首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The sources of both dissolved organic carbon (DOC) and particulate organic carbon (POC) to an alpine (Sky Pond) and a subalpine lake (The Loch) in Rocky Mountain National Park were explored for four years. The importance of both autochthonous and allochthonous sources of organic matter differ, not only between alpine and subalpine locations, but also seasonally. Overall, autochthonous sources dominate the organic carbon of the alpine lake, while allochthonous sources are a more significant source of organic carbon to the subalpine lake. In the alpine lake, Sky Pond, POC makes up greater than one third of the total organic matter content of the water column, and is related to phytoplankton abundance. Dissolved organic carbon is a product of within-lake activity in Sky Pond except during spring snowmelt and early summer (May–July), when stable carbon isotope ratios suggest a terrestrial source. In the subalpine lake, The Loch, DOC is a much more important constituent of water column organic material than POC, comprising greater than 90% of the spring snowmelt organic matter, and greater than 75% of the organic matter over the rest of the year. Stable carbon isotope ratios and a very strong relation of DOC with soluble Al(tot) indicate DOC concentrations are almost entirely related to flushing of soil water from the surrounding watershed during spring snowmelt. Stable carbon isotope ratios indicate that, for both lakes, phytoplankton is an important source of DOC in the winter, while terrestrial material of plant or microbial origin contributes DOC during snowmelt and summer.  相似文献   

2.
1. Numerous studies have quantified the relative contribution of terrestrial‐ and phytoplankton‐derived carbon sources to zooplankton secondary production in lakes. However, few investigated the pathways along which allochthonous and autochthonous carbon (C) was actually conveyed to consumers. 2. We suggest that the combined use of fatty acid and stable isotope biomarkers could solve this issue. We conducted a field study on two oligotrophic lakes, in which primary production increased significantly between 2002 and 2004. We used modelling to estimate the contribution of terrestrial‐ and phytoplankton‐derived C to particulate organic C (POC) and zooplankton production from their δ13C values in 2002 and 2004. 3. According to the isotope model, phytoplankton‐derived C accounted for a major part of the POC pool in both lakes and supported more Daphnia sp. production in 2004 than in 2002. Fatty acid data revealed that increased contribution of algal‐C to Daphnia production, although common between both lakes, was achieved through C pathways that were different. In one lake, Daphnia grazed more intensively on phytoplankton, whereas in the other there was greater grazing on bacteria. In the latter case, the increased primary production resulted in greater release of algal‐derived dissolved organic C (DOC), which may have supported extra bacterial and eventually Daphnia, production. 4. This is the first study illustrating that the combination of fatty acid and stable isotope biomarkers could further our understanding of the factors controlling the relative magnitude of food webs pathways conveying organic matter to zooplankton.  相似文献   

3.
We compared terrestrial net primary production (NPP) and terrestrial export of dissolved organic carbon (DOC) with lake water heterotrophic bacterial activity in 12 headwater lake catchments along an altitude gradient in subarctic Sweden. Modelled NPP declined strongly with altitude and annual air temperature decreases along the altitude gradient (6°C between the warmest and the coldest catchment). Estimated terrestrial DOC export to the lakes was closely correlated to NPP. Heterotrophic bacterial production (BP) and respiration (BR) were mainly based on terrestrial organic carbon and strongly correlated with the terrestrial DOC export. Excess respiration over PP of the pelagic system was similar to net emission of CO2 in the lakes. BR and CO2 emission made up considerably higher shares of the terrestrial DOC input in warm lakes than in cold lakes, implying that respiration and the degree of net heterotrophy in the lakes were dependant not only on terrestrial export of DOC, but also on characteristics in the lakes which changed along the gradient and affected the bacterial metabolization of allochthonous DOC. The study showed close links between terrestrial primary production, terrestrial DOC export and bacterial activity in lakes and how these relationships were dependant on air temperature. Increases in air temperature in high latitude unproductive systems might have considerable consequences for lake water productivity and release of CO2 to the atmosphere, which are ultimately determined by terrestrial primary production.  相似文献   

