首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Novozym 435, lipase B from Candida antarctica, was used in this study for the production of ethyl esters. For the first time, trans-hydroxy-fatty acid ethyl esters were synthesized in vitro in solvent-free media. We studied the effects of the substrate–ethanol molar ratio and enzyme synthetic stability of the biocatalyst. To determine the structure of the formed compounds, Fourier transformed infrared spectroscopy, nuclear magnetic resonance, and matrix-assisted laser desorption/ionization–time-of-flight mass spectrometry were used, three less time-consuming structural techniques. trans-Hydroxy-fatty acid ethyl esters were synthesized with a reaction yield of 90 % or higher with optimal reaction conditions.  相似文献   

2.
An efficient procedure for enzymatic desymmetrization of the prochiral dimethyl 3-(4-fluorophenyl)glutarate (3-DFG) in an aqueous–organic phase was successfully developed to prepare methyl (R)-3-(4-fluorophenyl)glutarate ((R)-3-MFG). Novozym 435 was selected as a highly efficient biocatalyst through lipase screening. The effects of various parameters in terms of co-solvent and its concentration, buffer pH, ionic strength and reaction temperature, on the reaction were investigated. It was found that 0.2 M phosphate buffer (pH 8.0) containing 20% MTBE (v/v) was the optimum reaction medium, and the optimum reaction temperature was 30 °C. Under the optimized reaction conditions, (R)-3-MFG was obtained in 95.6% ee value and 92.6% yield after 64 h when the concentration of 3-DFG and Novozym 435 were 200 mmol/l and 20 g/l respectively. Furthermore, Novozym 435 showed an excellent operational stability, retaining above 95% of the initial activity and enantioselectivity after 10 cycles of reaction. The developed method has a potential to be used for efficient enzymatic production of (R)-3-MFG.  相似文献   

3.
A new biocatalyst of lipase B from Candida antarctica (MCI-CALB) immobilized on styrene-divinylbenzene beads (MCI GEL CHP20P) was compared with the commercial Novozym 435 (immobilized lipase) in terms of their performances as biocatalysts for the esterification of acetic acid and n-butanol. The effects of experimental conditions on reaction rates differed for each biocatalyst, showing different optimal values for water content, temperature, and substrate molar ratio. MCI-CALB could be used at higher acid concentrations, up to 0.5 M, while Novozym 435 became inactivated at these acid concentrations. Although Novozym 435 exhibited 30% higher initial activity than MCI-CALB for the butyl acetate synthesis, the reaction course was much more linear using the new preparation, meaning that the MCI-CALB allows for higher productivities per cycle. Both preparations produced around 90% of yield conversions after only 2 h of reaction, using 10% (mass fraction) of enzyme. However, the main advantage of the new biocatalyst was the superior performance during reuse. While Novozym 435 was fully inactivated after only two batches, MCI-CALB could be reused for six consecutive cycles without any washings and keeping around 70% of its initial activity. It is proposed that this effect is due to the higher hydrophobicity of the new support, which does not retain water or acid in the enzyme environment. MCI-CALB has shown to be a very promising biocatalyst for the esterification of small-molecule acids and alcohols.  相似文献   

4.
A novel two-phase partitioning bioreactor (TPPB) modified by polysulfone (PSF) microspheres and immobilized enzyme (novozym-435) was formed, and the resulting TPPB was applied into mandelic acid chiral separation. The PSF microspheres containing n-hexanol (named PSF/hexanol microspheres) was prepared by using the phase inversion method, which was used as the organic phase. Meanwhile, the immobilized enzyme novozym-435 was used as a biocatalyst. The water phase was composed of the phosphate buffer solution (PBS). (R, S)-Methyl mandelate was selected as the substrate to study enzymatic properties. Different reaction factors have been researched, such as pH, reaction time, temperature and the quantity of biocatalyst and PSF/hexanol microspheres added in. Finally, (S)-mandelic acid was obtained with an 80 % optical purity after 24 h in the two-phase partitioning bioreactor. The enantiomeric excess (eep) values were very low in the water phase, in which the highest eep value was only 46 %. The eep of the two-phase partitioning bioreactor had been enhanced more obviously than that catalyzed in the water phase.  相似文献   

