首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Moose-wolf dynamics and the natural regulation of moose populations   总被引:1,自引:0,他引:1  
Summary In southwestern Québec, non-harvested moose populations stabilize at a density of 0.40 animal·km-2. In an attempt to test whether or not moose were regulated by predators, we investigated wolf predation near this equilibrium density (0.37) and at 2 lower densities (0.23, 0.17). Scat analysis in summer and feeding observations in winter indicated a greater use of alternative food resources by wolves at lower moose densities. Each wolf pack killed on average 5.3, 1.8, 1.1 moose·100 days in the area of 0.37, 0.23, and 0.17 moose·km-2, respectively. Consumption of moose per wolf was 2.8, 1.7, and 1.6 kg/day, respectively. January wolf densities were estimated at 1.38, 0.82, and 0.36 animals·100 km-2, respectively. Year-long predation rates proved to be density-dependent, increasing with moose density from 6.1 to 19.3% of the postnatal populations. We conclude that moose populations in southwestern Québec are regulated largely by predators (wolves and maybe black bears) at a density where competition for forage produces no detrimental effect. We support the concept that wolf predation can have an important regulatory effect at low moose densities but also a depensatory (inversely density-dependent) effect at higher densities.  相似文献   

2.
ABSTRACT Given recent actions to increase sustained yield of moose (Alces alces) in Alaska, USA, we examined factors affecting yield and moose demographics and discussed related management. Prior studies concluded that yield and density of moose remain low in much of Interior Alaska and Yukon, Canada, despite high moose reproductive rates, because of predation from lightly harvested grizzly (Ursus arctos) and black bear (U. americanus) and wolf (Canis lupus) populations. Our study area, Game Management Unit (GMU) 20A, was also in Interior Alaska, but we describe elevated yield and density of moose. Prior to our study, a wolf control program (1976–1982) helped reverse a decline in the moose population. Subsequent to 1975, moose numbers continued a 28-year, 7-fold increase through the initial 8 years of our study (λB1 = 1.05 during 1996–2004, peak density = 1,299 moose/1,000 km2). During these initial 8 hunting seasons, reported harvest was composed primarily of males ( = 88%). Total harvest averaged 5% of the prehunt population and 57 moose/1,000 km2, the highest sustained harvest-density recorded in Interior Alaska for similar-sized areas. In contrast, sustained total harvests of <10 moose/1,000 km2 existed among low-density, predator-limited moose populations in Interior Alaska (≤417 moose/1,000 km2). During the final 3 years of our study (2004–2006), moose numbers declined (λB2 = 0.96) as intended using liberal harvests of female and male moose ( = 47%) that averaged 7% of the prehunt population and 97 moose/1,000 km2. We intentionally reduced high densities in the central half of GMU 20A (up to 1,741 moose/1,000 km2 in Nov) because moose were reproducing at the lowest rate measured among wild, noninsular North American populations. Calf survival was uniquely high in GMU 20A compared with 7 similar radiocollaring studies in Alaska and Yukon. Low predation was the proximate factor that allowed moose in GMU 20A to increase in density and sustain elevated yields. Bears killed only 9% of the modeled postcalving moose population annually in GMU 20A during 1996–2004, in contrast to 18–27% in 3 studies of low-density moose populations. Thus, outside GMU 20A, higher bear predation rates can create challenges for those desiring rapid increases in sustained yield of moose. Wolves killed 8–15% of the 4 postcalving moose populations annually (10% in GMU 20A), hunters killed 2–6%, and other factors killed 1–6%. Annually during the increase phase in GMU 20A, calf moose constituted 75% of the predator-killed moose and predators killed 4 times more moose than hunters killed. Wolf predation on calves remained largely additive at the high moose densities studied in GMU 20A. Sustainable harvest-densities of moose can be increased several-fold in most areas of Interior Alaska where moose density and moose: predator ratios are lower than in GMU 20A and nutritional status is higher. Steps include 1) reducing predation sufficient to allow the moose population to grow, and 2) initiating harvest of female moose to halt population growth and maximize harvest after density-dependent moose nutritional indices reach or approach the thresholds we previously published.  相似文献   