4.
We studied production by three key pelagic energy mobilizer communities, phytoplankton (PP), heterotrophic bacteria (HB), and methanotrophic bacteria (MOB), in five boreal lakes of varying size and concentration of dissolved organic carbon (DOC). Production by PP was responsible for most (>55%) of the total pelagic energy mobilization in all five lakes. Production by HB and PP estimated for the whole water column during the ice-free period were positively correlated, but with the exception of the clearest and most eutrophic lake PP apparently could not support the total carbon demand of bacteria. However, the DOC concentration did not explain the variability of heterotrophic bacterial production (HBP) within or between the lakes. Thus, our results provide circumstantial evidence for the “priming effect” whereby labile organic matter from autochthonous production enhances decomposition of allochthonous DOC. However, HBP was only 10–23% of the total pelagic energy mobilization in the lakes, suggesting that only a minor fraction of allochthonous DOC became available for higher trophic levels. High MOB activity was detected in the water columns of the stratified lakes when the molar ratio of CH4:O2 varied between 0.5 and 12. In the small stratified lakes (area < 0.01 km2), MOB production contributed 13–52% of the total pelagic energy mobilization, being greatest during the autumn mixing period. Our results indicate that in small stratified lakes (area < 0.01 km2) bacteria, especially MOB, are potentially quantitatively important supplementary food resources for zooplankton. However, in larger lakes primary producers are the most important (>70%) potential food source for zooplankton.  相似文献   

5.
Bacterial growth and grazing mortality were estimated from Mayto October in two south Swedish oligotrophic lakes, one beinga clearwater lake (water colour 5–10 mg Pt l–1 DOC2.9–3.4 mg l–1, Secchi disk depth 5.0–9.4m) and the other a humic, brownwater lake (water colour 105–165mg Pt l–1, DOC 13.7–22.7mg l–1, Secchi diskdepth 1.3–2.1 m). Specific rates of growth and grazingmortality were generally similar for both lakes. However, theabundance of bacteria was consistently 2–3 times higherin the water of the humic lake, suggesting that the total productionand consumption of bacterial cells were also higher than inthe dearwater lake. The ratio of bacterial secondary productionto primary production was higher in the humic lake than in theclearwater lake, indicating that the bacterioplankton of thehumic lake utilize allochthonous substrates, in addition tosubstrates originating from autochthonous primary production.Most of the bacterial loss in both lakes could be attributedto small protozoan grazers. This implies that allochthonousand autochthonous organic carbon fixed by bacterioplankton isless important in terms of carbon flow to higher trophic levelsthan would be expected if macrozooplankton were the dominantbacterivores, providing a more direct and efficient transferof carbon to larger organisms.  相似文献   

6.
We quantified sedimentation of organic carbon in 12 Swedish small boreal lakes (<0.48 km2), which ranged in dissolved organic carbon (DOC) from 4.4 to 21.4 mg C l−1. Stable isotope analysis suggests that most of the settling organic matter is of allochthonous origin. Annual sedimentation of allochthonous matter per m2 lake area was correlated to DOC concentration in the water (R 2 = 0.41), and the relationship was improved when sedimentation data were normalized to water depth (R 2 = 0.58). The net efflux of C as CO2 from the water to the atmosphere was likewise correlated to DOC concentration (R 2 = 0.52). The losses of organic carbon from the water column via mineralization to CO2 and via sedimentation were approximately of equal importance throughout the year. Our results imply that DOC is a precursor of the settling matter, resulting in an important pathway in the carbon cycle of boreal lakes. Thus, flocculation of DOC of terrestrial origin and subsequent sedimentation could lead to carbon sequestration by burial in lake sediments.  相似文献   

