首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
《Autophagy》2013,9(1):40-50
In the present study, we report that compound C, an inhibitor of a key intracellular energy sensor AMP-activated protein kinase (AMPK), can induce autophagy in cancer cells. The induction of autophagy in U251 human glioma cell line was demonstrated by acridine orange staining of intracellular acidic vesicles, Beclin 1 induction, p62 decrease and conversion of LC3-I to autophagosome-associated LC3-II in the presence of proteolysis inhibitors. The presence of autophagosome-like vesicles was confirmed by transmission electron microscopy. Compound C-mediated inhibition of AMPK and raptor in U251 cells was associated with paradoxical decrease in phosphorylation of AMPK/raptor-repressed mTOR, a major negative regulator of autophagy, and its downstream target p70S6K. The phosphorylation of an mTOR activator Akt and the PI3K-activating kinase Src was also impaired in compound C-treated cells. The siRNA-mediated AMPK silencing did not reduce the activity of the Akt/mTOR/p70S6K pathway and AMPK activators metformin and AIC AR failed to block compound C-induced autophagy. Autophagy inhibitors bafilomycin and chloroquine significantly increased the cytotoxicity of compound C towards U251 cells, as confirmed by increase in lactate dehydrogenase release, DNA fragmentation and caspase-3 activation. Similar effects of compound C were also observed in C6 rat glioma, L929 mouse fibrosarcoma and B16 mouse melanoma cell lines. Since compound C has previously been reported to suppress AMPK-dependent autophagy in different cell types, our findings suggest that the effects of compound C on autophagy might be dose-, cell type- and/or context-dependent. By demonstrating the ability of compound C to induce autophagic response in cancer cells via AMPK inhibition-independent downregulation of Akt/mTOR pathway, our results warrant caution when using compound C to inhibit AMPK-dependent cellular responses, but also support further exploration of compound C and related molecules as potential anticancer agents.  相似文献   

2.
In the present study, we report that compound C, an inhibitor of a key intracellular energy sensor AMP-activated protein kinase (AMPK), can induce autophagy in cancer cells. The induction of autophagy in U251 human glioma cell line was demonstrated by acridine orange staining of intracellular acidic vesicles, Beclin 1 induction, p62 decrease and conversion of LC3-I to autophagosome-associated LC3-II in the presence of proteolysis inhibitors. The presence of autophagosome-like vesicles was confirmed by transmission electron microscopy. Compound C-mediated inhibition of AMPK and raptor in U251 cells was associated with paradoxical decrease in phosphorylation of AMPK/raptor-repressed mTOR, a major negative regulator of autophagy, and its downstream target p70S6K. The phosphorylation of an mTOR activator Akt and the PI3K-activating kinase Src was also impaired in compound C-treated cells. The siRNA-mediated AMPK silencing did not reduce the activity of the Akt/mTOR/p70S6K pathway and AMPK activators metformin and AIC AR failed to block compound C-induced autophagy. Autophagy inhibitors bafilomycin and chloroquine significantly increased the cytotoxicity of compound C towards U251 cells, as confirmed by increase in lactate dehydrogenase release, DNA fragmentation and caspase-3 activation. Similar effects of compound C were also observed in C6 rat glioma, L929 mouse fibrosarcoma and B16 mouse melanoma cell lines. Since compound C has previously been reported to suppress AMPK-dependent autophagy in different cell types, our findings suggest that the effects of compound C on autophagy might be dose-, cell type- and/or context-dependent. By demonstrating the ability of compound C to induce autophagic response in cancer cells via AMPK inhibition-independent downregulation of Akt/mTOR pathway, our results warrant caution when using compound C to inhibit AMPK-dependent cellular responses, but also support further exploration of compound C and related molecules as potential anticancer agents.  相似文献   

3.
In the current study, we showed that the combination of mammalian target of rapamycin (mTOR) inhibitor RAD001 (everolimus) and Akt inhibitor MK-2206 exerted synergistic cytotoxic effects against low-phosphatase and tensin homolog (PTEN) gastric cancer cells (HGC-27 and SNU-601 lines). In HGC-27 cells, RAD001 and MK-2206 synergistically induced G1/S cell cycle arrest, growth inhibition, cell death but not apoptosis. RAD001 and MK-2206 synergistically induced light chain 3B (LC3B) and beclin-1 expression, two important autophagy indicators. Meanwhile, the autophagy inhibitor 3-methyladenine (3-MA) and chloroquine inhibited the cytotoxic effects by RAD001 and MK-2206, suggesting that autophagic, but not apoptotic cell death was important for the cytotoxic effects by the co-administration. We observed that the combination of RAD001 and MK-2206 exerted enhanced effects on Akt/mTOR inhibition, cyclin D1 down-regulation and ERK/MAPK(extracellular signal-regulated kinase/mitogen-activated protein kinases) activation. Intriguingly, MEK/ERK inhibitors PD98059 and U0126 suppressed RAD001 plus MK-2206-induced beclin-1 expression, autophagy induction and cytotoxicity in HGC-27 cells. In conclusion, these results suggested that the synergistic anti-gastric cancer cells ability by RAD001 and MK-2206 involves ERK-dependent autophagic cell death pathway.  相似文献   

