首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 443 毫秒
1.
Bone marrow mesenchymal stem cells (MSCs) are candidate cells for cartilage tissue engineering. This is due to their ability to undergo chondrogenic differentiation after extensive expansion in vitro and stimulation with various biomaterials in three-dimensional (3-D) systems. Collagen type II is one of the major components of the hyaline cartilage and plays a key role in maintaining chondrocyte function. This study aimed at analyzing the MSC chondrogenic response during culture in different types of extracellular matrix (ECM) with a focus on the influence of collagen type II on MSC chondrogenesis. Bovine MSCs were cultured in monolayer as well as in alginate and collagen type I and II hydrogels, in both serum free medium and medium supplemented with transforming growth factor (TGF) beta1. Chondrogenic differentiation was detected after 3 days of culture in 3-D hydrogels, by examining the presence of glycosaminoglycan and newly synthesized collagen type II in the ECM. Differentiation was most prominent in cells cultured in collagen type II hydrogel, and it increased in a time-dependent manner. The expression levels of the of chondrocyte specific genes: sox9, collagen type II, aggrecan, and COMP were measured by quantitative "Real Time" RT-PCR, and genes distribution in the hydrogel beads were localized by in situ hybridization. All genes were upregulated by the presence of collagen, particularly type II, in the ECM. Additionally, the chondrogenic influence of TGF beta1 on MSCs cultured in collagen-incorporated ECM was analyzed. TGF beta1 and dexamethasone treatment in the presence of collagen type II provided more favorable conditions for expression of the chondrogenic phenotype. In this study, we demonstrated that collagen type II alone has the potential to induce and maintain MSC chondrogenesis, and prior interaction with TGF beta1 to enhance the differentiation.  相似文献   

2.
We cultured rat mesenchymal stem cells (MSCs) in a medium containing beta-glycerophosphate, ascorbic acid, and dexamethasone to show in vitro osteogenic differentiation of the MSCs. The differentiation was enhanced by adding solubilized type I collagen to the medium as evidenced by higher alkaline phosphatase activity as well as more calcium deposition than that without collagen. The exogenous collagen integrated well with the mineralized bone matrix and maintained the native triple helical structure. These findings indicate that exogenously supplemented type I collagen acts as a component of the extracellular matrix of MSCs, and deposited type I collagen facilitates osteogenic differentiation followed by maturation of mineralized bone matrix.  相似文献   

3.
The local oxygen tension is a key regulator of the fate of mesenchymal stem cells (MSCs). The objective of this study was to investigate the effect of a low oxygen tension during expansion and differentiation on the proliferation kinetics as well as the subsequent osteogenic and chondrogenic potential of MSCs. We first hypothesised that expansion in a low oxygen tension (5% pO(2)) would improve both the subsequent osteogenic and chondrogenic potential of MSCs compared to expansion in a normoxic environment (20% pO(2)). Furthermore, we hypothesised that chondrogenic differentiation in a low oxygen environment would suppress hypertrophy of MSCs cultured in both pellets and hydrogels used in tissue engineering strategies. MSCs expanded at 5% pO(2) proliferated faster forming larger colonies, resulting in higher cell yields. Expansion at 5% pO(2) also enhanced subsequent osteogenesis of MSCs, whereas differentiation at 5% pO(2) was found to be a more potent promoter of chondrogenesis than expansion at 5% pO(2). Greater collagen accumulation, and more intense staining for collagen types I and X, was observed in pellets maintained at 20% pO(2) compared to 5% pO(2). Both pellets and hydrogels stained more intensely for type II collagen when undergoing chondrogenesis in a low oxygen environment. Differentiation at 5% pO(2) also appeared to inhibit hypertrophy in both pellets and hydrogels, as demonstrated by reduced collagen type X and Alizarin Red staining and alkaline phosphatase activity. This study demonstrates that the local oxygen environment can be manipulated in vitro to either stabilise a chondrogenic phenotype for use in cartilage repair therapies or to promote hypertrophy of cartilaginous grafts for endochondral bone repair strategies.  相似文献   

