首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
Female mate preferences for ecologically relevant traits may enhance natural selection, leading to rapid divergence. They may also forge a link between mate choice within species and sexual isolation between species. Here, we examine female mate preference for two ecologically important traits: body size and body shape. We measured female preferences within and between species of benthic, limnetic, and anadromous threespine sticklebacks (Gasterosteus aculeatus species complex). We found that mate preferences differed between species and between contexts (i.e., within vs. between species). Within species, anadromous females preferred males that were deep bodied for their size, benthic females preferred larger males (as measured by centroid size), and limnetic females preferred males that were more limnetic shaped. In heterospecific mating trials between benthics and limnetics, limnetic females continued to prefer males that were more limnetic like in shape when presented with benthic males. Benthic females showed no preferences for size when presented with limnetic males. These results show that females use ecologically relevant traits to select mates in all three species and that female preference has diverged between species. These results suggest that sexual selection may act in concert with natural selection on stickleback size and shape. Further, our results suggest that female preferences may track adaptation to local environments and contribute to sexual isolation between benthic and limnetic sticklebacks.  相似文献   

2.
Sexual isolation is often assumed to arise because choosy females recognize and reject heterospecific males as mates. Yet in taxa in which both males and females are choosy, males might also recognize and reject heterospecific females. Here, we asked about the relative contribution of the sexes to the strong sexual isolation found in limnetic–benthic species pairs of threespine sticklebacks, which show mutual mate choice. We asked whether males and females of the two species recognize conspecifics and also prefer to mate with them. We found evidence for mate recognition by both sexes but only females prefer conspecifics. The nature of male courtship depended on which species of female they were courting, indicating that males recognized conspecific females and differentiated them from heterospecifics. However, males courted both species of females with equal vigor and changed courtship in a manner that would increase the chance of mating with heterospecifics. Females both recognized conspecifics and strongly preferred them. They responded very little to heterospecific male courtship and almost never mated with them. Therefore, males are likely to undermine sexual isolation, but females uphold it. Despite mutual mate choice and mate recognition in both sexes, females are primarily responsible for sexual isolation in these taxa.  相似文献   

3.
Sequential mate choice strategies predict how females should alter their choosiness based on the availability of attractive males. There are many studies on sequential mate choice within species, but few have asked whether females apply these strategies to interactions between species and how these strategies may affect hybridization. We tested how previous interactions with conspecific and heterospecific males affect mate preference and sexual isolation in two threespine stickleback species (benthics and limnetics: Gasterosteus spp.). Consistent with previous work, we found that within species, stickleback females gauge male attractiveness relative to previously encountered males. If females extend these decision rules between species, we predicted that previous interactions with conspecifics should make heterospecifics less attractive, whereas interactions with heterospecifics should make conspecifics more attractive. However, females found heterospecifics less attractive after prior experience, largely independent of the species of male first encountered. Thus, sequential mate choice strategies are used within but not between species in sticklebacks. Further, learning from prior courtship interactions acts to enhance existing sexual isolation between species.  相似文献   

4.
Kim TW  Christy JH  Choe JC 《PloS one》2007,2(5):e422
Predation is generally thought to constrain sexual selection by female choice and limit the evolution of conspicuous sexual signals. Under high predation risk, females usually become less choosy, because they reduce their exposure to their predators by reducing the extent of their mate searching. However, predation need not weaken sexual selection if, under high predation risk, females exhibit stronger preferences for males that use conspicuous signals that help females avoid their predators. We tested this prediction in the fiddler crab Uca terpsichores by increasing females' perceived predation risk from crab-eating birds and measuring the attractiveness of a courtship signal that females use to find mates. The sexual signal is an arching mound of sand that males build at the openings of their burrows to which they attract females for mating. We found that the greater the risk, the more attractive were males with those structures. The benefits of mate preferences for sexual signals are usually thought to be linked to males' reproductive contributions to females or their young. Our study provides the first evidence that a female preference for a sexual signal can yield direct survival benefits by keeping females safe as they search for mates.  相似文献   

