首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 172 毫秒
1.
2.
The prodigious rate at which malaria parasites proliferate during asexual blood-stage replication, midgut sporozoite production, and intrahepatic development creates a substantial requirement for essential nutrients, including fatty acids that likely are necessary for parasite membrane formation. Plasmodium parasites obtain fatty acids either by scavenging from the vertebrate host and mosquito vector or by producing fatty acids de novo via the type two fatty acid biosynthesis pathway (FAS-II). Here, we study the FAS-II pathway in Plasmodium falciparum, the species responsible for the most lethal form of human malaria. Using antibodies, we find that the FAS-II enzyme FabI is expressed in mosquito midgut oocysts and sporozoites as well as liver-stage parasites but not during the blood stages. As expected, FabI colocalizes with the apicoplast-targeted acyl carrier protein, indicating that FabI functions in the apicoplast. We further analyze the FAS-II pathway in Plasmodium falciparum by assessing the functional consequences of deleting fabI and fabB/F. Targeted deletion or disruption of these genes in P. falciparum did not affect asexual blood-stage replication or the generation of midgut oocysts; however, subsequent sporozoite development was abolished. We conclude that the P. falciparum FAS-II pathway is essential for sporozoite development within the midgut oocyst. These findings reveal an important distinction from the rodent Plasmodium parasites P. berghei and P. yoelii, where the FAS-II pathway is known to be required for normal parasite progression through the liver stage but is not required for oocyst development in the Anopheles mosquito midgut.  相似文献   

3.
Kajla MK  Shi L  Li B  Luckhart S  Li J  Paskewitz SM 《PloS one》2011,6(5):e19649

Background

Plasmodium requires an obligatory life stage in its mosquito host. The parasites encounter a number of insults while journeying through this host and have developed mechanisms to avoid host defenses. Lysozymes are a family of important antimicrobial immune effectors produced by mosquitoes in response to microbial challenge.

Methodology/Principal Findings

A mosquito lysozyme was identified as a protective agonist for Plasmodium. Immunohistochemical analyses demonstrated that Anopheles gambiae lysozyme c-1 binds to oocysts of Plasmodium berghei and Plasmodium falciparum at 2 and 5 days after infection. Similar results were observed with Anopheles stephensi and P. falciparum, suggesting wide occurrence of this phenomenon across parasite and vector species. Lysozyme c-1 did not bind to cultured ookinetes nor did recombinant lysozyme c-1 affect ookinete viability. dsRNA-mediated silencing of LYSC-1 in Anopheles gambiae significantly reduced the intensity and the prevalence of Plasmodium berghei infection. We conclude that this host antibacterial protein directly interacts with and facilitates development of Plasmodium oocysts within the mosquito.

Conclusions/Significance

This work identifies mosquito lysozyme c-1 as a positive mediator of Plasmodium development as its reduction reduces parasite load in the mosquito host. These findings improve our understanding of parasite development and provide a novel target to interrupt parasite transmission to human hosts.  相似文献   

4.
Malaria (Plasmodium spp.) kills nearly one million people annually and this number will likely increase as drug and insecticide resistance reduces the effectiveness of current control strategies. The most important human malaria parasite, Plasmodium falciparum, undergoes a complex developmental cycle in the mosquito that takes approximately two weeks and begins with the invasion of the mosquito midgut. Here, we demonstrate that increased Akt signaling in the mosquito midgut disrupts parasite development and concurrently reduces the duration that mosquitoes are infective to humans. Specifically, we found that increased Akt signaling in the midgut of heterozygous Anopheles stephensi reduced the number of infected mosquitoes by 60–99%. Of those mosquitoes that were infected, we observed a 75–99% reduction in parasite load. In homozygous mosquitoes with increased Akt signaling parasite infection was completely blocked. The increase in midgut-specific Akt signaling also led to an 18–20% reduction in the average mosquito lifespan. Thus, activation of Akt signaling reduced the number of infected mosquitoes, the number of malaria parasites per infected mosquito, and the duration of mosquito infectivity.  相似文献   

5.
6.
Genome sequencing revealed an extreme AT-rich genome and a profusion of asparagine repeats associated with low complexity regions (LCRs) in proteins of the malarial parasite Plasmodium falciparum. Despite their abundance, the function of these LCRs remains unclear. Because they occur in almost all families of plasmodial proteins, the occurrence of LCRs cannot be associated with any specific metabolic pathway; yet their accumulation must have given selective advantages to the parasite. Translation of these asparagine-rich LCRs demands extraordinarily high amounts of asparaginylated tRNAAsn. However, unlike other organisms, Plasmodium codon bias is not correlated to tRNA gene copy number. Here, we studied tRNAAsn accumulation as well as the catalytic capacities of the asparaginyl-tRNA synthetase of the parasite in vitro. We observed that asparaginylation in this parasite can be considered standard, which is expected to limit the availability of asparaginylated tRNAAsn in the cell and, in turn, slow down the ribosomal translation rate when decoding asparagine repeats. This observation strengthens our earlier hypothesis considering that asparagine rich sequences act as “tRNA sponges” and help cotranslational folding of parasite proteins. However, it also raises many questions about the mechanistic aspects of the synthesis of asparagine repeats and about their implications in the global control of protein expression throughout Plasmodium life cycle.  相似文献   