3.
Håkan Sand 《Oecologia》1996,106(2):212-220
I examined the relationship between age, body size and fecundity in 833 female moose (Alces alces) from 14 populations in Sweden sampled during 1989–1992. Data on population density, food availability and climatic conditions were also collected for each population. Age and body mass were both significantly positively related to fecundity, measured as ovulation rate, among female moose. The relationship between the probability of ovulation and body mass was dependent on age with (1) a higher body mass needed in younger females for attaining a given fecundity, and (2) body mass having a stronger effect on fecundity in yearling (1.5 year) than in older (2.5 year) females. Thus, a 40 kg increase in yearling body mass resulted in a 42% increase in the probability of ovulation as compared to a 6% increase in older females. The lower reproductive effort per unit body mass, and the relatively stronger association between fecundity and body mass in young female moose compared to older ones, is likely to primarily represent a mechanism that trades off early maturation against further growth, indicating a higher cost of reproduction in young animals. In addition to age and body mass, population identity explained a significant amount of the individual variation in fecundity, showing that the relationship between body mass and fecundity was variable among populations. This variation was in turn related to the environment, in terms of climatic conditions forcing female moose living in relatively harsh/more seasonal climatic conditions to attain a 22% higher body mass to achive the same probability of multiple ovulation (twinning) as females living in climatically milder/less seasonal environments. The results suggests that the lower fecundity per unit body mass in female moose living in climatically harsh/more seasonal environments may be an adaptive response to lower rates of juvenile survival, compared to females experiencing relatively milder/less seasonal climatic conditions.  相似文献   

4.
We examined the geographical pattern in growth and adult body size among 14 populations of Swedish moose (Alces alces) using data from 4,294 moose (1.5 years old) killed during the hunting season in 1989–1992. In both sexes, adult body mass was significantly positively correlated with latitude. Moose in northern populations had a 15–20% larger adult body mass than moose in the south. Juvenile body mass was correlated with neither latitude nor adult body mass. Thus, variation in time (years) and rate of body growth after the juvenile stage were responsible for most of the variation in adult body mass among populations. Moose in northern populations grew for approximately 2 more years of life than southern moose. In contrast to adult body mass, skeletal size (measured as jawbone length) was not correlated with latitude, suggesting that variation in adult body mass was primarily due to differences in fat reserves. Discrimination between population characteristics, such as moose density, climate, and the amount of browse available to moose, showed climatic harshness to be the most important variable explaining geographical variation in body mass among populations. The results support the notion that in mammals body size increases with latitude in accordance with Bergmann's rule. We conclude that (1) variation in patterns of growth after the juvenile stage is the main cause of the latitudinal trend in adult body size in moose, and (2) climatic conditions are a more important factor than population density and availability of food in explaining geographical variation in growth patterns and adult body mass between populations of Swedish moose.  相似文献   

5.
Summary Respiration rates of the bacterivorous freshwater nematode Plectus palustris were measured during the whole life cycle of the species and for animals grown at two food densities. Covariance analysis showed that small, but significant differences exist in the elevation of the respiration rate—body weight regressions (R=aW b, in nl O2/ind·h and g wet weight) for different food densities. At a food density of 6–9·108 bacterial cells/ml the level of respiration is 14% lower compared to rates of animals cultured at a ten times higher food density. However, the allometric function, R-aW b, adequately describes the relationship of respiration and body weight only during the larval growth phase and for young females, while respiration rates of newly hatched larvae and mature females at maximal egg production have lower metabolic rates. Cumulated metabolic costs to attain a certain age, size and stage of development have been determined and are used in a subsequent paper (Schiemer et al., 1979) to calculate the energy budgets of the species.  相似文献   