7.
We examined changes in bacterioplankton standing stock and production in subarctic lakes in the north of Sweden to elucidate their coupling to lake physical, chemical, and biological characteristics. Sixteen lakes situated along an altitude gradient extending from the coniferous forest to the high-alpine belt were studied during 1998 and 1999. The summer mean bacterial numbers and production varied substantially between the lakes, with a general trend toward decreasing values with increasing altitude. The results demonstrate that P probably restricted bacterial utilization of DOC in the coniferous forest lakes, while low DOC concentrations limited bacterial growth during the summer in the alpine lakes. The primary production of plankton was insufficient to support bacterial production in the lakes. High input of allochthonous DOC to the alpine lakes in spring was sufficient both to increase the bacterial production and to induce P-limitation. As a consequence, there was a tendency toward higher bacterial activity in the spring compared to the summer in the alpine lakes. The results indicate that most of the bacterial standing stock and production are supported by allochthonous DOC plus DOC from benthic production, and more or less limited by the phosphorus supply. We therefore suggest that bacteria populations in subarctic lakes may be indirectly affected by climate variations through its impact on the input of DOC and nutrients from the lake catchments.  相似文献   

8.
Dissolved free amino acid (DFAA) concentration and composition and dissolved organic carbon (DOC) concentration were measured over 16 months at three depths in hypertrophic Hartbeespoort Dam, South Africa and in its two perenially inflowing rivers. The range of DFAA concentrations in the reservoir and both rivers were similar with dominant DFAA consisting of serine, glycine, alanine and ornithine in all three systems. The range of DOC concentrations in the rivers was 1.5–11.1 mg l–1, the major river (Crocodile) having about twice the DOC concentration of the Magalies River. The DFAA/DOC ratios ranged between 0.02–1.1% in the Crocodile River and 0.13–3.7% in the Magalies River. DFAA and DOC concentrations were positively correlated to the Magalies River flow, but for the Crocodile River, which received domestic and industrial effluents, DOC was inversely correlated to flow. The source of DFAA in both rivers was mainly terrestrial, in contrast to the main DOC source in the Crocodile River which was the effluents. The DFAA load of the Crocodile River ranged between 0.22 and 208 kg C d–1.DOC (5.0–24.8mg l–1) in Hartbeespoort Dam generally decreased with depth but DFAA (15–4800 nmol l–1) concentration showed no clear trend. The DFAA/DOC ratios varied between 0.02 and 2.9%. DFAA concentrations were correlated (r = 0.3, n = 30, p = 0.04) with bacterial numbers at 0 and 10 m only while no significant correlations were found with bacterial production, chlorophyll a concentration and phytoplankton primary and EDOC (extracellular DOC) production at any depth. The rate of bacterial utilization of DFAA was low compared with data from other lakes. Diurnal phytoplankton production of DFAA in the euphotic zone of the whole lake was calculated to vary between 268 and 30 780 t C d–1 indicating autochthonous DFAA sources were dominant to allochthonous DFAA sources. The autochthonous production of DFAA was > 2 × gross bacterial production of the euphotic zone indicating that although DFAA concentrations were frequently < 10 g C l–1, the rate of DFAA production exceeded bacterial requirements.  相似文献   

9.
Light and nutrient availability are key physiological constraints for primary production. Widespread environmental changes are causing variability in loads of terrestrial dissolved organic carbon (DOC) and nutrients from watersheds to lakes, contributing to simultaneous changes in both light and nutrient supply. Experimental evidence highlights the potential for these watershed loads to create complex and context-dependent responses of within-lake primary production; however, the field lacks a predictive model to investigate these responses. We embedded a well-established physiological model of phytoplankton growth within an ecosystem model of nutrient and DOC supply to assess how simultaneous changes in DOC and nutrient loads could impact pelagic primary production in lakes. The model generated a unimodal relationship between GPP and DOC concentration when loads of DOC and nutrients were tightly correlated across space or time. In this unimodal relationship, the magnitude of the peak GPP was primarily determined by the DOC-to-nutrient ratio of the load, and the location of the peak along the DOC axis was primarily determined by lake area. Greater nutrient supply relative to DOC load contributed to greater productivity, and larger lake area increased light limitation for primary producers at a given DOC concentration, owing to the positive relationship between lake area and epilimnion depth. When loads of DOC and nutrients were not tightly correlated in space or time, the model generated a wedge-shaped pattern between GPP and DOC, consistent with spatial surveys from a global set of lakes. Our model is thus capable of unifying the diversity of empirically observed spatial and temporal responses of lake productivity to DOC and mineral nutrient supply presented in the literature, and provides qualitative predictions for how lake pelagic primary productivity may respond to widespread environmental changes.  相似文献   