7.
The susceptibility of Anopheles mosquitoes to Plasmodium infections relies on complex interactions between the insect vector and the malaria parasite. A number of studies have shown that the mosquito innate immune responses play an important role in controlling the malaria infection and that the strength of parasite clearance is under genetic control, but little is known about the influence of environmental factors on the transmission success. We present here evidence that the composition of the vector gut microbiota is one of the major components that determine the outcome of mosquito infections. A. gambiae mosquitoes collected in natural breeding sites from Cameroon were experimentally challenged with a wild P. falciparum isolate, and their gut bacterial content was submitted for pyrosequencing analysis. The meta-taxogenomic approach revealed a broader richness of the midgut bacterial flora than previously described. Unexpectedly, the majority of bacterial species were found in only a small proportion of mosquitoes, and only 20 genera were shared by 80% of individuals. We show that observed differences in gut bacterial flora of adult mosquitoes is a result of breeding in distinct sites, suggesting that the native aquatic source where larvae were grown determines the composition of the midgut microbiota. Importantly, the abundance of Enterobacteriaceae in the mosquito midgut correlates significantly with the Plasmodium infection status. This striking relationship highlights the role of natural gut environment in parasite transmission. Deciphering microbe-pathogen interactions offers new perspectives to control disease transmission.  相似文献   

8.
9.
Malaria is a life‐threatening disease caused by one of the five species of Plasmodium, among which Plasmodium falciparum cause the deadliest form of the disease. Plasmodium species are dependent on a vertebrate host and a blood‐sucking insect vector to complete their life cycle. Plasmodium chitinases belonging to the GH18 family are secreted inside the mosquito midgut, during the ookinete stage of the parasite. Chitinases mediate the penetration of parasite through the peritrophic membrane, facilitating access to the gut epithelial layer. In this review, we describe Plasmodium chitinases with special emphasis on chitinases from P. falciparum and P. vivax, the representative examples of the short and long forms of this protein. In addition to the chitinase domain, chitinases belonging to the long form contain a pro‐domain and chitin‐binding domain. Amino acid sequence alignment of long and short form chitinase domains reveals multiple positions containing variant residues. A subset of these positions was found to be conserved or invariant within long or short forms, indicating the role of these positions in attributing form‐specific activity. The reported differences in affinities to allosamidin for P. vivax and P. falciparum were predicted to be due to different residues at two amino acid positions, resulting in altered interactions with the inhibitor. Understanding the role of these amino acids in Plasmodium chitinases will help us elucidate the mechanism of catalysis and the mode of inhibition, which will be the key for identification of potent inhibitors or antibodies demonstrating transmission‐blocking activity.  相似文献   

10.
11.
12.
The hedgehog (Hh) signaling pathway plays a very important role in metazoan development by controlling pattern formation. Drosophila imaginal discs are subdivided into anterior and posterior compartments that derive from adjacent cell populations. The anterior/posterior (A/P) boundaries, which are critical to maintaining the position of organizers, are established by a complex mechanism involving Hh signaling. Here, we uncover the regulation of ptc in the Hh signaling pathway by two subunits of mediator complex, Kto and Skd, which can also regulate boundary location. Collectively, we provide further evidence that Kto-Skd affects the A/P-axial development of the whole wing disc. Kto can interact with Cubitus interruptus (Ci), bind to the Ci-binding region on ptc promoter, which are both regulated by Hh signals to down-regulate ptc expression.  相似文献   

13.
Anopheles mosquitoes have transmitted Plasmodium parasites for millions of years, yet it remains unclear whether they suffer fitness costs to infection. Here we report that the fecundity of virgin and mated females of two important vectors—Anopheles gambiae and Anopheles stephensi—is not affected by infection with Plasmodium falciparum, demonstrating that these human malaria parasites do not inflict this reproductive cost on their natural mosquito hosts. Additionally, parasite development is not impacted by mating status. However, in field studies using different P. falciparum isolates in Anopheles coluzzii, we find that Mating-Induced Stimulator of Oogenesis (MISO), a female reproductive gene strongly induced after mating by the sexual transfer of the steroid hormone 20-hydroxyecdysone (20E), protects females from incurring fecundity costs to infection. MISO-silenced females produce fewer eggs as they become increasingly infected with P. falciparum, while parasite development is not impacted by this gene silencing. Interestingly, previous work had shown that sexual transfer of 20E has specifically evolved in Cellia species of the Anopheles genus, driving the co-adaptation of MISO. Our data therefore suggest that evolution of male-female sexual interactions may have promoted Anopheles tolerance to P. falciparum infection in the Cellia subgenus, which comprises the most important malaria vectors.  相似文献   