5.
In most species of small mammals, males are exposed to higher levels of risk than females because they compete for mates, travel greater distances to find and procure mates, and/or defend a territory. This suggests that males and females might have different responses to risky situations, such as the presence of a predator. We tested responses to a visual predator cue (an owl silhouette) in male and female golden hamsters (Mesocricetus auratus). In a laboratory arena, there was no significant sex difference in the latency to enter the burrow or time spent in the burrow immediately after exposure to the owl silhouette. Males, however, were less likely to be active during the 3-min period following the animal’s exposure to the silhouette, indicating that male golden hamsters are more wary after exposure to an aerial predator cue than females. Most studies of responses to predators or predator cues have not considered sex differences, but our results show that males and females may have quite different responses to predator cues. Further work should be done to characterize and quantify sex differences in response to predators or predator cues.  相似文献   

6.
While the presence of predators can influence female mate choice, few studies have investigated how females respond to quantitative variation in predation risk. In addition, we know little of how females respond to multiple, independent cues of risk. In this study, we investigated the effects of simulated predation risk on mate choice in túngara frogs, Physalaemus pustulosus, using the advertisement calls of predatory frogs, variation in ambient light, and simulated distance. Females showed aversion to conspecific calls associated with the calls of predators, and females were significantly less likely to travel perceived longer distances while the calls of predatory frogs were broadcast. In both the laboratory and field, females chose among potential mates significantly faster under higher light levels. Female responses to acoustic cues of predation risk were significantly influenced by light level, but decisions about travel distances were not. These results demonstrate that female choice is strongly influenced by perceived predation risk and that females can simultaneously evaluate quantitative variation in different cues of predation risk. The changes in search behavior and mate evaluation we demonstrate indicate that predation plays a strong role in limiting signal evolution and possibly reproductive isolation.  相似文献   

7.
Carracedo MC  Suarez C  Casares P 《Genetica》2000,108(2):155-162
The sexual isolation among the related species Drosophila melanogaster, D. simulans and D. mauritiana is asymmetrical. While D. mauritiana males mate well with both D. melanogaster and D. simulans females, females of D. mauritiana discriminate strongly against males of these two species. Similarly, D. simulans males mate with D. melanogaster females but the reciprocal cross is difficult. Interspecific crosses between several populations of the three species were performed to determine if (i) males and females of the same species share a common sexual isolation genetic system, and (ii) males (or females) use the same genetic system to discriminate against females (or males) of the other two species. Results indicate that although differences in male and female isolation depend on the populations tested, the isolation behaviour between a pair of species is highly correlated despite the variations. However, the rank order of the isolation level along the populations was not correlated in both sexes, which suggests that different genes act in male and female sexual isolation. Neither for males nor for females, the isolation behaviour of one species was paralleled in the other two species, which indicates that the genetic systems involved in this trait are species-pair specific. The implications of these results are discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
Interactions with heterospecifics can promote the evolution of divergent mating behaviours between populations that do and do not occur with heterospecifics. This process--reproductive character displacement--potentially results from selection to minimize the risk of mating with heterospecifics. We sought to determine whether heterospecific interactions lead to divergence of female preferences for aspects of conspecific male signals. We used artificial neural network models to simulate a mate recognition system in which females co-occur with different heterospecifics in different populations. Populations that evolved conspecific recognition in the presence of different heterospecifics varied in their preferences for aspects of conspecific male signals. When we tested networks for their preferences of conspecific versus heterospecific signals, however, we found that networks from allopatric populations were usually able to select against heterospecifics. We suggest that female preferences for aspects of conspecific male signals can result in a concomitant reduction in the likelihood that females will mate with heterospecifics. Consequently, even females in allopatry may discriminate against heterospecific mates depending on the nature of their preferences for conspecifics. Such a pattern could potentially explain cases where reproductive character displacement is expected, but not observed.  相似文献   

