs in the anterior mesenchyme of both fore- and hindlimb. It is notable that the AER changes and mesodermal cell death occur earlier in the Shh(-/-) forelimb than the hindlimb bud. This provides an explanation for the hindlimb-specific competence to form autopodial structures in the mutant. Finally, unlike the wild-type mouse limb bud, the Shh(-/-) mutant posterior limb bud mesoderm does not cause digit duplications when grafted to the anterior border of chick limb buds, and therefore lacks polarizing activity. We propose that a prepattern exists in the limb field for the three axes of the emerging limb bud as well as specific limb skeletal elements. According to this model, the limb bud signaling centers, including the zone of polarizing activity (ZPA) acting through Shh, are required to elaborate upon the axial information provided by the native limb field prepattern.  相似文献   

4.
Patterning of the limb is coordinated by the complex interplay of three signaling regions: the apical ectodermal ridge (AER), the zone of polarizing activity (ZPA), and the non-ridge limb ectoderm. Complex feedback loops exist between Shh in the ZPA, Bmps and their antagonists in the adjacent mesenchyme, Wnt7a in the dorsal ectoderm and Fgfs in the AER. In contrast to the previously reported complete absence of digits in Shh(-/-) mice, we show that one morphologically distinct digit, with a well-delineated nail and phalanges, forms in Shh(-/-) hindlimbs, while intermediate structures are severely truncated and fused. The presence of distal autopod elements is consistent with weak expression of Hoxd13 in Shh(-/-) hindlimbs. Shh(-/-) forelimbs in contrast have one distal cartilage element, a less-well differentiated nail and fused intermediate bones. Interestingly, Ihh is expressed at the tip of Shh mutant limbs and could account for formation of distal structures. In contrast to previous studies we also demonstrate that Shh signaling is required for maintenance of normal Fgf8 expression, since expression of Fgf8, unlike some other AER marker genes, is rapidly lost from anterior to posterior after E10.5, with only a small domain of Fgf8 expression remaining posteriorly. Furthermore, loss of expanded Fgf8 expression is paralleled by a collapse of the handplate. Our data show that development of most intermediate elements of the hindlimb skeleton are Shh-dependent, and that Shh signaling is required for anterior-posterior expansion of the AER in both limbs and for the subsequent branching of zeugopod and autopod elements. Finally, we show that Shh is also required for outgrowth of the limb ectoderm and thus for the formation of a distinct limb compartment.  相似文献   

5.
Growth/differentiation factors 5, 6, and 7 (GDF5/6/7) represent a distinct subgroup within the bone morphogenetic protein (BMP) family of secreted signaling molecules. Previous studies have shown that the Gdf5 gene is expressed in transverse stripes across developing skeletal elements and is one of the earliest known markers of joint formation during embryonic development. Although null mutations in this gene disrupt formation of some bones and joints in the skeleton, many sites are unaffected. Here, we show that the closely related family members Gdf6 and Gdf7 are expressed in different subsets of developing joints. Inactivation of the Gdf6 gene causes defects in joint, ligament, and cartilage formation at sites distinct from those seen in Gdf5 mutants, including the wrist and ankle, the middle ear, and the coronal suture between bones in the skull. Mice lacking both Gdf5 and Gdf6 show additional defects, including severe reduction or loss of some skeletal elements in the limb, additional fusions between skeletal structures, scoliosis, and altered cartilage in the intervertebral joints of the spinal column. These results show that members of the GDF5/6/7 subgroup are required for normal formation of bones and joints in the limbs, skull, and axial skeleton. The diverse effects on joint development and the different types of joints affected in the mutants suggest that members of the GDF family play a key role in establishing boundaries between many different skeletal elements during normal development. Some of the skeletal defects seen in single or double mutant mice resemble defects seen in human skeletal diseases, which suggests that these genes may be candidates that underlie some forms of carpal/tarsal coalition, conductive deafness, scoliosis, and craniosynostosis.  相似文献   

