首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Honeybees, Apis mellifera, show age-related division of labor in which young adults perform maintenance (“housekeeping”) tasks inside the colony before switching to outside foraging at approximately 23 days old. Disease resistance is an important feature of honeybee biology, but little is known about the interaction of pathogens and age-related division of labor. We tested a hypothesis that older forager bees and younger “house” bees differ in susceptibility to infection. We coupled an infection bioassay with a functional analysis of gene expression in individual bees using a whole genome microarray. Forager bees treated with the entomopathogenic fungus Metarhizium anisopliae s.l. survived for significantly longer than house bees. This was concomitant with substantial differences in gene expression including genes associated with immune function. In house bees, infection was associated with differential expression of 35 candidate immune genes contrasted with differential expression of only two candidate immune genes in forager bees. For control bees (i.e. not treated with M. anisopliae) the development from the house to the forager stage was associated with differential expression of 49 candidate immune genes, including up-regulation of the antimicrobial peptide gene abaecin, plus major components of the Toll pathway, serine proteases, and serpins. We infer that reduced pathogen susceptibility in forager bees was associated with age-related activation of specific immune system pathways. Our findings contrast with the view that the immunocompetence in social insects declines with the onset of foraging as a result of a trade-off in the allocation of resources for foraging. The up-regulation of immune-related genes in young adult bees in response to M. anisopliae infection was an indicator of disease susceptibility; this also challenges previous research in social insects, in which an elevated immune status has been used as a marker of increased disease resistance and fitness without considering the effects of age-related development.  相似文献   

5.

Background

Cancer cells typically exhibit large-scale aberrant methylation of gene promoters. Some of the genes with promoter methylation alterations play “driver” roles in tumorigenesis, whereas others are only “passengers”.

Results

Based on the assumption that promoter methylation alteration of a driver gene may lead to expression alternation of a set of genes associated with cancer pathways, we developed a computational framework for integrating promoter methylation and gene expression data to identify driver methylation aberrations of cancer. Applying this approach to breast cancer data, we identified many novel cancer driver genes and found that some of the identified driver genes were subtype-specific for basal-like, luminal-A and HER2+ subtypes of breast cancer.

Conclusion

The proposed framework proved effective in identifying cancer driver genes from genome-wide gene methylation and expression data of cancer. These results may provide new molecular targets for potential targeted and selective epigenetic therapy.  相似文献   

6.
The traditional view of cancer as a genetic disease that can successfully be treated with drugs targeting mutant onco-proteins has motivated whole-genome sequencing efforts in many human cancer types. However, only a subset of mutations found within the genomic landscape of cancer is likely to provide a fitness advantage to the cell. Distinguishing such “driver” mutations from innocuous “passenger” events is critical for prioritizing the validation of candidate mutations in disease-relevant models. We design a novel statistical index, called the Hitchhiking Index, which reflects the probability that any observed candidate gene is a passenger alteration, given the frequency of alterations in a cross-sectional cancer sample set, and apply it to a mutational data set in colorectal cancer. Our methodology is based upon a population dynamics model of mutation accumulation and selection in colorectal tissue prior to cancer initiation as well as during tumorigenesis. This methodology can be used to aid in the prioritization of candidate mutations for functional validation and contributes to the process of drug discovery.  相似文献   

7.
Integrated analyses of functional genomics data have enormous potential for identifying phenotype-associated genes. Tissue-specificity is an important aspect of many genetic diseases, reflecting the potentially different roles of proteins and pathways in diverse cell lineages. Accounting for tissue specificity in global integration of functional genomics data is challenging, as “functionality” and “functional relationships” are often not resolved for specific tissue types. We address this challenge by generating tissue-specific functional networks, which can effectively represent the diversity of protein function for more accurate identification of phenotype-associated genes in the laboratory mouse. Specifically, we created 107 tissue-specific functional relationship networks through integration of genomic data utilizing knowledge of tissue-specific gene expression patterns. Cross-network comparison revealed significantly changed genes enriched for functions related to specific tissue development. We then utilized these tissue-specific networks to predict genes associated with different phenotypes. Our results demonstrate that prediction performance is significantly improved through using the tissue-specific networks as compared to the global functional network. We used a testis-specific functional relationship network to predict genes associated with male fertility and spermatogenesis phenotypes, and experimentally confirmed one top prediction, Mbyl1. We then focused on a less-common genetic disease, ataxia, and identified candidates uniquely predicted by the cerebellum network, which are supported by both literature and experimental evidence. Our systems-level, tissue-specific scheme advances over traditional global integration and analyses and establishes a prototype to address the tissue-specific effects of genetic perturbations, diseases and drugs.  相似文献   