6.
Population growth rates of the predatory rotifer Asplanchna brightwelli were determined at 25 °C using a large (Brachionus calyciflorus) and a small (Anuraeopsis fissa) rotifer prey species in three concentrations (0.5, 0.1 and 2.0 g dry weight ml-1) and in five combinations. The prey ingestion time by the predator was also measured. For B. calyciflorus the ingestion time (22.97–8.95 s) was more than six times that of A. fissa (3.68 ± 0.93). Regardless of prey type, the population growth of Asplanchna increased with increasing food density. There was a direct correlation between densities of amictic and mictic fernales. The maximum rate of population growth (1.01 ± 0.10 d-1) was higher at high density of A. fissa prey than that at the same density of B. calyciflorus. Progressive increase of A. fissa density in the offered food combination resulted in a corresponding increase of the predator's number. Gut content analysis of A. brightwelli revealed that the number of prey ingested increased with increasing prey densities.  相似文献   

7.
Previous studies on moose Alces alces have suggested that interactions with humans may trigger anti-predator behaviors and generate a demographical cost. Therefore, we hypothesized that disturbances from small and big game hunting may have negative effects on moose movements, diurnal activity, and activity range. Using location data from 64 moose equipped with GPS collars from three populations (Low Alpine, Inland, Coastal) with different temporal human presence and spatial accessibility, we evaluated the impact of hunting on moose activity rhythms. On average, female moose in the low human population density (Low Alpine) area (<0.5/km2) had significantly lower movement rates during moose hunting season, but variation in movement rates among individuals were higher compared with female moose in regions with denser human populations (6–24/km2). We found no evidence that reproductive status influenced female moose sensitivity to disturbance. As expected, females used smaller activity ranges and were less active nocturnally than males. The high within-group variation suggests that current hunting disturbance levels do not alter moose population behavior in general. Our data indicate that alterations in movement were related to rutting activity, not human disturbance induced by hunting. In line with behavioral theory, our study suggests that some individuals were more sensitive to hunting disturbance than the general population. Our work suggests that individual moose may perceive human predation risk to be similar to other predation risks.  相似文献   

8.
Summer diet, summer temperature, length of the growth season and animal density appeared to best explain annual and regional differences in calf and yearling body mass in moose from southeastern Norway. In general animals inhabiting steep, alpine landscapes had less body mass than animals using flat, low-altitude habitats. Autumn body mass of calves and yearlings decreased with increasing snow depth during the preceding winter and spring. However, calf body mass was more influenced by the summer range and less by the winter range than was body mass of yearlings. There was no indication that the effect of snow depth on autumn body mass was greater in moose living on poor than on good summer ranges. Body mass decreased with increasing competition for summer forage, while the winter range mainly had an density-independent effect. Habitat quality, expressed as regression lines between calf and yearling body mass and animal density (hunting yield), differed between regions. On ranges of medium and high altitude where birch (Betula spp.) rowan (Sorbus aucuparia) and bilberry (Vaccinium myrtillus) dominated moose summer diet, body mass decreased at a rapid rate with increasing animal density. Body mass decreased at a slower rate at low-altitude ranges and at high-altitude ranges where willow (Salix spp.) and forbs dominated the diet. Body mass of lactating cows decreased with increasing animal density, but animal density did not affect body mass of non-lactating cows. There was no indication that the decrease in autumn body mass with increasing moose density over the last 25 years has caused a decrease in animal condition (ability to survive the winter). The results are discussed in relation to the effect of summer and winter range on population regulation in moose. It is concluded that a density-dependent effect is apparent on the summer range even at low and intermediate population densities. On the winter range, on the other hand, density-dependence is likely to occur only at high levels of population density. Received: 4 February 1997 / Accepted: 1 February 1999  相似文献   