10.
We measured sediment production of carbon dioxide (CO2) and methane (CH4) and the net flux of CO2 across the surfaces of 15 boreal and subarctic lakes of different humic contents. Sediment respiration measurements were made in situ under ambient light conditions. The flux of CO2 between sediment and water varied between an uptake of 53 and an efflux of 182 mg C m−2 day−1 from the sediments. The mean respiration rate for sediments in contact with the upper mixed layer (SedR) was positively correlated to dissolved organic carbon (DOC) concentration in the water (r2 = 0.61). The net flux of CO2 across the lake surface [net ecosystem exchange (NEE)] was also closely correlated to DOC concentration in the upper mixed layer (r2 = 0.73). The respiration in the water column was generally 10-fold higher per unit lake area compared to sediment respiration. Lakes with DOC concentrations <5.6 mg L−1 had net consumption of CO2 in the sediments, which we ascribe to benthic primary production. Only lakes with very low DOC concentrations were net autotrophic (<2.6 mg L−1) due to the dominance of dissolved allochthonous organic carbon in the water as an energy source for aquatic organisms. In addition to previous findings of allochthonous organic matter as an important driver of heterotrophic metabolism in the water column of lakes, this study suggests that sediment metabolism is also highly dependent on allochthonous carbon sources.  相似文献   

11.
It has been suggested that autochthonous (internally produced) organic carbon and allochthonous (externally produced) organic carbon are utilized by phylogenetically different bacterioplankton. We examined the relationship between the source of organic matter and the structure and function of lake bacterial communities. Differences and seasonal changes in bacterial community composition in two lakes differing in their source of organic matter were followed in relation to environmental variables. We also performed batch culture experiments with amendments of various organic substrates, namely fulvic acids, leachates from algae, and birch and maple leaves. Differences in bacterial community composition between the lakes, analysed by terminal restriction fragment length polymorphism, correlated with variables related to the relative loading of autochthonous and allochthonous carbon (water colour, dissolved organic carbon, nutrients, and pH). Seasonal changes correlated with temperature, chlorophyll and dissolved organic carbon in both lakes. The substrate amendments led to differences in both structure and function, i.e. production, respiration and growth yield, of the bacterial community. In conclusion, our results suggest that the source of organic matter influences community composition both within and among lakes and that there may be a coupling between the structure and function of the bacterial community.  相似文献   

12.
Natural fires annually decimate up to 1% of the forested area in the boreal region of Québec, and represent a major structuring force in the region, creating a mosaic of watersheds characterized by large variations in vegetation structure and composition. Here, we investigate the possible connections between this fire‐induced watershed heterogeneity and lake metabolism and CO2 dynamics. Plankton respiration, and water–air CO2 fluxes were measured in the epilimnia of 50 lakes, selected to lie within distinct watershed types in terms of postfire terrestrial succession in the boreal region of Northern Québec. Plankton respiration varied widely among lakes (from 21 to 211 μg C L?1 day?1), was negatively related to lake area, and positively related to dissolved organic carbon (DOC). All lakes were supersaturated in CO2 and the resulting carbon (C) flux to the atmosphere (150 to over 3000 mg C m2 day?1) was negatively related to lake area and positively to DOC concentration. CO2 fluxes were positively related to integrated water column respiration, suggesting a biological component in this flux. Both respiration and CO2 fluxes were strongly negatively related to years after the last fire in the basin, such that lakes in recently burnt basins had significantly higher C emissions, even after the influence of lake size was removed. No significant differences were found in nutrients, chlorophyll, and DOC between lakes in different basin types, suggesting that the fire‐induced watershed features influence other, more subtle aspects, such as the quality of the organic C reaching lakes. The fire‐induced enhancement of lake organic C mineralization and C emissions represents a long‐term impact that increases the overall C loss from the landscape as the result of fire, but which has never been included in current regional C budgets and future projections. The need to account for this additional fire‐induced C loss becomes critical in the face of predictions of increasing incidence of fire in the circumboreal landscape.  相似文献   