8.
Alzheimer disease (AD) is a devastating neurodegenerative disease affecting more than five million Americans. In this study, we have used updated genetic linkage data from chromosome 10 in combination with expression data from serial analysis of gene expression to choose a new set of thirteen candidate genes for genetic analysis in late onset Alzheimer disease (LOAD). Results in this study identify the KIAA1462 locus as a candidate locus for LOAD in APOE4 carriers. Two genes exist at this locus, KIAA1462, a gene associated with coronary artery disease, and “rokimi”, encoding an untranslated spliced RNA The genetic architecture at this locus suggests that the gene product important in this association is either “rokimi”, or a different isoform of KIAA1462 than the isoform that is important in cardiovascular disease. Expression data suggests that isoform f of KIAA1462 is a more attractive candidate for association with LOAD in APOE4 carriers than “rokimi” which had no detectable expression in brain.  相似文献   

9.
10.
Understanding the genetic influences of traits of nonmodel organisms is crucial to understanding how novel traits arise. Do new traits require new genes or are old genes repurposed? How predictable is this process? Here, we examine this question for gene expression influencing parenting behavior in a beetle, Nicrophorus vespilloides. Parental care, produced from many individual behaviors, should be influenced by changes of expression of multiple genes, and one suggestion is that the genes can be predicted based on knowledge of behavior expected to be precursors to parental care, such as aggression, resource defense, and mating on a resource. Thus, testing gene expression during parental care allows us to test expectations of this “precursor hypothesis” for multiple genes and traits. We tested for changes of the expression of serotonin, octopamine/tyramine, and dopamine receptors, as well as one glutamate receptor, predicting that these gene families would be differentially expressed during social interactions with offspring and associated resource defense. We found that serotonin receptors were strongly associated with social and aggression behavioral transitions. Octopamine receptors produced a complex picture of gene expression over a reproductive cycle. Dopamine was not associated with the behavioral transitions sampled here, while the glutamate receptor was most consistent with a behavioral change of resource defense/aggression. Our results generate new hypotheses, refine candidate lists for further studies, and inform the genetic mechanisms that are co‐opted during the evolution of parent–offspring interactions, a likely evolutionary path for many lineages that become fully social. The precursor hypothesis, while not perfect, does provide a starting point for identifying candidate genes.  相似文献   

11.
12.
13.
14.
15.
16.
Raquel Assis 《Fly》2014,8(2):91-94
Gene duplication is thought to play a key role in phenotypic innovation. While several processes have been hypothesized to drive the retention and functional evolution of duplicate genes, their genomic contributions have never been determined. We recently developed the first genome-wide method to classify these processes by comparing distances between expression profiles of duplicate genes and their ancestral single-copy orthologs. Application of our approach to spatial gene expression profiles in two Drosophila species revealed that a majority of young duplicate genes possess new functions, and that new functions are acquired rapidly—often within a few million years. Surprisingly, new functions tend to arise in younger copies of duplicate gene pairs. Moreover, we found that young duplicates are often specifically expressed in testes, whereas old duplicates are broadly expressed across several tissues, providing strong support for the hypothetical “out-of-testes” origin of new genes. In this Extra View, I discuss our findings in the context of theoretical predictions about gene duplication, with a particular emphasis on the importance of natural selection in the evolution of novel phenotypes.  相似文献   

17.
In Pisum sativum, two classes of genes encode distinct isoforms of cytosolic glutamine synthetase (GS). The first class comprises two nearly identical or “twin” GS genes (GS341 and GS132), while the second comprises a single GS gene (GS299) distinct in both coding and noncoding regions from the “twin” GS genes. Gene-specific analyses were used to monitor the individual contribution of each gene for cytosolic GS during root nodule development and in cotyledons during germination, two contexts where large amounts of ammonia must be assimilated by GS for nitrogen transport. mRNAs corresponding to all three genes for cytosolic GS were shown to accumulate coordinately during a time course of nodule development. All the GS mRNAs also accumulate to wild-type levels in mutant nodules formed by a nifD strain of Rhizobium leguminosarum indicating that induced GS expression in pea root nodules does not depend on the production of ammonia. Distinct patterns of expression for the two classes of GS genes were observed in certain mutant root nodules and most dramatically in cotyledons of germinating seedlings. The different patterns of expression between the two classes of genes for cytosolic GS suggests that their distinct gene products may serve nonoverlapping functions during pea development.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号