9.
Density dependent processes affecting foraging strategies may in turn influence vital rates and population regulation in large herbivores. Increased competition may lower both forage availability and quality, but whether the main activity constraint at high density is increased searching time or increased digestion time is poorly investigated. In a fully replicated landscape‐scale experiment, we used long‐term data (2003–2009) from domestic sheep grazing at high and low density (80 and 25 sheep km–2, respectively) on alpine summer ranges to test density dependence in allocation of time to feeding (moving) vs digestion (resting) activities and how this in turn affected body growth. Sheep at high density spent more time actively feeding than sheep at low density, but sheep moved shorter distances while foraging at high density. Increased activity levels at high density suggest that the main activity constraint at high density was availability of high‐quality food increasing searching time and possibly reducing intake rates. Increased movement distances at low density is consistent with a higher selection for more productive vegetation types since high‐quality patches are dispersed in the landscape. The alternative hypothesis, that food processing time increased at high density was not supported as it would have reduced overall activity levels. Individual activity levels increased body growth, but this was not sufficient to fully compensate for lower habitat quality leading to an overall reduced body growth at high density. Our experiment clearly documents changes in activity budgets and movement distances of a large herbivore at high population density, providing one potential behavioural mechanism of density dependent responses observed in vital rates.  相似文献   

10.
Interspecific competition between red squirrels and grey squirrels was investigated by comparing the population demography, spacing behavior and habitat use of red squirrels in two large conifer plantations in northern England: one site had only red squirrels (the red-only site), in the other both red and grey squirrels occurred (the red–grey site). Despite more abundant food at the red–grey site, red squirrel densities (0.26 ha–1 at the red–grey site, 0.29 ha–1 at the red-only site), adult survival rates and the breeding rates of females were similar at both study sites. Grey squirrels at the red–grey site occurred at higher densities (0.92–1.1 ha–1) than did the reds and tended to have higher breeding rates. In the presence of grey squirrels, the recruitment pattern of red squirrels changed and there was little recruitment of subadults. The juvenile recruitment rate in the red–grey site (13%) was much lower than in the red-only site (50%). Grey squirrels, in contrast, had higher juvenile recruitment rates at the red–grey site (41%). The core areas of the home ranges of red squirrels in the red–grey site were more strongly overlapped by grey squirrels than by conspecifics. Red squirrels did not select the habitat with the best tree seed crop (Scots pine) but preferred dense Sitka spruce plantations; they appeared to avoid the Scots pine area with its high grey squirrel density. Data on foot length and body condition indicated decreased body growth in young red squirrels when grey squirrels were present. Our data suggest that adult red squirrels suffered little from interspecific competition with grey squirrels and that the key factor is decreased juvenile recruitment in red squirrels.  相似文献   

11.
Condition and size of damselflies: a field study of food limitation   总被引:2,自引:0,他引:2  
Robert L. Baker 《Oecologia》1989,81(1):111-119
Summary Based on evidence from field manipulations, several authors have recently suggested that interference competition among larval odonates reduces individual growth rates and biomass by reducing foraging rates. This study was designed to test the effects of food shortage on condition (relative mass per unit head width) of larval Ischnura verticalis (Odonata: Coenagrionidae) under laboratory conditions and to use these results to estimate the degree of food shortage of larvae under naturally occurring field conditions. In the laboratory, there were marked differences in condition of larvae fed diets ranging from ad libitum feeding with worms to ad libitum feeding with Daphnia 1 day out of every 8. Condition of larvae collected from May through October from 17 different sites in southern Ontario indicated that, for most of the year, larvae had conditions similar to those fed ad libitum with Daphnia in the laboratory. There was no evidence that larval condition was related to population density. Condition of larvae in most sites during July was similar to that of larvae fed poor diets in the laboratory. It is unlikely that the low conditions were due to competition as there were no correlations with density across sites and population densities during July were at their lowest. Adult head widths showed a seasonal decline from mid June to the end of the flight season. There was no evidence that head widths were related to population density although there was some evidence that head widths of males were positively related to larval condition. My results do not support the hypothesis that competition is important in affecting foraging rates and subsequent development of larvae. Contrasts between my results and other studies may stem from difficulties with the interpretation of field experiments, that densities in my study may have been low due to fish predation, and/or that I. verticalis larvae are slow moving relative to other larvae and thus less likely to interact.  相似文献   

