首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
SUMMARY: VizRank is a tool that finds interesting two-dimensional projections of class-labeled data. When applied to multi-dimensional functional genomics datasets, VizRank can systematically find relevant biological patterns. AVAILABILITY: http://www.ailab.si/supp/bi-vizrank SUPPLEMENTARY INFORMATION: http://www.ailab.si/supp/bi-vizrank.  相似文献   

2.
SUMMARY: Visual programming offers an intuitive means of combining known analysis and visualization methods into powerful applications. The system presented here enables users who are not programmers to manage microarray and genomic data flow and to customize their analyses by combining common data analysis tools to fit their needs. AVAILABILITY: http://www.ailab.si/supp/bi-visprog SUPPLEMENTARY INFORMATION: http://www.ailab.si/supp/bi-visprog.  相似文献   

3.
Mayday is a workbench for visualization, analysis and storage of microarray data. It features a graphical user interface and supports the development and integration of existing and new analysis methods. Besides the infrastructural core functionality, Mayday offers a variety of plug-ins, such as various interactive viewers, a connection to the R statistical environment, a connection to SQL-based databases and different data mining methods, including WEKA-library based methods for classification and various clustering methods. In addition, so-called meta information objects are provided for annotation of the microarray data allowing integration of data from different sources, which is a feature that, for instance, is employed in the enhanced heatmap visualization. Supplementary information: The software and more detailed information including screenshots and a user guide as well as test data can be found on the Mayday home page http://www.zbit.uni-tuebingen.de/pas/mayday. The core is published under the GPL (GNU Public License) and the associated plug-ins under the LGPL (Lesser GNU Public License).  相似文献   

4.
GeneCluster 2.0: an advanced toolset for bioarray analysis   总被引:4,自引:0,他引:4  
SUMMARY: GeneCluster 2.0 is a software package for analyzing gene expression and other bioarray data, giving users a variety of methods to build and evaluate class predictors, visualize marker lists, cluster data and validate results. GeneCluster 2.0 greatly expands the data analysis capabilities of GeneCluster 1.0 by adding classification, class discovery and permutation test methods. It includes algorithms for building and testing supervised models using weighted voting and k-nearest neighbor algorithms, a module for systematically finding and evaluating clustering via self-organizing maps, and modules for marker gene selection and heat map visualization that allow users to view and sort samples and genes by many criteria. GeneCluster 2.0 is a stand-alone Java application and runs on any platform that supports the Java Runtime Environment version 1.3.1 or greater. AVAILABILITY: http://www.broad.mit.edu/cancer/software  相似文献   

5.
MOTIVATION: To evaluate microarray data, clustering is widely used to group biological samples or genes. However, problems arise when comparing heterologous databases. As the clustering algorithm searches for similarities between experiments, it will most likely first separate the data sets, masking relationships that exist between samples from different databases. RESULTS: We developed a program, Venn Mapper, to calculate the statistical significance of the number of co-occurring differentially expressed genes in any of the two experiments. For proof of principle, we analysed a heterologous data set of 170 microarrays including breast and prostate cancer microarray analyses. Significant overlap was found in an unsupervised analysis between metastasized prostate cancer and metastasized breast cancer and BRCA mutated breast cancer. A comparison between single microarray data and the averaged breast and prostate data sets was also evaluated. This analysis suggests that genes expressed higher in stromal cells are also implicated in metastatic prostate cancer and BRCA mutated breast cancer. The Venn Mapper program identifies overlaps between samples from heterologous data sets and directly extracts the genes responsible for the overlap. From this information novel biological hypotheses may be addressed. AVAILABILITY: Venn Mapper is freely available on http://www.erasmusmc.nl/gatcplatform. SUPPLEMENTARY INFORMATION: http://www.erasmusmc.nl/gatcplatform/vennmapper.html.  相似文献   

6.
MOTIVATION: We recently introduced a multivariate approach that selects a subset of predictive genes jointly for sample classification based on expression data. We tested the algorithm on colon and leukemia data sets. As an extension to our earlier work, we systematically examine the sensitivity, reproducibility and stability of gene selection/sample classification to the choice of parameters of the algorithm. METHODS: Our approach combines a Genetic Algorithm (GA) and the k-Nearest Neighbor (KNN) method to identify genes that can jointly discriminate between different classes of samples (e.g. normal versus tumor). The GA/KNN method is a stochastic supervised pattern recognition method. The genes identified are subsequently used to classify independent test set samples. RESULTS: The GA/KNN method is capable of selecting a subset of predictive genes from a large noisy data set for sample classification. It is a multivariate approach that can capture the correlated structure in the data. We find that for a given data set gene selection is highly repeatable in independent runs using the GA/KNN method. In general, however, gene selection may be less robust than classification. AVAILABILITY: The method is available at http://dir.niehs.nih.gov/microarray/datamining CONTACT: LI3@niehs.nih.gov  相似文献   