4.
Adipose-derived stromal cells (ADSCs) are multipotent cells which, in the presence of appropriate stimuli, can differentiate into various lineages such as the osteogenic, adipogenic and chondrogenic. In this study, we investigated the effect of transforming growth factor beta 1 (TGF-β1) in comparison to hydrolyzed fish collagen in terms of the chondrogenic differentiation potential of ADSCs. ADSCs were isolated from subcutaneous fat of horses by liposuction. Chondrogenesis was investigated using a pellet culture system. The differentiation medium was either supplemented with TGF-β1 (5 ng/ml) or fish collagen (0.5 mg/ml) for a 3 week period. After the 3 weeks in vitro differentiation, RT-PCR and histological staining for proteoglycan synthesis and type II collagen were performed to evaluate the degree of chondrogenic differentiation and the formation of cartilaginous extracellular matrix (ECM). The differentiation of ADSCs induced by TGF-β1 showed a high expression of glycosaminoglycan (GAG). Histological analysis of cultures stimulated by hydrolyzed fish collagen demonstrated an even higher GAG expression than cultures stimulated under standard conditions by TGF-β1. The expression of cartilage-specific type II collagen and Sox9 was about the same in both stimulated cultures. In this study, chondrogenesis was as effectively induced by hydrolyzed fish collagen as it was successfully induced by TGF-β1. These findings demonstrated that hydrolyzed fish collagen alone has the potential to induce and maintain ADSCs-derived chondrogenesis. These results support the application of ADSCs in equine veterinary tissue engineering, especially for cartilage repair.  相似文献   

5.
Human mesenchymal stem cells (hMSCs) are able to self-replicate and differentiate into a variety of cell types including osteoblasts, chondrocytes, adipocytes, endothelial cells, and muscle cells. It was reported that fibroblast growth factor-2 (FGF-2) increased the growth rate and multidifferentiation potentials of hMSCs. In this study, we investigated the genes involved in the promotion of osteogenic and chondrogenic differentiation potentials of hMSCs in the presence of FGF-2. hMSCs were maintained in the medium with FGF-2. hMSCs were harvested for the study of osteogenic or chondrogenic differentiation potential after 15 days’ culture. To investigate osteogenic differentiation, the protein levels of alkaline phosphatase (ALP) and the mRNA expression levels of osteocalcin were measured after the induction of osteogenic differentiation. Moreover, the investigation for chondrogenic differentiation was performed by measuring the mRNA expression levels of type II and type X collagens after the induction of chondrogenic differentiation. The expression levels of ALP, type II collagen, and type X collagen of hMSCs cultured with FGF-2 were significantly higher than control. These results suggested that FGF-2 increased osteogenic and chondrogenic differentiation potentials of hMSCs. Furthermore, microarray analysis was performed after 15 days’ culture in the medium with FGF-2. We found that the overall insulin-like growth factor-I (IGF-I) and transforming growth factor-β (TGF-β) signaling pathways were inactivated by FGF-2. These results suggested that the inactivation of IGF-I and TGF-β signaling promotes osteogenic and chondrogenic differentiation potential of hMSCs in the presence of FGF-2.  相似文献   