5.
In this study, hydrophobic macroporous resin NKA was employed as matrix for immobilization of free Rhizopus oryzae lipase (ROL). The performance of the immobilized ROL was significantly enhanced. The recovery activity was up to 1,293.78 % and the specific activity increased to 152,914 U/g-protein, which was 46-fold higher than that of the free lipase. Moreover, the immobilized lipase showed higher thermostability and better pH-resistance than its free counterpart. Additionally, three different nonaqueous modification strategies (including bioimprinting, lecithin coating, and lyophilization protection) were further utilized to improve the performance of the immobilized lipase. The corresponding enhancements were 33.68 %, 31.98 %, and 99.86 %. When these modifications were combined together, the activity improved 209.51 %. In order to confirm its practical application, the modified ROL was used to biorefine rapeseed oil deodorizer distillate (RODD) for biodiesel production. The highest conversion yield reached 98.23 %, much close to that (97.46 %) of Novozym 435. The results suggest that the prepared lipase in this study is a promising biocatalyst with high stability, efficiency and operational reusability.  相似文献   

6.
L-ascorbyl acetate was synthesized through lipase-catalyzed esterification using Lipozyme TLIM and Novozym 435. Four solvents, including methanol, ethanol, acetonitrile, and acetone were investigated for the reaction, and acetone and acetonitrile were found to be suitable reaction media. The influences of several parameters such as water activity (a w), substrate molar ratio, enzyme loading, and reaction temperature on esterification of L-ascorbic acid were systematically and quantitatively analyzed. Through optimizing the reaction, lipase-catalyzed esterification of L-ascorbic acid gave a maximum conversion of 99%. The results from using Lipozyme TLIM and Novozym 435 as biocatalysts both showed that a w was an important factor for the conversion of L-ascorbic acid. The effect of pH value on lipase-catalyzed L-ascorbic acid esterification in acetone was also investigated. Furthermore, results from a kinetic characterization of Lipozyme TLIM were compared with those for Novozym 435, and suggested that the maximum reaction rate for Lipozyme TLIM was greater than that for Novozym 435, while the enzyme affinity for substrate was greater for Novozym 436.  相似文献   

7.
The objective of this work was to develop an economically relevant enzymatic process of butyl ester production using crude high-oleic sunflower oil. Novozym 435, a non-regiospecific biocatalyst, provided the best compromise between activity and butyl-ester yield. The inhibition caused by the presence of phopholipids in crude oil was eliminated by using tert-butanol. It demonstrates the key role of the medium polarity in order to insure the stability of a process. Initial substrate concentrations and their molar ratio were optimized in a continuous packed-bed reactor to maximize product yield and productivity. The best compromise was obtained for an initial oil concentration of 500 mM and a molar ratio of 5. It enabled a high productivity of 13.8 tons year−1 kg Novozym 435−1 with a butyl-ester purity of 96.5% to be obtained. Experiments with the continuous reactor were performed over 50 days without any loss of enzyme activity.  相似文献   

8.
Lipase could catalyze the ammonolysis of trimethylsilylmethyl acetate in organic solvents and Novozym 435 was the best biocatalyst for the reaction. The influences of some factors on the reaction were investigated. Cyclohexane, n-hexane and heptane were found to be suitable reaction media and ammonium carbamate was the best ammonium source. The optimal initial water activity, temperature and pH value were 0.55–0.75, 35°C and 6.5 respectively, under which a substrate conversion of 97.6% could be achieved after reaction for 140 h.  相似文献   

9.
S-(+)-2,2-dimethylcyclopropanecarboxylic acid (S-(+)-DMCPA) is a key chiral intermediate for the synthesis of Cilastatin. The enzymatic preparation of S-(+)-DMCPA has attracted much attention. In order to improve the activity and stability of Novozyme 435 for enzymatic preparation of S-(+)-DMCPA from 2,2-dimethylcyclopropane carboxylate (DMCPE), the glutaraldehyde modification for Novozyme 435 was investigated and the glutaraldehydemodified Novozyme 435 was used as biocatalyst for the synthesis of S-(+)-DMCPA. The results showed that the modified Novozyme 435 had a better reusing merit than unmodified enzyme. The maximum specific activity was obtained by modification Novozyme 435 with 1.5% glutaraldehyde solution under the conditions of shaking at 200 rpm and 30°C for 45 min. The optimal enzymatic hydrolysis conditions for glutaraldehyde-modified Novozyme 435 were also confirmed. The optimized hydrolytic reaction mixture contained 10 mL potassium phosphate buffer (1.0 mol/L, pH 7.6), 90 mg of DMCPE and 160 mg of glutaraldehyde-modified enzyme, and the reaction was performed at 30oC and 200 rpm for 52 h. The reusing efficiency of modified Novozyme 435 was further evaluated. Under the optimal conditions, the modified enzyme remained 76.0% of its original yield after 10 times reuse, but the optical purity of the product kept intact; whereas the yield of unmodified enzyme reduced to 20.8% of its initial value and the ee value of product decreased a lot to 90.7% after 7 times recycle. These results showed that the modified Novozyme 435 was more cost-effective for the preparation of S-(+)-DMCPA in industrial application.  相似文献   