9.
Abstract Female mate choice has been demonstrated in a wide variety of species and is now accepted as an important factor in sexual selection. One of the remaining questions, however, is why females prefer specific males. Do females or their offspring benefit from their choice? Or do females choose mates to minimize costs of mating? Here we show that, in the ovoviviparous cockroach Nauphoeta cinerea, where sexual selection has been well documented, females chose mates to avoid costly male manipulation. Females were partnered with preferred or nonpreferred mates, and fitness of the females measured. We found that females lived longer when they mated with preferred males. Female lifespan depended on the rate at which offspring developed from egg to parturition: slower development led to longer life. We manipulated the male pheromone and showed that the component of the pheromone blend that makes males attractive to females also delayed parturition. Thus, like other aspects of sexual conflict in this species, offspring development and thereby the mother's lifespan depended on exposure of females to specific components of the male pheromone. Males benefit from manipulating offspring development because females with accelerated parturition remained unreceptive whereas females with slower developing offspring readily remated after giving birth to their offspring. Our results suggest a hormone‐like role for the male pheromone in N. cinerea and provide the first direct evidence of mate choice to avoid male manipulation. This study shows that dominant males may not be preferred males if they are manipulating females, why multiple components with contrasting effects can exist in a sexual signal, and emphasizes the complex fitness relationships that can arise in species with sexual conflict.  相似文献   

10.
Female Gryllus bimaculatus alter their mate choice based on size depending on previous experience with males. Male crickets sing to attract mates and several studies have identified call parameters important in female choice. We tested the hypotheses that exposure to acoustic stimuli before and/or after mating, from males of different sizes, in isolation and together with physical exposure influences female choice (willingness to mate and spermatophore retention time [SRT]). Females exposed to ad lib. song of multiple males post-mating had a shorter SRT than females in acoustic isolation. Exposure to ad lib. song of multiple males prior to mating had no effect on SRT. Females did not alter SRT depending on exposure to acoustic stimuli from males of different sizes either post or ante mating. Females exposed to acoustic and physical stimuli (though gauze) from large males had a shorter SRT than those exposed to small males but only when the exposure was post-mating. We were unable to identify any correlation between call parameters and body size in G. bimaculatus. Females use male song to locate potential mates but physical exposure to males is needed to allow females to judge male size and this exposure only influences SRT if it takes place post-mating.  相似文献   

11.
Sexual selection of high-quality mates can conflict with species recognition if traits that govern intraspecific mate preferences also influence interspecific recognition. This conflict might be resolved by developmental plasticity and learned mate preferences, which could drive preference divergence in populations that differ in local species composition. We integrate field and laboratory experiments on two calopterygid damselfly species with population genetic data to investigate how sex differences in developmental plasticity affect population divergence in the face of gene flow. Whereas male species recognition is fixed at emergence, females instead learn to recognize heterospecifics. Females are therefore more plastic in their mate preferences than males. We suggest that this results from sex differences in the balance between sexual selection for high-quality mates and selection for species recognition. As a result of these sex differences, females develop more pronounced population divergence in their mate preferences compared with males. Local ecological community context and presence of heterospecifics in combination with sex differences in plasticity and canalization therefore shape population divergence in mate preferences. As ongoing environmental change and habitat fragmentation bring formerly allopatric species into secondary contact, developmental plasticity of mate preferences in either or both sexes might facilitate coexistence and prevent local species extinction.  相似文献   

12.
Speciation by sexual selection is generally modeled as the coevolution of female preferences and elaborate male ornaments leading to behavioral (sexual) reproductive isolation. One prediction of these models is that female preference for conspecific males should evolve earlier than male preference for conspecific females in sexually dimorphic species with male ornaments. We tested that prediction in darters, a diverse group of freshwater fishes with sexually dimorphic ornamentation. Focusing on the earliest stages of divergence, we tested preference for conspecific mates in males and females of seven closely related species pairs. Contrary to expectation, male preference for conspecific females was significantly greater than female preference for conspecific males. Males in four of the 14 species significantly preferred conspecific females; whereas, females in no species significantly preferred conspecific males. Relationships between the strength of preference for conspecifics and genetic distance revealed no difference in slope between males and females, but a significant difference in intercept, also suggesting that male preference evolves earlier than females’. Our results are consistent with other recent studies in darters and suggest that the coevolution of female preferences and male ornaments may not best explain the earliest stages of behavioral isolation in this lineage.  相似文献   