4.
Increased miR‐222 levels are associated with a poor prognosis in patients with bladder cancer. However, the role of miR‐222 remains unclear. In the present study, we found that miR‐222 enhanced the proliferation of both the T24 and the 5637 bladder cancer cell lines. Overexpression of miR‐222 attenuated cisplatin‐induced cell death in bladder cancer cells. miR‐222 activated the Akt/mTOR pathway and inhibited cisplatin‐induced autophagy in bladder cancer cells by directly targeting protein phosphatase 2A subunit B (PPP2R2A). Blocking the activation of Akt with LY294002 or mTOR with rapamycin significantly prevented miR‐222‐induced proliferation and restored the sensitivity of bladder cancer cells to cisplatin. These findings demonstrate that miR‐222 modulates the PPP2R2A/Akt/mTOR axis and thus plays a critical role in regulating proliferation and chemotherapeutic drug resistance. Therefore, miR‐222 may be a novel therapeutic target for bladder cancer.  相似文献   

5.
Autophagy is a cellular degradation process that is up-regulated upon starvation. Nutrition-dependent regulation of mTOR (mammalian target of rapamycin) is a major determinant of autophagy. RTK (receptor tyrosine kinase) signalling and AMPK (AMP-activated protein kinase) converge upon mTOR to suppress or activate autophagy. Nutrition-dependent regulation of autophagy is mediated via mTOR phosphorylation of the serine/threonine kinase ULK1 (unc51-like kinase 1). In the present study, we also describe ULK1 as an mTOR-independent convergence point for AMPK and RTK signalling. We initially identified ULK1 as a 14-3-3-binding protein and this interaction was enhanced by treatment with AMPK agonists. AMPK interacted with ULK1 and phosphorylated ULK1 at Ser(555) in vitro. Mutation of this residue to alanine abrogated 14-3-3 binding to ULK1, and in vivo phosphorylation of ULK1 was blocked by a dominant-negative AMPK mutant. We next identified a high-stringency Akt site in ULK1 at Ser(774) and showed that phosphorylation at this site was increased by insulin. Finally, we found that the kinase-activation loop of ULK1 contains a consensus phosphorylation site at Thr(180) that is required for ULK1 autophosphorylation activity. Collectively, our results suggest that ULK1 may act as a major node for regulation by multiple kinases including AMPK and Akt that play both stimulatory and inhibitory roles in regulating autophagy.  相似文献   

6.
Porcine circovirus type 2 (PCV2) uses autophagy machinery to enhance its replication in PK-15 cells. However, the underlying mechanisms are unknown. By the use of specific inhibitors, RNA interference, and coimmunoprecipitation, we show that PCV2 induces autophagy in PK-15 cells through a pathway involving the kinases AMP-activated protein kinase (AMPK) and extracellular signal-regulated kinase 1/2 (ERK1/2), the tumor suppressor protein TSC2, and the mammalian target of rapamycin (mTOR). AMPK and ERK1/2 positively regulate autophagy through negative control of the mTOR pathway by phosphorylating TSC2 in PCV2-infected PK-15 cells. Thus, PCV2 might induce autophagy via the AMPK/ERK/TSC2/mTOR signaling pathway in the host cells, representing a pivotal mechanism for PCV2 pathogenesis.  相似文献   