13.
Dag O. Hessen 《Hydrobiologia》1992,229(1):115-123
Allochthonous matter was the main source of carbon for pelagic bacteria in a humic lake, accounting for almost 90% of the carbon required to support observed bacterial growth. The estimated contribution from zooplankton excretion was of the same magnitude as direct phytoplankton release, both accounting for 5–7% of bacterial demands for dissolved carbon. Bacteria were an important source of carbon both for heterotrophic phytoplankton and for filter feeding zooplankton species, further stressing the role of humus DOC in overall lake productivity. The high contribution of allochthonous DOC implies a stoichiometry of dissolved nutrients with a surplus of C relative to P. The high P cell quota of bacteria suggest that under such conditions they are P-limited and act like net consumers of P. Excess C will be disposed of, and bacterial respiration rate will increase following a transition from carbon-limited bacterial growth towards mineral-nutrient-limited growth. Thus the high community respiration and frequent CO2-supersaturation in humic lakes may be caused not only by the absolute supply of organic C, but also by the stoichiometry of the dissolved nutrient pool.  相似文献   

14.
Warming, eutrophication (nutrient fertilization) and brownification (increased loading of allochthonous organic matter) are three global trends impacting lake ecosystems. However, the independent and synergistic effects of resource addition and warming on autotrophic and heterotrophic microorganisms are largely unknown. In this study, we investigate the independent and interactive effects of temperature, dissolved organic carbon (DOC, both allochthonous and autochthonous) and nitrogen (N) supply, in addition to the effect of spatial variables, on the composition, richness, and evenness of prokaryotic and eukaryotic microbial communities in lakes across elevation and N deposition gradients in the Sierra Nevada mountains of California, USA. We found that both prokaryotic and eukaryotic communities are structured by temperature, terrestrial (allochthonous) DOC and latitude. Prokaryotic communities are also influenced by total and aquatic (autochthonous) DOC, while eukaryotic communities are also structured by nitrate. Additionally, increasing N availability was associated with reduced richness of prokaryotic communities, and both lower richness and evenness of eukaryotes. We did not detect any synergistic or antagonistic effects as there were no interactions among temperature and resource variables. Together, our results suggest that (a) organic and inorganic resources, temperature, and geographic location (based on latitude and longitude) independently influence lake microbial communities; and (b) increasing N supply due to atmospheric N deposition may reduce richness of both prokaryotic and eukaryotic microbes, probably by reducing niche dimensionality. Our study provides insight into abiotic processes structuring microbial communities across environmental gradients and their potential roles in material and energy fluxes within and between ecosystems.  相似文献   