12.
Summary The rotifer Brachionus calyciflorus is capable of collecting and ingesting cells or short chains of a laboratory-grown bacterium Aerobacter aerogenes. Clearance rate, the volume of water effectively processed animal -1h-1, does not vary systematically with bacterial density between 0.01 and 100 g dry weight ml-1. Consequently, ingestion rates are strongly density-dependent, reaching maximal values at the highest food densities tested. Bacterial feeding rates are consistently lower than those determined with larger food types, except in very dense cell suspensions. A. aerogenes in high concentration (100 g ml-1) induces Brachionus to orient their pseudotrochal cirri to form screens over the buccal funnel; this behavior is at least four times less frequently observed at low (10 g ml-1) food density. Despite its occurrence, pseudotrochal screening appears ineffective in regulating bacterial ingestion rate. B. calyciflorus can be cultured xenically for greater than 40 generations fed A. aerogenes alone, with no diminution in net reproductive rate or intrinsic rate of natural increase, and no lengthening in cohort generation time.  相似文献   

13.
Broekhuizen  N.  Parkyn  S.  Miller  D. 《Hydrobiologia》2001,457(1-3):125-132
The influence of fine sediment (<63 m diameter) upon the assimilation rates of the snail Potamopyrgus antipodarum, and the mayfly Deleatidium sp. were determined by allowing individuals to feed upon 14C radiolabelled periphyton which had been contaminated with varying quantities of sediment (sediment:food ratios of: 0:1, 1:1, 5:1, 10:1, 50:1, 100:1 [dry weight]). For both grazers, the assimilation rate falls in direct proportion to the sediment fraction in the (sediment+food) matrix. In a second experiment the growth of P. antipodarum was monitored over 3 months when fed organic matter that had been contaminated with fine sediment at ratios of 0:1, 1:1, 5:1, 10:1, 50:1, 100:1, 500:1. In contrast to the monotonic relation between sediment and short-term assimilation, growth rates (mm shell height d–1) were highest at intermediate levels of sediment contamination (5:1 and 10:1 by dry weight) and lowest in the treatment with no sediment added. Growth rates were significantly lower, and mortality high, at sediment:food contamination ratios above 50:1. The reasons for the contrast between the results from the short-term and the long-term experiments are unknown at present, but the fact that snail growth was greatest at intermediate levels of sediment contamination might indicate that they derive trace nutrients from ingested sediment.  相似文献   

14.
Progressive anthropogenic disturbance can alter ecosystem organization potentially causing shifts from one stable state to another. This potential for ecosystem shifts must be considered when establishing targets and objectives for conservation. We ask whether a predator–prey system response to incremental anthropogenic disturbance might shift along a disturbance gradient and, if it does, whether any disturbance thresholds are evident for this system. Development of linear corridors in forested areas increases wolf predation effectiveness, while high density of development provides a safe‐haven for their prey. If wolves limit moose population growth, then wolves and moose should respond inversely to land cover disturbance. Using general linear model analysis, we test how the rate of change in moose (Alces alces) density and wolf (Canis lupus) harvest density are influenced by the rate of change in land cover and proportion of land cover disturbed within a 300,000 km2 area in the boreal forest of Alberta, Canada. Using logistic regression, we test how the direction of change in moose density is influenced by measures of land cover change. In response to incremental land cover disturbance, moose declines occurred where <43% of land cover was disturbed; in such landscapes, there were high rates of increase in linear disturbance and wolf density increased. By contrast, moose increases occurred where >43% of land cover was disturbed and wolf density declined. Wolves and moose appeared to respond inversely to incremental disturbance with the balance between moose decline and wolf increase shifting at about 43% of land cover disturbed. Conservation decisions require quantification of disturbance rates and their relationships to predator–prey systems because ecosystem responses to anthropogenic disturbance shift across disturbance gradients.  相似文献   