13.
Several studies have shown female preference for conspecific males with the attached artificial ornaments of more elaborate heterospecifics. However, preference for heterospecifics under natural conditions is relatively rare. We tested what factors affect behavioural mechanisms of species isolation using three species of estrildid finch (genus Uraeginthus) that occur in both sympatry and allopatry. These finches differ in degree of sexual dimorphism; male ornamentation; behavioural and morphological similarity; and phylogenetic distance. Paired mate-choice trials were used in which females were presented with a conspecific and heterospecific male to test which of the above between-species differences best predicted the degree of premating isolation. The three species differed in the degree of species-specific mate preference shown. Females from the brighter two species discriminated against dull males, independently of sympatry-allopatry, similarity and phylogenetic distance. Females from the dull species reacted to conspecific males and brighter heterospecific males equally strongly, independently of similarity and phylogenetic distance. In contrast to previous studies, an equal preference for heterospecific and conspecific males was found under natural conditions. It is suggested that differences between closely related species in male ornamentation affect the likelihood that premating isolation will occur due to the fact that sexual selection tends to drive preferences for exaggerated ornamentation.  相似文献   

14.
Learning and other forms of phenotypic plasticity have been suggested to enhance population divergence. Mate preferences can develop by learning, and species recognition might not be entirely genetic. We present data on female mate preferences of the banded demoiselle (Calopteryx splendens) that suggest a role for learning in population divergence and species recognition. Populations of this species are either allopatric or sympatric with a phenotypically similar congener (C. virgo). These two species differ mainly in the amount of wing melanization in males, and wing patches thus mediate sexual isolation. In sympatry, sexually experienced females discriminate against large melanin wing patches in heterospecific males. In contrast, in allopatric populations within the same geographic region, females show positive (“open‐ended”) preferences for such large wing patches. Virgin C. splendens females do not discriminate against heterospecific males. Moreover, physical exposure experiments of such virgin females to con‐ or hetero‐specific males significantly influences their subsequent mate preferences. Species recognition is thus not entirely genetic and it is partly influenced by interactions with mates. Learning causes pronounced population divergence in mate preferences between these weakly genetically differentiated populations, and results in a highly divergent pattern of species recognition at a small geographic scale.  相似文献   

15.
Selection can favour phenotypic plasticity in mate choice in response to environmental factors that alter the costs and benefits of being choosy, or of choosing specific mates. Human‐induced environmental change could alter sexual selection by affecting the costs of mate choice, or by impairing the ability of individuals to identify preferred mates. For example, variation in mate choice could be driven by environmentally induced differences in body condition (e.g. health) that change the cost of choosiness, or by environmental effects on the ability to detect or discriminate sexual signals. We teased apart these possibilities experimentally, by comparing female mate choice in the palmate newt Lissotriton helveticus between environments that mimic water from either native oak forests or exotic eucalypt plantations. In laboratory two‐choice mate trials in clean water, females with prolonged exposure (21 days) to waterborne chemicals leached from eucalypt leaves did not preferentially associate with the male with a stronger immune response, but females exposed to water with chemicals from oak leaves did. In contrast, female choice was unaffected by the immediate presence or absence of eucalypt leachates during mate choice (using only females previously held in oak‐treated water). The habitat‐related change in female choice we observed is likely to be driven by effects of eucalypt leachates on female physiology, rather than immediate inhibition of pheromone transmission or blocking of pheromone reception.  相似文献   

16.
Ornamentation of parents poses a high risk for offspring because it reduces cryptic nest defence. Over a century ago, Wallace proposed that sexual dichromatism enhances crypsis of open-nesting females although subsequent studies found that dichromatism per se is not necessarily adaptive. We tested whether reduced female ornamentation in a sexually dichromatic species reduces the risk of clutch depredation and leads to adaptive parental roles in the red-capped plover Charadrius ruficapillus, a species with biparental incubation. Males had significantly brighter and redder head coloration than females. During daytime, when visually foraging predators are active, colour-matched model males incurred a higher risk of clutch depredation than females, whereas at night there was no difference in depredation risk between sexes. In turn, red-capped plovers maintained a strongly diurnal/nocturnal division of parental care during incubation, with males attending the nest largely at night when visual predators were inactive and females incubating during the day. We found support for Wallace''s conclusion that reduced female ornamentation provides a selective advantage when reproductive success is threatened by visually foraging predators. We conclude that predators may alter their prey''s parental care patterns and therefore may affect parental cooperation during care.  相似文献   