15.
Global change impacts important environmental drivers for pelagic gross primary production (GPP) in northern lakes, such as temperature, light, nutrient, and inorganic carbon availability. Separate and/or synergistic impacts of these environmental drivers on pelagic GPP remain largely unresolved. Here, we assess key drivers of pelagic GPP by combining detailed depth profiles of summer pelagic GPP with environmental and climatic data across 45 small and shallow lakes across northern Sweden (20 boreal, 6 subarctic, and 19 arctic lakes). We found that across lakes summer pelagic GPP was strongest associated with lake water temperatures, lake carbon dioxide (CO2) concentrations impacted by lake water pH, and further moderated by dissolved organic carbon (DOC) concentrations influencing light and nutrient conditions. We further used this dataset to assess the extent of additional DOC-induced warming of epilimnia (here named internal warming), which was especially pronounced in shallow lakes (decreasing 0.96°C for every decreasing m in average lake depth) and increased with higher concentrations of DOC. Additionally, the total pools and relative proportion of dissolved inorganic carbon and DOC, further influenced pelagic GPP with drivers differing slightly among the boreal, subarctic and Arctic biomes. Our study provides novel insights in that global change affects pelagic GPP in northern lakes not only by modifying the organic carbon cycle and light and nutrient conditions, but also through modifications of inorganic carbon supply and temperature. Considering the large-scale impacts and similarities of global warming, browning and recovery from acidification of lakes at higher latitudes throughout the northern hemisphere, these changes are likely to operate on a global scale.  相似文献   

16.
During the unstratified (winter) and stratified (summer) periods of 1999 and 2000, we examined carbon (C) dynamics in the upper water column of southern Lake Michigan. We found that (a) bacterial respiration (BR) and planktonic respiration (PR) were major sinks for C, (b) C flux through bacteria (CFTB) was diminished in winter because of reduced bacterial production (BP) and increased bacterial growth efficiency (BGE) at colder temperatures, and (c) PR exceeded primary production (PP) during the spring–summer transition. Drawdown of dissolved organic C (DOC), resuspended organic matter from the lake floor, and riverine organic matter likely provided organic C to compensate for this temporal deficit. DOC in the water column decreased between winter and summer (29–91 mg C m2 d−1) and accounted for 20%–53% of CFTB and 11%–33% of PR. Sediment resuspension events supported elevated winter heterotrophy in the years that they occurred with greatest intensities (1998 and 2000) and may be important to interannual variability in C dynamics. Further, riverine discharge, containing elevated DOC (5×) and dissolved P (10×) relative to lake water, peaked in the winter–spring season in southern Lake Michigan. Collectively, terrigenous inputs (river, stream, and groundwater discharges; storm water runoff; and atmospheric precipitation) may support approximately 10%–20% of annual in-lake heterotrophy as well as autotrophy. Terrestrial subsidies likely play a key role in the C balance of even very large lakes, representing a critical linkage between terrestrial and aquatic ecosystems. Received 11 June 2001; Accepted 14 December 2001.  相似文献   

17.
Lakes process terrigenous carbon. The carbon load processed by lakes may partially offset estimates made for terrestrial net ecosystem exchange (NEE). The balance within lakes between carbon burial and evasion to the atmosphere determines whether lakes are net sinks or net sources of atmospheric carbon. Here we develop a model to study processing of both autochthonous and allochthonous carbon sources in lakes. We run the model over gradients of dissolved organic carbon (DOC) and total phosphorus (TP) concentrations found in the Northern Highlands Lake District of Wisconsin. In our model, lakes processed between 5 and 28 g C m?2 (watershed) yr?1 derived from the watershed, which approximates one‐tenth of NEE for similar terrestrial systems without lakes. Most lakes were net heterotrophic and had carbon evasion in excess of carbon burial, making them net sources of carbon to the atmosphere. Only lakes low in DOC and moderate to high in TP were net autotrophic and net sinks of carbon from the atmosphere.  相似文献   