15.
The objective of this study was to examine the impact of crowding (stocking density) on food consumption and growth of juvenile Sepia officinalis reared at 17 and 25 °C. Two groups of 75 cuttlefish each were reared in closed seawater systems with water temperatures of 17 and 25 °C. Each group was subdivided into two treatments (three replicates per treatment): low-density (equivalent to 100 Sepia m−2) and high-density (equivalent to 400 Sepia m−2). Food consumption was measured daily and live wet body weight (g) was measured weekly over a 5-week study. The 25 °C treatment resulted in significantly higher growth rates and food consumption compared to the 17 °C treatment. Stocking density had no statistically significant effect on food consumption, gross growth efficiency (GGE), or weight at either temperature. However, the high-density treatments had slightly lower GGE values overall and growth in weight at 25 °C was slightly but consistently lower in the high-density treatment suggesting that stocking densities of 400 Sepia m−2 may be approaching levels that impact feeding and growth.  相似文献   

16.
Summary Small birch plants (Betula pendula Roth.) were grown in a climate chamber at different, exponentially increasing rates of nitrogen supply and at different photon flux densities. This resulted in treatments with relative growth rate equal to the relative rate of increase in nitrogen supply and with different equilibrium values of plant nitrogen concentration. Nitrogen productivity (rate of dry matter increase per plant nitrogen) was largely independent of nitrogen supply and was greater at higher photon flux density. Leaf weight ratio, average specific leaf area (and thus leaf area ratio) were all greater at better nitrogen supply and at lower values of photon flux density. The dependencies were such that the ratio of total projected leaf area to plant nitrogen at a given photon flux density was similar at all rates of nitrogen supply. The ratio was greater at lower values of photon flux density. At a given value of photon flux density, net assimilation rate and net photosynthetic rate per shoot area (measured at the growth climate) were only slightly greater at better rates of nitrogen supply. Values were greater at higher photon flux densities. Acclimation of the total leaf area to plant nitrogen ratio and of net assimilation rate was such that nitrogen productivity was largely saturated with respect to photon flux density at values greater than 230 mol m-2 s-1. At higher photon flux densities, any potential gain in nitrogen productivity associated with higher net assimilation rates was apparently offset by lower ratios of total leaf area to plant nitrogen.  相似文献   

17.
We studied the effect of larval density on food utilization by sediment-dwelling northern brook lamprey (Ichthyomyzon fossor) larvae in the Otter River, Baraga County, MI, USA using field surveys and in situ cage experiments. Field surveys found that food utilization was inversely proportional to density across the range of 1 to 10 larvae/m2. Compared to 1 larvae/m2, values at 10 larvae/m2 were lower by an average of 36% for gut fullness, by 32% for selective ingestion of organic matter, and by 71% and 58% for assimilation of diet organic matter and diet amino acids, respectively. In situ cage experiments and additional field studies in other nearby rivers revealed the same relationships. We hypothesize that physical disturbance of the sediment by adjacent larvae interferes with food utilization with the frequency of disturbance proportional to density. Condition factors were not correlated with density and indicate that individual larvae minimize the effect of crowding by moving away from higher density patches. We conclude that these findings are generalizable to other lamprey species in similar environments in which lower rates of growth, maturation, and survivorship of lamprey larvae at higher densities have been reported by other researchers.  相似文献   