7.
MOTIVATION: High-density DNA microarray measures the activities of several thousand genes simultaneously and the gene expression profiles have been used for the cancer classification recently. This new approach promises to give better therapeutic measurements to cancer patients by diagnosing cancer types with improved accuracy. The Support Vector Machine (SVM) is one of the classification methods successfully applied to the cancer diagnosis problems. However, its optimal extension to more than two classes was not obvious, which might impose limitations in its application to multiple tumor types. We briefly introduce the Multicategory SVM, which is a recently proposed extension of the binary SVM, and apply it to multiclass cancer diagnosis problems. RESULTS: Its applicability is demonstrated on the leukemia data (Golub et al., 1999) and the small round blue cell tumors of childhood data (Khan et al., 2001). Comparable classification accuracy shown in the applications and its flexibility render the MSVM a viable alternative to other classification methods. SUPPLEMENTARY INFORMATION: http://www.stat.ohio-state.edu/~yklee/msvm.htm  相似文献   

8.
A CART-based approach to discover emerging patterns in microarray data   总被引:1,自引:0,他引:1  
MOTIVATION: Cancer diagnosis using gene expression profiles requires supervised learning and gene selection methods. Of the many suggested approaches, the method of emerging patterns (EPs) has the particular advantage of explicitly modeling interactions among genes, which improves classification accuracy. However, finding useful (i.e. short and statistically significant) EP is typically very hard. METHODS: Here we introduce a CART-based approach to discover EPs in microarray data. The method is based on growing decision trees from which the EPs are extracted. This approach combines pattern search with a statistical procedure based on Fisher's exact test to assess the significance of each EP. Subsequently, sample classification based on the inferred EPs is performed using maximum-likelihood linear discriminant analysis. RESULTS: Using simulated data as well as gene expression data from colon and leukemia cancer experiments we assessed the performance of our pattern search algorithm and classification procedure. In the simulations, our method recovers a large proportion of known EPs while for real data it is comparable in classification accuracy with three top-performing alternative classification algorithms. In addition, it assigns statistical significance to the inferred EPs and allows to rank the patterns while simultaneously avoiding overfit of the data. The new approach therefore provides a versatile and computationally fast tool for elucidating local gene interactions as well as for classification. AVAILABILITY: A computer program written in the statistical language R implementing the new approach is freely available from the web page http://www.stat.uni-muenchen.de/~socher/  相似文献   

9.
10.
Sample classification and class prediction is the aim of many gene expression studies. We present a web-based application, Prophet, which builds prediction rules and allows using them for further sample classification. Prophet automatically chooses the best classifier, along with the optimal selection of genes, using a strategy that renders unbiased cross-validated errors. Prophet is linked to different microarray data analysis modules, and includes a unique feature: the possibility of performing the functional interpretation of the molecular signature found. Availability: Prophet can be found at the URL http://prophet.bioinfo.cipf.es/ or within the GEPAS package at http://www.gepas.org/ Supplementary information: http://gepas.bioinfo.cipf.es/tutorial/prophet.html.  相似文献   

11.
GermOnline is a web-accessible relational database that enables life scientists to make a significant and sustained contribution to the annotation of genes relevant for the fields of mitosis, meiosis, germ line development and gametogenesis across species. This novel approach to genome annotation includes a platform for knowledge submission and curation as well as microarray data storage and visualization hosted by a global network of servers. AVAILABILITY: The database is accessible at http://www.germonline.org/. For convenient world-wide access we have set up a network of servers in Europe (http://germonline.unibas.ch/; http://germonline.igh.cnrs.fr/), Japan (http://germonline.biochem.s.u-tokyo.ac.jp/) and USA (http://germonline.yeastgenome.org/). SUPPLEMENTARY INFORMATION: Extended documentation of the database is available through the link 'About GermOnline' at the websites.  相似文献   

12.
MOTIVATION: The rapid accumulation of microarray datasets provides unique opportunities to perform systematic functional characterization of the human genome. We designed a graph-based approach to integrate cross-platform microarray data, and extract recurrent expression patterns. A series of microarray datasets can be modeled as a series of co-expression networks, in which we search for frequently occurring network patterns. The integrative approach provides three major advantages over the commonly used microarray analysis methods: (1) enhance signal to noise separation (2) identify functionally related genes without co-expression and (3) provide a way to predict gene functions in a context-specific way. RESULTS: We integrate 65 human microarray datasets, comprising 1105 experiments and over 11 million expression measurements. We develop a data mining procedure based on frequent itemset mining and biclustering to systematically discover network patterns that recur in at least five datasets. This resulted in 143,401 potential functional modules. Subsequently, we design a network topology statistic based on graph random walk that effectively captures characteristics of a gene's local functional environment. Function annotations based on this statistic are then subject to the assessment using the random forest method, combining six other attributes of the network modules. We assign 1126 functions to 895 genes, 779 known and 116 unknown, with a validation accuracy of 70%. Among our assignments, 20% genes are assigned with multiple functions based on different network environments. AVAILABILITY: http://zhoulab.usc.edu/ContextAnnotation.  相似文献   