10.
The enzymatic synthesis of phenolic lipids (PLs) by transesterification of flaxseed oil with 3,4-dihydroxyphenyl acetic acid (DHPA) was investigated in solvent-free medium (SFM), using Novozym 435 from Candida antarctica as the biocatalyst. The effects of selected reaction parameters, water activity (aw), enzyme concentration and agitation speed, were studied and optimized. Increasing the aw of the reaction mixture from 0.18 to 0.38 resulted in a significant increase in the bioconversion yield from 62 to 77%. APCI–MS analysis confirmed the formation of six 3,4-dihydroxyphenyl acetoylated lipids, which were monolinolenyl, dioleyl, dilinolenyl, linoleyl linolenyl, oleyl linolenyl and oleyl linoleyl dihydroxyphenyl acetates. The highest enzymatic activity (178 nmol of PLs/g solid enzyme/min) was obtained using 40 mg of solid enzyme (400 PLU)/mL at agitation speed 150 rpm. Using the optimized conditions, the phenolic lipids showed a high relative proportion of linolenic acid (C18:3 n?3) that increased from 57% in the flaxseed oil to 75 and 64% in the produced phenolic mono- and diacylglycerols, respectively. In addition, the synthesized phenolic lipids demonstrated a 7.2-fold lower radical scavenging activity than that of DHPA but half that of α-tocopherol.  相似文献   

11.
Physical (ionic exchange of ionic polymers) or chemical (aminoethylamidation, succinylation, hydroxyethylamidation) modifications of Novozym 435 have been performed and the resulting biocatalysts have been assayed in diverse reactions. The coating of the immobilized enzyme with dextran-sulphate via ionic exchange permitted to increase the asymmetric factor of the biocatalyst from A = 13 (ee = 83%) to 24 (ee > 90%) in the hydrolysis of 3-phenylglutaric acid dimethyl diester, producing the (R)-monomethyl ester. The chemical succinylation of Novozym 435 permitted to enhance the biocatalyst enantiospecificity from E = 1 to 13 in the hydrolysis of (±)-mandelic acid methyl ester. In the hydrolysis of (±)-2-O-butyryl-2-phenylacetic acid, the enantiospecificity of Novozym 435 was very high towards the S-enantiomer (E > 100) but it was inverted after the chemical hydroxyethylamidation of the immobilized enzyme (E = 6.6 towards R-enantiomer).Thus, these simple protocols seem to be a very powerful tool to generate a library of biocatalysts from Novozym 435 with very different catalytic properties.  相似文献   

12.
Industrial use of Novozym 435 in synthesis of structured lipids and biodiesel via alcoholysis is limited by mass transfer effects of the glycerides through immobilized enzymes and its low operational stability under operation conditions. To better understand this, differently modified Novozym 435 preparations, differing in their surface nature and in their interactions with reactants, have been compared in the alcoholysis of Camelina sativa oil. The three modifications performed have been carried out under conditions where all exposed groups of the enzyme have been modified. These modifications were: 2,4,6-trinitrobenzensulfonic acid (Novo-TNBS), ethylendiamine (Novo-EDA) and polyethylenimine (Novo-PEI). Changes in their operational performance are analyzed in terms of changes detected by scan electron microscopy in the support morphology.The hydrophobic nature of the TNBS accelerates the reaction rate; t-ButOH co-solvent swells the macroporous acrylic particles of Lewatit VP OC 1600 in all biocatalysts, except in the case of Novo-PEI. This co-solvent only increases the maximal conversions obtained at 24 h using the modified biocatalysts. t-ButOH reduces enzyme inactivation by alcohol and water. In a co-solvent system, these four biocatalysts remain fully active after 14 consecutive reaction cycles of 24 h, but only Novo-TNBS yields maximal conversion before cycle 5. Some deposits on biocatalyst particles could be appreciated during reuses, and TNBS derivatization diminishes the accumulation of product deposits on the catalyst surface. Most particles of commercial Novozym® 435 are broken after operation for 14 reaction cycles. The broken particles are fully active, but they cause problems of blockage in filtration operations and column reactors. The three derivatizations studied make the matrix particles more resistant to rupture.  相似文献   