14.
15.
The completion of the Plasmodium (malaria) life cycle in the mosquito requires the parasite to traverse first the midgut and later the salivary gland epithelium. We have identified a putative kinase-related protein (PKRP) that is predicted to be an atypical protein kinase, which is conserved across many species of Plasmodium. The pkrp gene encodes a RNA of about 5300 nucleotides that is expressed as a 90 kDa protein in sporozoites. Targeted disruption of the pkrp gene in Plasmodium berghei, a rodent model of malaria, compromises the ability of parasites to infect different tissues within the mosquito host. Early infection of mosquito midgut is reduced by 58-71%, midgut oocyst production is reduced by 50-90% and those sporozoites that are produced are defective in their ability to invade mosquito salivary glands. Midgut sporozoites are not morphologically different from wild-type parasites by electron microscopy. Some sporozoites that emerged from oocysts were attached to the salivary glands but most were found circulating in the mosquito hemocoel. Our findings indicate that a signalling pathway involving PbPKRP regulates the level of Plasmodium infection in the mosquito midgut and salivary glands.  相似文献   

16.
17.
Malaria, a disease affecting humans and other animals, is caused by a protist of the genus Plasmodium. At the intraerythrocytic stage, the parasite synthesizes a high amount of phospholipids through a bewildering number of pathways. In the human Plasmodium falciparum species, a plant-like pathway that relies on serine decarboxylase and phosphoethanolamine N-methyltransferase activities diverts host serine to provide additional phosphatidylcholine and phosphatidylethanolamine to the parasite. This feature of parasitic dependence toward its host was investigated in other Plasmodium species. In silico analyses led to the identification of phosphoethanolamine N-methyltransferase gene orthologs in primate and bird parasite genomes. However, the gene was not detected in the rodent P. berghei, P. yoelii, and P. chabaudi species. Biochemical experiments with labeled choline, ethanolamine, and serine showed marked differences in biosynthetic pathways when comparing rodent P. berghei and P. vinckei, and human P. falciparum species. Notably, in both rodent parasites, ethanolamine and serine were not significantly incorporated into phosphatidylcholine, indicating the absence of phosphoethanolamine N-methyltransferase activity. To our knowledge, this is the first study to highlight a crucial difference in phospholipid metabolism between Plasmodium species. The findings should facilitate efforts to develop more rational approaches to identify and evaluate new targets for antimalarial therapy.  相似文献   

18.
19.
The numbers of malarial oocysts developing in individual, like mosquitoes fed concurrently on a single vertebrate malarial host were found to be distributed according to the negative binomial distribution in 169 experiments utilizing 6 species of Plasmodium, 6 species of mosquitoes and 3 species of vertebrate hosts. Dispersion constants ranged upward to 8.0, and mean clump sizes ranged upward to 298.4. The dispersion constant was demonstrated to be contingent on the species, strain and identity of the mosquito, the parasite and the vertebrate host; on the genetic state of the mosquito; and on the state of the infection in the vertebrate host. It was concluded that the concentration of oocyst production in particular mosquitoes was produced by varying levels and combinations of numerous factors associated with the parasite, the mosquito and the vertebrate host and that the pattern of oocyst distribution favors parasite survival and the maintenance of malaria in the field.  相似文献   

20.
The malaria parasite Plasmodium falciparum exports several hundred proteins into the infected erythrocyte that are involved in cellular remodeling and severe virulence. The export mechanism involves the Plasmodium export element (PEXEL), which is a cleavage site for the parasite protease, Plasmepsin V (PMV). The PMV gene is refractory to deletion, suggesting it is essential, but definitive proof is lacking. Here, we generated a PEXEL-mimetic inhibitor that potently blocks the activity of PMV isolated from P. falciparum and Plasmodium vivax. Assessment of PMV activity in P. falciparum revealed PEXEL cleavage occurs cotranslationaly, similar to signal peptidase. Treatment of P. falciparum–infected erythrocytes with the inhibitor caused dose-dependent inhibition of PEXEL processing as well as protein export, including impaired display of the major virulence adhesin, PfEMP1, on the erythrocyte surface, and cytoadherence. The inhibitor killed parasites at the trophozoite stage and knockdown of PMV enhanced sensitivity to the inhibitor, while overexpression of PMV increased resistance. This provides the first direct evidence that PMV activity is essential for protein export in Plasmodium spp. and for parasite survival in human erythrocytes and validates PMV as an antimalarial drug target.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号