17.
In many species, males can influence the amount of resources their mates invest in reproduction. Two favoured hypotheses for this observation are that females assess male quality during courtship or copulation and alter their investment in offspring accordingly, or that males manipulate females to invest heavily in offspring produced soon after mating. Here, we examined whether there is genetic variation for males to influence female short-term reproductive investment in Drosophila melanogaster, a species with strong sexual selection and substantial sexual conflict. We measured the fecundity and egg size of females mated to males from multiple isofemale lines collected from populations around the globe. Although these traits were not strongly influenced by the male's population of origin, we found that 22 per cent of the variation in female short-term reproductive investment was attributable to the genotype of her mate. This is the first direct evidence that male D. melanogaster vary genetically in their proximate influence on female fecundity, egg size and overall reproductive investment.  相似文献   

18.
Traits that increase the attractiveness of males to femalesoften make them more conspicuous to predators. In the fieldcricket (Gryllus lineaticeps), males are attacked by parasitoidtachinid flies (Ormia ochracea) that locate males through theircalls. Female flies larviposit on crickets and the larvae burrowinto and feed on the cricket, killing the cricket upon emergence.To determine whether traits preferred by females increase amale's risk of attracting a predator, I examined the effectof variation in male singing behavior on mate and predator attraction.Both female crickets and female flies preferred male callingsongs with higher chirp rates, longer chirp durations, and higherchirp amplitudes. In addition, both female crickets and femaleflies preferred male calling songs with higher chirp rates andlonger chirp durations, even when these songs were of loweramplitude. These results suggest that sexual selection by femalechoice will favor the evolution of higher chirp rates and longerchirp durations. However, call types that increase a male'sattractiveness to females also appear to increase a male's riskof attracting parasitoids. Sexual and natural selection appearto have opposing effects on the evolution of male singing behaviorin this species.[Behav Ecol 7: 279-285 (1996)]  相似文献   

19.
Reproductive isolation can evolve between species as a byproduct of adaptation to different niches, through reinforcement, and by direct selection on mating preferences. We investigated the potential role of direct selection in the reproductive isolation between sympatric species of threespine sticklebacks. Each sympatric pair consists of a small-bodied limnetic species and large-bodied benthic species. We compared the mate preferences and courtship behavior of males from one sympatric limnetic population and two allopatric populations. We used limnetic-like allopatric populations to control for the effects of ecological character displacement and adaptation to different niches on mate preferences. The sympatric limnetic males preferred the small limnetic females, whereas the allopatric limnetic-like males preferred the large benthic females, suggesting that adaptation to the limnetic niche does not automatically confer a preference for small limnetic females. This reproductive character displacement of male preference is consistent with the predictions of both reinforcement and direct selection on mate preferences. To test for direct selection, we assessed a prediction of one proposed mechanism: predation by benthic females on eggs guarded by limnetic males. The allopatric males come from populations in which there is no egg predation. Sympatric limnetic males were more aggressive toward benthic females than toward limnetic females, whereas the allopatric limnetic-like males did not treat the two types of females differently. The contrast in male behavior suggests that egg predation has shaped male preferences. Direct selection is potentially more effective than indirect selection via reinforcement, and it is likely that it has been important in building up reproductive isolation between limnetic and benthic sticklebacks.  相似文献   

20.
Parental experience alters survival-related phenotypes of offspring in both adaptive and nonadaptive ways, yielding rapid inter- and transgenerational fitness effects. Yet, fitness comprises survival and reproduction, and parental effects on mating decisions could alter the strength and direction of sexual selection, affecting long-term evolutionary trajectories. We used a full factorial design in which threespine stickleback (Gasterosteus aculeatus) mothers, fathers, both, or neither were exposed to a model predator at developmentally appropriate times to test for predator-induced maternal, paternal, and joint parental effects on daughters’ mating behavior. We tested the responsiveness, preferences, and mate choices of adult daughters in no-choice trials with wild-caught males who had varied sexual signals. Maternal and paternal predator exposure independently yielded daughters who preferred males who were intermediate in conspicuousness (with duller nuptial coloration and who courted less vigorously), relaxing the typical preference for the most conspicuous males. The combined effects of maternal and paternal predator exposure were not cumulative; when both parents were predator exposed, single-parent effects on mate preferences were reversed. Thus, we cannot assume that maternal and paternal effects additively combine to produce “parental” effects. Further, joint parental predator exposure yielded daughters who were three times less likely to mate at all. Stress-induced intergenerational parental effects on reproductive decisions such as those observed here may potentiate rapid transgenerational responses to novel and changing mating environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号