6.
This study addresses the role of bone morphogenetic protein‐7 (BMP‐7) in chondrogenic and osteogenic differentiation of human bone marrow multipotent mesenchymal stromal cells (BM MSCs) in vitro. BM MSCs were expanded and differentiated in the presence or absence of BMP‐7 in monolayer and three‐dimensional cultures. After 3 days of stimulation, BMP‐7 significantly inhibited MSC growth in expansion cultures. When supplemented in commonly used induction media for 7–21 days, BMP‐7 facilitated both chondrogenic and osteogenic differentiation of MSCs. This was evident by specific gene and protein expression analyses using real‐time PCR, Western blot, histological, and immunohistochemical staining. BMP‐7 supplementation appeared to enhance upregulation of lineage‐specific markers, such as type II and type IX collagens (COL2A1, COL9A1) in chondrogenic and secreted phosphoprotein 1 (SPP1), osteocalcin (BGLAP), and osterix (SP7) in osteogenic differentiation. BMP‐7 in the presence of TGF‐β3 induced superior chondrocytic proteoglycan accumulation, type II collagen, and SOX9 protein expression in alginate and pellet cultures compared to either factor alone. BMP‐7 increased alkaline phosphatase activity and dose‐dependently accelerated calcium mineralization of osteogenic differentiated MSCs. The potential of BMP‐7 to promote adipogenesis of MSCs was restricted under osteogenic conditions, despite upregulation of adipocyte gene expression. These data suggest that BMP‐7 is not a singular lineage determinant, rather it promotes both chondrogenic and osteogenic differentiation of MSCs by co‐ordinating with initial lineage‐specific signals to accelerate cell fate determination. BMP‐7 may be a useful enhancer of in vitro differentiation of BM MSCs for cell‐based tissue repair. J. Cell. Biochem. 109: 406–416, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
The two mesenchymal stem cell (MSC) populations that have gained most attention in relation to bone tissue engineering are adipose tissue (AT) MSCs and bone marrow (BM) MSCs. The purpose of this study was to investigate the ability of human BM-MSCs and AT-MSCs to survive, proliferate and deposit collagen type 1 when cultured on polycaprolactone nanofiber scaffolds and to ascertain the effect of medium composition on collagen type 1 formation and expression of osteogenic genes. The cells were seeded on polycaprolactone nanofiber scaffolds and cultured in three different types of media that differed by the presence of ascorbic acid, β-glycerophosphate and dexamethasone, that are typical components used for osteogenic differentiation of MSCs in vitro.In summary, AT-MSCs were proliferating significantly faster than BM-MSCs. AT-MSCs also showed better ability to deposit collagen type 1 and had a higher expression of early osteogenic markers, whereas BM-MSCs had higher expression of late osteogenic markers. This suggests that MSCs from diverse sources have different attributes and with respect to osteogenic differentiation, AT-MSCs are more immature compared to BM-MSCs. Collagen formation was depending on medium composition and the organization of collagen type 1 appeared to be influenced by the presence of dexamethasone.  相似文献   

8.
During fracture healing and microfracture treatment of cartilage defects mesenchymal stem cells (MSCs) infiltrate the wound site, proliferate extensively and differentiate along a cartilaginous or an osteogenic lineage in response to local environmental cues. MSCs may be able to directly sense their mechanical environment or alternatively, the mechanical environment could act indirectly to regulate MSC differentiation by inhibiting angiogenesis and diminishing the supply of oxygen and other regulatory factors. Dynamic compression has been shown to regulate chondrogenesis of MSCs. In addition, previous studies have shown that a low oxygen environment promotes in vitro chondrogenesis of MSCs. The hypothesis of this study is that a low oxygen environment is a more potent promoter of chondrogenic differentiation of MSCs embedded in agarose hydrogels compared to dynamic compression. In MSC-seeded constructs supplemented with TGF-β3, GAG and collagen accumulation was higher in low oxygen conditions compared to normoxia. For normoxic and low oxygen culture GAG accumulation within the agarose hydrogel was inhomogeneous, with low levels of GAG measured in the annulus of constructs maintained in normoxic conditions. Dynamic compression did not significantly increase GAG or collagen accumulation in normoxia. However under low oxygen conditions, dynamic compression reduced GAG accumulation compared to free-swelling controls, but remained higher than comparable constructs maintained in normoxic conditions. This study demonstrates that continuous exposure to low oxygen tension is a more potent pro-chondrogenic stimulus than 1 h/day of dynamic compression for porcine MSCs embedded in agarose hydrogels.  相似文献   