6.
7.
Limb ossification patterns for the Lower Jurassic (Toarcian) ichthyosaur, Stenopterygius , are described. It is found that limb ossification follows a continuous proximal to distal sequence from the propodial elements through to the terminal elements of 1st to 4th digit in the manus and the 1st to 3rd digit in the pes. The 5th manal and 4th pedal digit begin ossification later than more preaxial digits and also show evidence of proximal addition of elements near the distal mesopodial row in a manner consistent with delayed ossification of the 5th distal mesopodial in other diapsids. Ossification of manal elements in the Supernumerary 3–4 (S3-4) digit and the 5th digit appear interdependent; if one or the other is highly ossified, ossification of the other is retarded. The 1st pedal digit is considered to be lost in Stenopterygius and the 4th pedal digit is identified as the 5th digit. Delayed ossification of the mesopodium is not observed. The most preaxial proximal tarsal is identified as the centralc; the remaining proximal tarsals are the astragalus and calcaneum, and it is inferred that the astragalus and calcaneum ossified from within a single proximal cartilage.  相似文献   

8.
In the developing chick leg bud, massive programmed cell death occurs in the interdigital region. Previously, we reported the inhibition of cell death by separation of the interdigital region from neighboring digit cartilage. In this study, we examined the relationship between cell death and cartilaginous tissue in vitro. First, cell fate was observed with DiI that was used to examine cell movement in the distal tip of leg bud. Labeled cells in the prospective digital region were distributed only in the distal region as a narrow band, while cells in the prospective interdigital region expanded widely in the interdigit. In coculture of monolayer cells and a cell pellet tending to differentiate into cartilage, monolayer cells migrated into the cell pellet. These results suggested that digit cartilage tends to recruit neighboring cells into the cartilage during limb development. Next, we observed the relationship between cell death and chondrogenesis in monolayer culture. Apoptotic cell death that could be detected by TUNEL occurred in regions between cartilaginous nodules in mesenchymal cell culture. More apoptotic cell death was detected in the cell culture of leg bud mesenchyme of stage 25/26 than that of leg bud mesenchyme of stage 22 or that of stage 28. The most developed cartilaginous nodules were observed in the cell culture of stage 25/26. Finally, we observed Bmp expression in vitro and in vivo. Bmp-2, Bmp-4 and Bmp-7 were detected around the cartilage nodules. When the interdigit was separated from neighboring digit cartilage, Bmp-4 expression disappeared near the cut region but remained near the digit cartilage. This correlation between cell death and cartilaginous region suggests that cartilage tissue can induce apoptotic cell death in the developing chick limb bud due to cell migration accompanying chondrogenesis and Bmp expression.  相似文献   

9.
Distinct functions of BMP4 and GDF5 in the regulation of chondrogenesis   总被引:6,自引:0,他引:6  
Bone morphogenetic protein 4 (BMP4) and growth/differentiation factor 5 (GDF5) are closely related protein family members and regulate early cartilage patterning and differentiation. In this study, we compared the functional outcome of their actions systematically at various stages of chondrogenesis in mouse embryonic limb bud mesenchyme grown in micromass cultures. Overall, both growth factors enhanced cartilage growth and differentiation in these cultures. Uniquely, BMP4 not only accelerated the formation and maturation of cartilaginous nodules, but also induced internodular mesenchymal cells to express cartilage differentiation markers. On the other hand, GDF5 increased the number of prechondrogenic mesenchymal cell condensation and cartilaginous nodules, without altering the overall pattern of differentiation. In addition, GDF5 caused a more sustained elevated expression level of Sox9 relative to that associated with BMP4. BMP4 accelerated chondrocyte maturation throughout the cultures and sustained an elevated level of Col10 expression, whereas GDF5 caused a transient increase in Col10 expression. Taken together, we conclude that BMP4 is instructive to chondrogenesis and induces mesenchymal cells toward the chondrogenic lineage. Furthermore, BMP4 accelerates the progression of cartilage differentiation to maturation. GDF5 enhances cartilage formation by promoting chondroprogenitor cell aggregation, and amplifying the responses of cartilage differentiation markers. These differences may serve to fine-tune the normal cartilage differentiation program, and can be exploited for the molecular manipulation in biomimetics.  相似文献   