18.
Ferris  H.  Venette  R.C.  van der Meulen  H.R.  Lau  S.S. 《Plant and Soil》1998,203(2):159-171
Bacterial feeding nematodes excrete N assimilated in excess of that required for growth. Because metabolic and developmental rates differ among nematode species, we hypothesized that their contribution to N mineralization in soil would differ. Sand-column microcosms amended with an organic substrate, bacteria, and with or without bacterial-feeding nematodes, were leached at 3-d intervals. Cumulative N, as NH 4 + or NO 3 - , leached from columns containing nematodes was consistently greater than from columns without nematodes. Maximum N-mineralization rates for populations of rhabditid nematodes, which predominated in field soils early in the summer were at lower temperatures than those for cephalobid nematodes, which predominated later in the summer. For an organic substrate with C-to-N ratio of 11:1, rates of N mineralization among species of different body size were similar, ranging between 0.0012 and 0.0058 g-N nematode-1 d-1, mainly as NH 4 + . Smaller nematodes mineralized more N per unit of body weight than larger nematodes. We hypothesized that at low C-to-N ratios of the organic substrate, bacterial growth is C-limited and N-immobilization will be minimal; at high C-to-N ratios bacterial growth will be N-limited and there may be rapid immobilization of newly-mineralized N. Consequently, net N mineralization in the presence of nematodes will be lower when the organic substrate has a high C-to-N ratio. In experiments with different nematode species, net mineralization and the nematode contribution to mineralization generally decreased with increasing C-to-N ratio, consistent with the hypothesis; however, there were exceptions.  相似文献   

19.
We tested the effect of two single species inocula and a mixed inoculum of the native population of arbuscular mycorrhizal (AM) fungi on the growth response of criollo maize (Zea mays L.). To determine the inocula that produced the highest response on maize growth, we conducted a greenhouse experiment at 3 levels of P fertilization (0, 40 and 80 kg ha–1). Inoculation with Glomus mosseae (Nicolson and Gerdemann) Gerd. and Trappe (LMSS) produced the greatest shoot growth rates at the two lowest P fertilization levels. Inoculation with Acaulospora bireticulata Rothwell and Trappe (ABRT) and the native population (NP) resulted in similar shoot growth rates at all P levels. These rates were higher than the non-mycorrhizal control rate at the lowest P level but lower than the control at the highest P level. Also, ABRT and NP had significantly lower shoot growth rates than the inoculation treatment with G. mosseae at all P levels. The non-mycorrhizal control had the lowest growth rate at the lowest P level but its growth rate increased linearly with increased P fertilization. Inoculation with G. mosseae and A. bireticulata produced similar colonization rates which were lower than the native population colonization rate. There was no correlation between colonization and shoot growth rates.  相似文献   

20.
Summary The ice algae of the Barents Sea were studied from 1986 to 1988. With a few exceptions, the ice algal assemblages were dominated by pennate diatoms. From March to early June there was a transition from a mixed population of both centric and pennate diatoms at the start into a well developed Nitzschia frigida assemblage. Nutrier ts in ice-covered regions were high in spring, and high N/C and protein/carbohydrate ratios indicated no nutrient deficiency in the ice algae. The N/P ratios were lower than 15, but comparable to ratios of three ice algae species grown in culture at -0.5 °C and various light conditions. The Si/N ratios were lower than corresponding ratios from the Canadian Arctic and the Antarctic. The chemical composition revealed that silicate limited growth cannot be excluded. The cells were heavily shade-adapted the entire spring season, with high Chl/C ratios (0.045–0.084), comparable to the cultures growing at low irradiances. The growth rates in the cultures peaked at 50 mol m-2s-1 with maximum rates of 0.6–0.8 div. day-1, both for 12 and 24 h day lengths. The low growth rates for the May assemblages (max 0.20 div. day-1) indicated strong light limitation by self-shading. Adaptation experiments showed that some ice algae are highly adaptable, while others are not able to adjust to new irradiances. Their growth rates are inhibited by high irradiances and this may affect the distribution in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号