9.
目的:研究软骨寡聚基质蛋白(cartilage oligomeric matrix protein,COMP)过表达对BMP-2诱导骨髓间充质干细胞成骨及成软骨分化的影响。方法:BMP-2诱导骨髓间充质干细胞分化,通过脂质体转染含人COMP基因的质粒使骨髓间充质干细胞过表达COMP,采用实时定量PCR和Western blotting分析COMP基因过表达、成骨相关基因Ⅰ型胶原、RUNX2、骨钙蛋白以及成软骨相关基因Ⅱ型胶原、SOX9、蛋白聚糖、X型胶原的表达变化;通过茜素红染色观察成骨终末阶段矿化结节的生成情况,阿利新蓝染色观察细胞基质蛋白多糖的合成情况。结果:质粒转染后骨髓间充质干细胞COMP基因蛋白和mRNA表达水平显著提高(P<0.05)。COMP基因过表达后,成骨标记基因RUNX2、Ⅰ型胶原(Col1a1)mRNA水平均显著低于对照组(P<0.05),RUNX2、骨钙蛋白(Osteocalcin)蛋白表达水平明显低于对照组(P<0.05),而成软骨标记基因SOX9、蛋白聚糖(Aggrecan)mRNA水平均显著高于对照组(P<0.05),SOX9、Ⅱ型胶原(Col2a1)蛋白表达均明显多于对照组(P<0.05)。细胞成骨茜素红染色弱于对照组,而阿利新蓝染色强于对照组。过表达组细胞X型胶原(Col10a1)基因表达显著低于对照组(P<0.05),结论:骨髓间充质干细胞COMP基因过表达可抑制BMP-2诱导其成骨分化,促进骨髓间充质干细胞成软骨分化,并抑制软骨细胞的成熟肥大,为软骨组织工程研究提供新的方向。  相似文献   

10.
Mesenchymal stem cells (MSCs) have been repeatedly shown to be able to repair bone defects. The aim of this study was to characterize the osteogenic differentiation of miniature pig MSCs and markers of this differentiation in vitro. Flow-cytometrically characterized MSCs were seeded on cultivation plastic (collagen I and vitronectin coated/uncoated) or plasma clot (PC)/plasma-alginate clot (PAC) scaffolds and differentiated in osteogenic medium. During three weeks of differentiation, the formation of nodules and deposition of calcium were visualized by Alizarin Red Staining. In addition, the production of alkaline phosphatase (ALP) activity was quantitatively detected by fluorescence. The expression of osteopontin, osteonectin and osteocalcin were assayed by immunohistochemistry and Western Blot analysis. We revealed a decrease of osteopontin expression in 2D and 3D environment during differentiation. The weak initial osteonectin signal, culminating on 7(th) or 14(th) day of differentiation, depends on collagen I and vitronectin coating in 2D system. The highest activity of ALP was detected on 21(th) day of osteogenic differentiation. The PC scaffolds provided better conditions for osteogenic differentiation of MSCs than PAC scaffolds in vitro. We also observed expected effects of collagen I and vitronectin on the acceleration of osteogenic differentiation of miniature pig MSC. Our results indicate similar ability of miniature pig MSCs osteogenic differentiation in 2D and 3D environment, but the expression of osteogenic markers in scaffolds and ECM coated monolayers started earlier than in the monolayers without ECM.  相似文献   

11.
Apoptosis is an inevitable process during development and is evident in the formation of articular cartilage and endochondral ossification of growth plate. Mesenchymal stem cells (MSCs) can serve as alternative sources for cell therapy in focal chondral lesions or diffuse osteoarthritis. But there are few, if any, studies investigating apoptosis during chondrogenesis by MSCs. The aim of this study was to find the better condition to prevent apoptosis during chondrogenesis by MSCs. Apoptosis were evaluated in MSCs induced in different chondrogenic media by the use of Annexin V, TUNEL staining, lysosomal labeling with lysotracker and immunostaining of apoptotic markers. We found apparent apoptosis was demonstrated by Annexin V, TUNEL staining and lysosomal labeling during chondrogenesis. Meanwhile, the degree of apoptosis was related to the reagents of the defined chondrogenic medium. Adding serum in medium increased apoptosis, however, TGF-β1 inhibited apoptosis. The apoptosis was associated with the activation of caspase-3, the increase in the Bax/Bcl-2 ratio, the loss of lysosomal integrity, and the increase of PARP-cleavage. Pro-inflammatory cytokines, IL-1α, IL-1β and TNFα did not induce any increase in apoptosis. Interestingly, the inhibition of apoptosis by serum free medium supplemented with ITS was also associated with an increase in the expression of type II collagen, and a decrease in the expression of type X collagen, Runx2, and other osteogenic genes, while TGF-β1 increased the expression of Sox9, type II and type X collagen and decreased the expression of osteogenic genes. These data suggest apoptosis occurs during chondrogenesis by MSCs by cell death intrinsic pathway activation and this process may be modulated by culture conditions.  相似文献   