13.
Feruloylated monoacyl- and diacyl-glycerols (FMAGs and FDAGs) are lipophilic antioxidants and potential UV absorbers. FMAGs and FDAGs were synthesized by a novel chemoenzymatic method: firstly, ferulic acid was esterified with glycerol to synthesize glyceryl ferulate, using p-toluenesulfonic acid as chemical catalyst in 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim]BF4); secondly, glyceryl ferulate was esterified with oleic acid to synthesize FMAGs and FDAGs, using Novozym 435 as biocatalyst in 1-butyl-3-methylimidazolium hexafluorophosphate ([Bmim]PF6). The conversion of ferulic acid and yield of glyceryl ferulate in the first reaction were both 98%. The yields of FMAGs and FDAGs in the second reaction reached 34 ± 2% and 66 ± 3%, respectively.  相似文献   

14.
Two commercial porous styrene-divinylbenzene beads (Diaion HP20LX and MCI GEL CHP20P) have been evaluated as supports to immobilize lipase B from Candida antarctica (CALB). MCI GEL CHP20P rapidly immobilized the enzyme, permitting a very high loading capacity: around 110 mg CALB/wet g of support compared to the 50 mg obtained using decaoctyl Sepabeads. Although enzyme specificity of the enzyme immobilized on different supports was quite altered by the support used in the immobilization, specific activity of the enzyme immobilized on MCI GEL CHP20P was always higher than those found using decaoctyl Sepabeads for all assayed substrates. Thus, a CALB biocatalyst having 3-8 folds (depending on the substrate) higher activity/wet gram of support than the commercial Novozym 435 was obtained. Half-live of CAL-Diaion HP20LX at 60 °C was 2-3 higher than the one of Novozym 435, it was 30-40 higher in the presence of 50% acetonitrile and it was around 100 folds greater in the presence of 10 M hydrogen peroxide.Results indicate that styrene-divinylbenzene supports may be promising alternatives as supports to immobilize CALB.  相似文献   

15.
《Process Biochemistry》2010,45(4):519-525
The production of biodiesel with soybean oil and methanol through transesterification by Novozym 435 (Candida antarctica lipase B immobilized on polyacrylic resin) were conducted under two different conditions—ultrasonic irradiation and vibration to compare their overall effects. Compared with vibration, ultrasonic irradiation significantly enhanced the activity of Novozym 435. The reaction rate was further increased under the condition of ultrasonic irradiation with vibration (UIV). Effects of reaction conditions, such as ultrasonic power, water content, organic solvents, ratio of solvent/oil, ratio of methanol/oil, enzyme dosage and temperature on the activity of Novozym 435 were investigated under UIV. Under the optimum conditions (50% of ultrasonic power, 50 rpm vibration, water content of 0.5%, tert-amyl alcohol/oil volume ratio of 1:1, methanol/oil molar ratio of 6:1, 6% Novozym 435 and 40 °C), 96% yield of fatty acid methyl ester (FAME) could be achieved in 4 h. Furthermore, repeated use of Novozym 435 after five cycles showed no obvious loss in enzyme activity, which suggested this enzyme was stable under the UIV condition. These results indicated that UIV was a fast and efficient method for biodiesel production.  相似文献   

16.
Combination use of microwave irradiation (MW) as heating mode and ionic liquid (IL) as reaction medium in enzymatic resolution of (R,S)-2-octanol with vinyl acetate as the acyl donor through transesterification by Novozym 435 was investigated. A synergistic effect of MW and IL [EMIM][NTf2], which was screened as the best reaction medium for this reaction, on improving enzyme activity and enantioselectivity was observed. The activity and enantioselectivity of Novozym 435 in [EMIM][NTf2] under MW were much higher than that in solvent free system under conventional heating, in solvent free system under MW, and in [EMIM][NTf2] under conventional heating, respectively. A systematic screening and optimization of the reaction parameters in [EMIM][NTf2] under MW were performed. Under the optimum conditions, 50% yield of (S)-2-octanol with 99% enantiomeric excess was obtained in 6 h. Furthermore, increased thermal stability and reusability of Novozym 435 under the combination use of MW and IL condition were also observed.  相似文献   