10.
11.
12.
Growth and differentiation factor 5 (GDF5) plays a central role in bone and cartilage development by regulating the proliferation and differentiation of chondrogenic tissue. GDF5 is synthesized as a preproprotein. The biological function of the proregion comprising 354 residues is undefined. We identified two families with a heterozygosity for the novel missense mutations p.T201P or p.L263P located in the proregion of GDF5. The patients presented with dominant brachydactyly type C characterized by the shortening of skeletal elements in the distal extremities. Both mutations gave rise to decreased biological activity in in vitro analyses. The variants reduced the GDF5-induced activation of SMAD signaling by the GDF5 receptors BMPR1A and BMPR1B. Ectopic expression in micromass cultures yielded relatively low protein levels of the variants and showed diminished chondrogenic activity as compared to wild-type GDF5. Interestingly, stimulation of micromass cells with recombinant human proGDF5T201P and proGDF5L263P revealed their reduced chondrogenic potential compared to the wild-type protein. Limited proteolysis of the mutant recombinant proproteins resulted in a fragment pattern profoundly different from wild-type proGDF5. Modeling of a part of the GDF5 proregion into the known three-dimensional structure of TGFβ1 latency-associated peptide revealed that the homologous positions of both mutations are conserved regions that may be important for the folding of the mature protein or the assembly of dimeric protein complexes. We hypothesize that the missense mutations p.T201P and p.L263P interfere with the protein structure and thereby reduce the amount of fully processed, biologically active GDF5, finally causing the clinical loss of function phenotype.  相似文献   

13.
14.
Cartilage patterning and differentiation are prerequisites for skeletal development through endochondral ossification (EO). Multipotential mesenchymal cells undergo a complex process of cell fate determination to become chondroprogenitors and eventually differentiate into chondrocytes. These developmental processes require the orchestration of cell-cell and cell-matrix interactions. In this review, we present limb bud development as a model for cartilage patterning and differentiation. We summarize the molecular and cellular events and signaling pathways for axis patterning, cell condensation, cell fate determination, digit formation, interdigital apoptosis, EO, and joint formation. The interconnected nature of these pathways underscores the effects of genetic and teratogenic perturbations that result in skeletal birth defects. The topics reviewed also include limb dysmorphogenesis as a result of genetic disorders and environmental factors, including FGFR, GLI3, GDF5/CDMP1, Sox9, and Cbfa1 mutations, as well as thalidomide- and alcohol-induced malformations. Understanding the complex interactions involved in cartilage development and EO provides insight into mechanisms underlying the biology of normal cartilage, congenital disorders, and pathologic adult cartilage.  相似文献   

15.
Herein, we demonstrate that Lrp6-mediated R-spondin 2 signaling through the canonical Wnt pathway is required for normal morphogenesis of the respiratory tract and limbs. We show that the footless insertional mutation creates a severe hypomorphic R-spondin 2 allele (Rspo2(Tg)). The predicted protein encoded by Rspo2(Tg) neither bound the cell surface nor activated the canonical Wnt signaling reporter TOPFLASH. Rspo2 activation of TOPFLASH was dependent upon the second EGF-like repeat of Lrp6. Rspo2(Tg/Tg) mice had severe malformations of laryngeal-tracheal cartilages, limbs and palate, and lung hypoplasia consistent with sites of Rspo2 expression. Rspo2(Tg/Tg) lung defects were associated with reduced branching, a reduction in TOPGAL reporter activity, and reduced expression of the downstream Wnt target Irx3. Interbreeding the Rspo2(Tg) and Lrp6(-) alleles resulted in more severe defects consisting of marked lung hypoplasia and absence of tracheal-bronchial rings, laryngeal structures and all limb skeletal elements.  相似文献   

16.
Growth and Differentiation Factor 5 (GDF5) is a secreted growth factor that belongs to the Bone Morphogenetic Protein (BMP) family and plays a pivotal role during limb development. GDF5 is a susceptibility gene for osteoarthritis (OA) and mutations in GDF5 are associated with a wide variety of skeletal malformations ranging from complex syndromes such as acromesomelic chondrodysplasias to isolated forms of brachydactylies or multiple synostoses syndrome 2 (SYNS2). Here, we report on a family with an autosomal dominant inherited combination of SYNS2 and additional brachydactyly type A1 (BDA1) caused by a single point mutation in GDF5 (p.W414R). Functional studies, including chondrogenesis assays with primary mesenchymal cells, luciferase reporter gene assays and Surface Plasmon Resonance analysis, of the GDF5W414R variant in comparison to other GDF5 mutations associated with isolated BDA1 (p.R399C) or SYNS2 (p.E491K) revealed a dual pathomechanism characterized by a gain- and loss-of-function at the same time. On the one hand insensitivity to the main GDF5 antagonist NOGGIN (NOG) leads to a GDF5 gain of function and subsequent SYNS2 phenotype. Whereas on the other hand, a reduced signaling activity, specifically via the BMP receptor type IA (BMPR1A), is likely responsible for the BDA1 phenotype. These results demonstrate that one mutation in the overlapping interface of antagonist and receptor binding site in GDF5 can lead to a GDF5 variant with pathophysiological relevance for both, BDA1 and SYNS2 development. Consequently, our study assembles another part of the molecular puzzle of how loss and gain of function mutations in GDF5 affect bone development in hands and feet resulting in specific types of brachydactyly and SYNS2. These novel insights into the biology of GDF5 might also provide further clues on the pathophysiology of OA.  相似文献   