12.
13.
Mesenchymal stem cells (MSCs) are potentially useful cells for musculoskeletal tissue engineering. However, controlling MSC differentiation and tissue formation in vivo remains a challenge. There is a significant need for well-defined and efficient protocols for directing MSC behaviors in vivo. We hypothesize that morphogenetic signals from chondrocytes may regulate MSC differentiation. In micromass culture of MSCs, incubation with chondrocyte-conditioned medium (CCM) significantly enhanced the production of cartilage specific matrix including type II collagen. In addition, incubation of MSCs with conditioned medium supplemented with osteogenic factors induced more osteogenesis and accumulation of calcium and increased ALP activity. These findings reveal that chondrocyte-secreted factors promote chondrogenesis as well as osteogenesis of MSCs during in vitro micromass culture. Moreover, when MSCs expanded with chondrocyte-conditioned medium were encapsulated in hydrogels and subsequently implanted into athymic mice, basophilic extracellular matrix deposition characteristic of neocartilage was evident. These results indicate that articular chondrocytes produce suitable morphogenetic factors that induce the differentiation program of MSCs in vitro and in vivo.  相似文献   

14.
15.
Recent investigations credited important roles to C-type natriuretic peptide (CNP) signaling during chondrogenesis. This study investigated the putative role of CNP in transforming growth factor (TGF)-β1 induced in vitro chondrogenic differentiation of mesenchymal stem cells (MSCs) in pellet culture. MSCs were derived from human trabecular bone and were characterized on the basis of their cell surface antigens and adipogenic, osteogenic, and chondrogenic differentiation potential. TGF-β1 induced chondrogenic differentiation and glycosaminoglycan (GAG) synthesis was analyzed on the basis of basic histology, collagen type II, Sox 9 and aggrecan expressions, and Alcian blue staining. Results revealed that human trabecular bone-derived MSCs express CNP and NPR-B analyzed on the basis of RT-PCR and immunohistochemistry. In pellet cultures of MSCs TGF-β1 successfully induced chondrogenic differentiation and GAG synthesis. RT-PCR analyses of both CNP and NPR-B during this process revealed an activation of this signaling pathway in response to TGF-β1. Similar cultures induced with TGF-β1 and treated with different doses of CNP showed that CNP supplementation at 10?8 and 10?7 M concentrations significantly increased GAG synthesis in a dose dependent manner, whereas at 10?6 M concentration this stimulatory effect was diminished. In conclusion, CNP/NPR-B signaling pathway is activated during TGF-β1 induced chondrogenic differentiation of human trabecular bone-derived MSCs and may strongly be involved in GAG synthesis during this process. This effect is likely to be a dose-dependent effect.  相似文献   

16.
The current study has investigated the use of decellularised, demineralised bone extracellular matrix (ECM) hydrogel constructs for in vivo tissue mineralisation and bone formation. Stro-1-enriched human bone marrow stromal cells were incorporated together with select growth factors including VEGF, TGF-β3, BMP-2, PTHrP and VitD3, to augment bone formation, and mixed with alginate for structural support. Growth factors were delivered through fast (non-osteogenic factors) and slow (osteogenic factors) release PLGA microparticles. Constructs of 5 mm length were implanted in vivo for 28 days within mice. Dense tissue assessed by micro-CT correlated with histologically assessed mineralised bone formation in all constructs. Exogenous growth factor addition did not enhance bone formation further compared to alginate/bone ECM (ALG/ECM) hydrogels alone. UV irradiation reduced bone formation through degradation of intrinsic growth factors within the bone ECM component and possibly also ECM cross-linking. BMP-2 and VitD3 rescued osteogenic induction. ALG/ECM hydrogels appeared highly osteoinductive and delivery of angiogenic or chondrogenic growth factors led to altered bone formation. All constructs demonstrated extensive host tissue invasion and vascularisation aiding integration and implant longevity. The proposed hydrogel system functioned without the need for growth factor incorporation or an exogenous inducible cell source. Optimal growth factor concentrations and spatiotemporal release profiles require further assessment, as the bone ECM component may suffer batch variability between donor materials. In summary, ALG/ECM hydrogels provide a versatile biomaterial scaffold for utilisation within regenerative medicine which may be tailored, ultimately, to form the tissue of choice through incorporation of select growth factors.  相似文献   