17.
The enzymatic esterification of the prochiral substrate, 2-benzyl-1,3-propanediol, has been studied in solvent media. Among the five tested lipases, Lipozyme and Novozym 435 led to higher reaction rates. Novozym 435 catalyzed faster reactions at low water activity and in solvents having log P above 2. However, the two positions of the diol, pro-(R) and pro-(S), led to the same reaction rate trends and no prochiral selectivity was obtained. When using Lipozyme in toluene, the reaction rates for the formation of both (R) and (S) products presented an optimum at a water activity of 0.22. In this case, the prochiral selectivity increased with the water activity, from a value of 5 at a w < 0.01, to a value of 8 at a w = 0.22, at which point it remained constant.  相似文献   

18.
Kojic acid is widely used to inhibit the browning effect of tyrosinase in cosmetic and food industries. In this work, synthesis of kojic monooleate ester (KMO) was carried out using lipase-catalysed esterification of kojic acid and oleic acid in a solvent-free system. Response Surface Methodology (RSM) based on central composite rotatable design (CCRD) was used to optimise the main important reaction variables, such as enzyme amount, reaction temperature, substrate molar ratio, and reaction time along with immobilised lipase from Candida Antarctica (Novozym 435) as a biocatalyst. The RSM data indicated that the reaction temperature was less significant in comparison to other factors for the production of a KMO ester. By using this statistical analysis, a quadratic model was developed in order to correlate the preparation variable to the response (reaction yield). The optimum conditions for the enzymatic synthesis of KMO were as follows: an enzyme amount of 2.0 wt%, reaction temperature of 83.69°C, substrate molar ratio of 1:2.37 (mmole kojic acid:oleic acid) and a reaction time of 300.0 min. Under these conditions, the actual yield percentage obtained was 42.09%, which is comparably well with the maximum predicted value of 44.46%. Under the optimal conditions, Novozym 435 could be reused for 5 cycles for KMO production percentage yield of at least 40%. The results demonstrated that statistical analysis using RSM can be used efficiently to optimise the production of a KMO ester. Moreover, the optimum conditions obtained can be applied to scale-up the process and minimise the cost.  相似文献   

19.
The enzymatic desymmetrization of 3-(4-fluorophenyl)glutaric anhydride (3-FGA) was investigated through lipase-catalyzed enantioselective alcoholysis in organic solvents. An immobilized Lipase B from Candida Antarctica (Novozym 435) was found to be an efficient biocatalyst for the enantioselective alcoholysis of 3-FGA. Methyl tert-butyl ether (MTBE) and methanol were chosen as the suitable reaction medium and acyl acceptor, respectively. The optimum reaction temperature, molar ratio of methanol to 3-FGA and 3-FGA concentration were 25°C, 2:1 and 100 mM, respectively. Under these conditions, complete conversion was achieved and methyl (S)-3-(4-fluorophenyl)glutarate ((S)-MFG) was obtained in a moderate ee value of 80%. Furthermore, the reaction was performed on a gram scale and the ee value of (S)-MFG was enriched to 96% after treatment with a toluene/hexane (2/1, v/v) mixture.  相似文献   

20.
Lipase-catalyzed esterification of glucose with fatty acids in ionic liquids (ILs) mixture was investigated by using supersaturated glucose solution. The effect of ILs mixture ratio, substrate ratio, lipase content, and temperature on the activity and stability of lipase was also studied. The highest yield of sugar ester was obtained in a mixture of 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([Bmim][TfO]) and 1-methyl-3-octylimidazolium bis[(trifluoromethyl)-sulfonyl]amide ([Omim][Tf2N]) with a volume ratio of 9:1, while Novozym 435 (Candida antarctica type B lipase immobilized on acrylic resin) showed the optimal stability and activity in a mixture of [Bmim][TfO] and [Omim][Tf2N] with a 1:1 volume ratio. Reuse of lipase and ILs was successfully carried out at the optimized reaction conditions. After 5 times reuse of Novozym 435 and ILs, 78% of initial activity was remained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号