13.
MOTIVATION: Gene expression profiling is a powerful approach to identify genes that may be involved in a specific biological process on a global scale. For example, gene expression profiling of mutant animals that lack or contain an excess of certain cell types is a common way to identify genes that are important for the development and maintenance of given cell types. However, it is difficult for traditional computational methods, including unsupervised and supervised learning methods, to detect relevant genes from a large collection of expression profiles with high sensitivity and specificity. Unsupervised methods group similar gene expressions together while ignoring important prior biological knowledge. Supervised methods utilize training data from prior biological knowledge to classify gene expression. However, for many biological problems, little prior knowledge is available, which limits the prediction performance of most supervised methods. RESULTS: We present a Bayesian semi-supervised learning method, called BGEN, that improves upon supervised and unsupervised methods by both capturing relevant expression profiles and using prior biological knowledge from literature and experimental validation. Unlike currently available semi-supervised learning methods, this new method trains a kernel classifier based on labeled and unlabeled gene expression examples. The semi-supervised trained classifier can then be used to efficiently classify the remaining genes in the dataset. Moreover, we model the confidence of microarray probes and probabilistically combine multiple probe predictions into gene predictions. We apply BGEN to identify genes involved in the development of a specific cell lineage in the C. elegans embryo, and to further identify the tissues in which these genes are enriched. Compared to K-means clustering and SVM classification, BGEN achieves higher sensitivity and specificity. We confirm certain predictions by biological experiments. AVAILABILITY: The results are available at http://www.csail.mit.edu/~alanqi/projects/BGEN.html.  相似文献   

14.
Given the growing amount of biological data, data mining methods have become an integral part of bioinformatics research. Unfortunately, standard data mining tools are often not sufficiently equipped for handling raw data such as e.g. amino acid sequences. One popular and freely available framework that contains many well-known data mining algorithms is the Waikato Environment for Knowledge Analysis (Weka). In the BioWeka project, we introduce various input formats for bioinformatics data and bioinformatics methods like alignments to Weka. This allows users to easily combine them with Weka's classification, clustering, validation and visualization facilities on a single platform and therefore reduces the overhead of converting data between different data formats as well as the need to write custom evaluation procedures that can deal with many different programs. We encourage users to participate in this project by adding their own components and data formats to BioWeka. Availability: The software, documentation and tutorial are available at http://www.bioweka.org.  相似文献   

15.
16.
The microarray gene expression markup language (MAGE-ML) is a widely used XML (eXtensible Markup Language) standard for describing and exchanging information about microarray experiments. It can describe microarray designs, microarray experiment designs, gene expression data and data analysis results. We describe RMAGEML, a new Bioconductor package that provides a link between cDNA microarray data stored in MAGE-ML format and the Bioconductor framework for preprocessing, visualization and analysis of microarray experiments. AVAILABILITY: http://www.bioconductor.org. Open Source.  相似文献   

17.
18.
SpotWhatR is a user-friendly microarray data analysis tool that runs under a widely and freely available R statistical language (http://www.r-project.org) for Windows and Linux operational systems. The aim of SpotWhatR is to help the researcher to analyze microarray data by providing basic tools for data visualization, normalization, determination of differentially expressed genes, summarization by Gene Ontology terms, and clustering analysis. SpotWhatR allows researchers who are not familiar with computational programming to choose the most suitable analysis for their microarray dataset. Along with well-known procedures used in microarray data analysis, we have introduced a stand-alone implementation of the HTself method, especially designed to find differentially expressed genes in low-replication contexts. This approach is more compatible with our local reality than the usual statistical methods. We provide several examples derived from the Blastocladiella emersonii and Xylella fastidiosa Microarray Projects. SpotWhatR is freely available at http://blasto.iq.usp.br/~tkoide/SpotWhatR, in English and Portuguese versions. In addition, the user can choose between "single experiment" and "batch processing" versions.  相似文献   

19.
Accurate semantic classification is valuable for text mining and knowledge-based tasks that perform inference based on semantic classes. To benefit applications using the semantic classification of the Unified Medical Language System (UMLS) concepts, we automatically reclassified the concepts based on their lexical and contextual features. The new classification is useful for auditing the original UMLS semantic classification and for building biomedical text mining applications. AVAILABILITY: http://www.dbmi.columbia.edu/~juf7002/reclassify_production  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号