17.
18.
In order to ensure that MSCs designed for in vivo cartilage repair do not untowardly differentiate into osteoblasts and mineralize in situ, we tested whether siRNA-induced suppression of cbfa1/Runx2 affected the osteogenic and chondrogenic differentiation potential of the murine cell line C3H10T1/2. Anti-cbfa1/Runx2 siRNA decreased the levels of cbfa1/Runx2 mRNA and protein by 65-80%, and also markedly reduced the expression of osteoblast-related genes such as Dlx5, osterix, collagen type I, alkaline phosphatase (AP), osteocalcin, SPARC/osteonectin and osteopontin, leading to a temporal expression of AP enzyme activity and mineralization potential delayed by at least some 7-9 days. Furthermore, siRNA-transfected cells, grown under chondrogenic conditions did not display biologically significant changes in the expression of aggrecan, collagen type II or type X, or histology when grown in micropellets or monolayer cultures. Finally, when cells were propagated in osteogenic medium and injected into the tibial muscles of SCID mice, no overtly mineralized bone tissue emerged. These experiments indicate that a major transient reduction of cbfa1/Runx2 expression in MSCs is sufficient to delay osteoblastic differentiation, both in vitro and in vivo, while chondrogenesis seemed to be sustained.  相似文献   

19.
We have previously demonstrated that collagen type XV (ColXV) is a novel bone extracellular matrix (ECM) protein. It is well known that the complex mixture of multiple components present in ECM can help both to maintain stemness or to promote differentiation of stromal cells following change in qualitative characteristics or concentrations. We investigated the possible correlation between ColXV expression and mineral matrix deposition by human mesenchymal stromal cells (hMSCs) with different osteogenic potential and by osteoblasts (hOBs) that are able to grow in culture medium with or without calcium. Analysing the osteogenic process, we have shown that ColXV basal levels are lower in cells less prone to osteo‐induction such as hMSCs from Wharton Jelly (hWJMSCs), compared to hMSCs that are prone to osteo‐induction such as those from the bone marrow (hBMMSCs). In the group of samples identified as ‘mineralized MSCs’, during successful osteogenic induction, ColXV protein continued to be detected at substantial levels until early stage of differentiation, but it significantly decreased and then disappeared at the end of culture when the matrix formed was completely calcified. The possibility to grow hOBs in culture medium without calcium corroborated the results obtained with hMSCs demonstrating that calcium deposits organized in a calcified matrix, and not calcium ‘per se’, negatively affected ColXV expression. As a whole, our data suggest that ColXV may participate in ECM organization in the early‐phases of the osteogenic process and that this is a prerequisite to promote the subsequent deposition of mineral matrix.  相似文献   

20.
Bone marrow-derived mesenchymal stem cells (MSCs) have strong potential in regeneration of musculoskeletal tissues including cartilage and bone. The microenvironment, comprising of scaffold and soluble factors, plays a pivotal role in determining the efficacy of cartilage tissue regeneration from MSCs. In this study, we investigated the effect of a three-dimensional synthetic-biological composite hydrogel scaffold comprised of poly (ethylene glycol) (PEG) and chondroitin sulfate (CS) on chondrogenesis of MSCs. The cells in CS-based bioactive hydrogels aggregated in a fashion which mimicked the mesenchymal condensation and produced cartilaginous tissues with characteristic morphology and basophilic extracellular matrix production. The aggregation of cells resulted in an enhancement of both chondrogenic gene expressions and cartilage specific matrix production compared to control PEG hydrogels containing no CS-moieties. Moreover, a significant down-regulation of type X collagen expression was observed in PEG/CS hydrogels, indicating that CS inhibits the further differentiation of MSCs into hypertrophic chondrocytes. Overall, this study demonstrates the morphogenetic role of bioactive scaffold-mediated microenvironment on temporal pattern of cartilage specific gene expressions and subsequent matrix production during MSC chondrogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号