18.
Understanding the effects of trophic status and dissolved organic carbon concentration (DOC) on lake carbon cycling is essential for accurate ecosystem carbon models. Using isotopically labelled substrates we assessed spatial and temporal variability in bacterial respiration (BR) and algal primary production (PP) in two trophically, morphometrically and hydrologically different basins in Loch Lomond, a large temperate lake in Scotland. GIS modelling was used to construct a whole lake balance for bacterial production/respiration and PP, and from this the proportion of heterotrophy fuelled by allochthonous carbon was estimated. We tested the hypotheses that trophic status and DOC concentration affect the balance between PP and BR and examined which is the more significant driving factor. Additionally we estimated the percentage of BR that is fuelled by terrestrial carbon. PP varied seasonally and showed inter-basin homogeneity. BR was greatest in the mesotrophic south basin in autumn, which corresponded to measured peak DOC input, though over an annual cycle no relationship was observed between BR and DOC concentration. The PP:BR ratio was 0.37 ± 0.30 and 0.3 ± 0.45 in the north and south basins, respectively, assuming a bacterial growth efficiency of 0.1. We have found that allochthonous carbon potentially supports a substantial quantity of pelagic production, even during periods of high photosynthesis. Less productive systems are thought to be dominated by heterotrophic processes. However, we have found that the mesotrophic basin of a large lake to be as heterotrophic as its neighbouring oligotrophic basin, an observation that has implications for our understanding of modelling of the role of lakes in linking the terrestrial-atmospheric carbon cycle.  相似文献   

19.
18 Swedish forest lakes covering a wide range of dystrophy were studied in order to quantify and characterize the organic matter in the water with respect to origin (allochthonous or autochthonous), physical state (particulate or dissolved) and phosphorus content. Samples were collected repeatedly during a two-year period with unusually variable hydrological conditions. Water from three different depths and from tributaries was analysed with standard monitoring methods, including water colour, Secchi disk transparency, total organic carbon (TOC), CODCr, CODMn, total phosphorus and molybdate reactive phosphorus. Interrelationships were used to compare different methods and to assess the concentration and composition of organic matter. It is estimated that in remote softwater lakes of the Swedish forest region, autochthonous carbon is typically < 5 g m−3. Most lakes in this region receive significant amounts of humic matter originating from coniferous forest soils or peatland in the catchment area. In most humic lakes with a water colour of ≥ 50 g Pt m−3, more than half of the organic carbon in the surface water is of allochthonous origin, and in polyhumic lakes (> 200 g Pt m−3) the proportion can exceed 90%. Secchi depth readings were related similarly to organic matter from both sources and provided good estimates of TOC with a single optical measurement. Water colour was used to distinguish allochthonous and autochthonous matter. High concentrations of phosphorus were found in humic waters, most of it being molybdate reactive, and probably associated with humic matter rather than as dissolved free inorganic forms. CODMn yielded only 25–60% of TOC and appears to include mainly truly dissolved substances of low molecular weight.  相似文献   

20.
Incubation experiments using filtered waters from Lake Kasumigaura were conducted to examine bacterial contribution to a dissolved organic carbon (DOC) pool. Bacterial abundance, bacterial production, concentrations of DOC, total dissolved amino acids (TDAA), and total dissolved neutral sugars (TDNS) were monitored during the experiments. Bacterial production during the first few days was very high (20 to 35 μg C liter−1 day−1), accounting for 40 to 70% of primary production. The total bacterial production accounted for 34 to 55% of the DOC loss during the experiment, indicating high bacterial activities in Lake Kasumigaura. The DOC degradation was only 12 to 15%, whereas the degradation of TDAA and TDNS ranged from 30 to 50%, suggesting the preferential usage of TDAA and TDNS. The contribution of bacterially derived carbon to a DOC pool in Lake Kasumigaura was estimated using d-amino acids as bacterial biomarkers and accounted for 30 to 50% of the lake DOC. These values were much higher than those estimated for the open ocean (20 to 30%). The ratio of bacterially derived carbon to bulk carbon increased slightly with time, suggesting that the bacterially derived carbon is more resistant to microbial degradation than bulk carbon. This is the first study to estimate the bacterial contribution to a DOC pool in freshwater environments. These results indicate that bacteria play even more important roles in carbon cycles in freshwater environments than in open oceans and also suggests that recent increases in recalcitrant DOC in various lakes could be attributed to bacterially derived carbon. The potential differences in bacterial contributions to dissolved organic matter (DOM) between freshwater and marine environments are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号