17.
The growth and differentiation factor 5 (GDF‐5) is known to play a key role in cartilage morphogenesis and homeostasis, and a single‐nucleotide polymorphism in its promoter sequence was found to be associated with osteoarthritis (OA). In addition, GDF‐5 was shown to promote extracellular matrix (ECM) production in healthy chondrocytes, to stimulate chondrogenesis of mesenchymal stem cells (MSCs) and to protect against OA progression in vivo. Therefore, GDF‐5 appears to be a promising treatment for osteoarthritis. However, GDF‐5 also promotes osteogenesis and hypertrophy, limiting its therapeutic utility. To circumvent this, a GDF‐5 mutant with lower hypertrophic and osteogenic properties was engineered: M1673. The present study aimed to evaluate and compare the effects of GDF‐5 and M1673 on primary porcine and human OA chondrocytes. We found that both GDF‐5 and M1673 can robustly stimulate ECM accumulation, type II collagen and aggrecan expression in porcine and human OA chondrocytes in 3D culture. In addition, both molecules also down‐regulated MMP13 and ADAMTS5 expression. These results suggest that M1673 retained the anabolic and anti‐catabolic effects of GDF‐5 on chondrocytes and is an alternative to GDF‐5 for osteoarthritis.  相似文献   

18.
The limb defect in the mouse Hypodoctyly (Hd) affects only the distal structures. Heterozygotes (Hd/+) lack all or part of the distal phalanx and the terminal claw of digit 1 on the hindlimbs; mice homozygous (Hd/Hd) for the mutation have just one digit on each of the four limbs. Early limb development in the mutant appears normal and a change in morphology can only be detected later. Limb buds of Hd/+ and Hd/Hd embryos become reduced in width, with Hd/Hd buds becoming very pointed instead of rounded. This change in bud shape is correlated with an increase in cell death anteriorly in Hd/+ hindlimbs and both anteriorly and posteriorly in Hd/Hd fore- and hindlimb buds. The apical ectodermal ridge is very pronounced in pointed Hd/Hd limb buds. Mesenchyme cells from the Hd/Hd mutant in culture show a cell-autonomous change in behaviour and less cartilage differentiates. © 1996 Wiley-Liss, Inc.  相似文献   

19.
20.
Control of digit formation by activin signalling   总被引:10,自引:0,他引:10  
Major advances in the genetics of vertebrate limb development have been obtained in recent years. However, the nature of the signals which trigger differentiation of the mesoderm to form the limb skeleton remains elusive. Previously, we have obtained evidence for a role of TGFbeta2 in digit formation. Here, we show that activins A and B and/or AB are also signals involved in digit skeletogenesis. activin betaA gene expression correlates with the initiation of digit chondrogenesis while activin betaB is expressed coincidently with the formation of the last phalanx of each digit. Exogenous administration of activins A, B or AB into the interdigital regions induces the formation of extra digits. follistatin, a natural antagonist of activins, is expressed, under the control of activin, peripherally to the digit chondrogenic aggregates marking the prospective tendinous blastemas. Exogenous application of follistatin blocks physiological and activin-induced digit formation. Evidence for a close interaction between activins and other signalling molecules, such as BMPs and FGFs, operating at the distal tip of the limb at these stages is also provided. Chondrogenesis by activins is mediated by BMPs through the regulation of the BMP receptor bmpR-1b and in turn activin expression is upregulated by BMP signalling. In addition, AER hyperactivity secondary to Wnt3A misexpression or local administration of FGFs, inhibits activin expression. In correlation with the restricted expression of activins in the course of digit formation, neither activin nor follistatin treatment affects the development of the skeletal components of the stylopod or zeugopod indicating that the formation of the limb skeleton is regulated by segment-specific chondrogenic signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号