7.
Non-small-cell lung cancer (NSCLC) is an aggressive subtype of pulmonary carcinomas with high mortality. However, chemotherapy drug resistance and high recurrence rates hinder the curative effect of platinum-based first-line chemotherapy, which makes it urgent to develop new antitumor drugs for NSCLC. 9za, a new candidate drug synthesized by our research group, has been verified with potent antilung cancer activity in preliminary experiments. However, the underlying molecular mechanism of 9za remains largely vague. This work revealed that 9za could play important cytotoxic and proapoptotic roles in NSCLC cells. Moreover, 9za could induce autophagy and promote autophagy flux. Interestingly, the cytotoxic and proapoptotic roles were significantly dependent on 9za-induced cytoprotective autophagy. That is, the coadministration of 9za with an autophagy inhibitor such as chloroquine or 3-methyladenine exhibited increased cytotoxic and proapoptotic effects compared with 9za treatment alone. In addition, 9za exposure suppressed the phosphorylation of phosphoinositide-dependent protein kinase 1 (PDK1), protein kinase B (Akt), mammalian targets of rapamycin (mTOR), p70 S6 kinase, and 4E binding protein 1 by a dose-dependent way, manifesting that the Akt/mTOR axis was implicated in 9za-induced autophagy. In addition, the overexpression of PDK1 resulted in increased phosphorylation of PDK1 and Akt and blocking of 9za-mediated autophagy. These data showed that the PDK1/Akt/mTOR pathway was involved in 9za-induced autophagy. Hence, this work provides a theoretical basis for exploiting 9za as a new antilung cancer candidate drug and hints that the combination of 9za with an autophagy inhibitor is a feasible alternative approach for the therapy of NSCLC.  相似文献   

8.
The innate immune response elicited by Helicobacter pylori in the human gastric mucosa involves a range of cellular signalling pathways, including those implicated in metabolism regulation. In this study, we analysed H. pylori-induced PI3K/Akt/mTOR signalling, which regulates glycolysis and protein synthesis and associates thereby with cellular energy- and nutrients-consuming processes such as growth and proliferation. The immunohistochemical analysis demonstrated that Akt kinase phosphorylation is abundant in gastric biopsies obtained from gastritis, gastric adenoma and adenocarcinoma patients. Infection with H. pylori led to the phosphorylation of Akt effectors mTOR and S6 in a type 4 secretion system (T4SS)-independent manner in AGS cells. We observed that the activation of these molecules was dependent on PI3K and the Src family tyrosine kinases. Furthermore, H. pylori induced the phosphorylation of 4E-BP1 and eIF4E and suppressed the phosphorylation of eEF2, which are important regulators of protein synthesis. Inhibition of PI3K and Akt kinase prevented the phosphorylation of 4E-BP1, suggesting that PI3K signalling is involved in the regulation of translation initiation during H. pylori infection. Metabolic labelling showed that infected cells had higher rates of [35S]methionine/cysteine incorporation, and this effect could be prevented using LY294002, an PI3K inhibitor. Thus, H. pylori activates PI3K/Akt signalling, mTOR, eIFs and protein translation, which might impact H. pylori-related gastric pathophysiology.  相似文献   

9.
Here we show that chrysin induces growth inhibition and apoptosis in cultured lung cancer A549 cells, and activation of AMP-activated protein kinase (AMPK) may contribute to this process. Our Western-blots results demonstrated a significant AMPK activation after chrysin treatment in A549 cells. Inhibition of AMPK by shRNA-mediated gene silencing, or by its inhibitor, diminished chrysin-induced A549 cell growth inhibition and apoptosis. Forced activation of AMPK by introducing a constitutively active form of AMPKα (CA-AMPKα), or by its activators, mimicked chrysin's effect. For mechanism analysis, we found chrysin inhibited Akt/mammalian target of rapamycin (mTOR) activation, and knocking-down of AMPK by shRNA almost reversed this effect. Finally, we observed that a relative low dose of chrysin enhanced doxorubicin-induced AMPK activation to promote A549 cell apoptosis. Our study suggests that activation of AMPK by chrysin contributes to Akt suppression, growth inhibition and apoptosis in human lung cancer cells, and agents that could activate AMPK may serve as useful adjuvants for traditional chemotherapy against lung cancer.  相似文献   

10.
Cucurbitacins, the natural triterpenoids possessing many biological activities, have been reported to suppress the mTORC1/p70S6K pathway and to induce autophagy. However, the correlation between such activities is largely unknown. In this study, we addressed this issue in human cancer cells in response to cucurbitacin E (CuE) treatment. Our results showed that CuE induced autophagy as evidenced by the formation of LC3-II and colocalization of punctate LC3 with the lysosomal marker LAMP2 in HeLa and MCF7 cells. However, CuE induced much lower levels of autophagy in ATG5-knocked down cells and failed to induce autophagy in DU145 cells lacking functional ATG5 expression, suggesting the dependence of CuE-induced autophagy on ATG5. Consistent with autophagy induction, mTORC1 activity (as reflected by p70S6K and ULK1S758 phosphorylation) was inhibited by CuE treatment. The suppression of mTORC1 activity was further confirmed by reduced recruitment of mTOR to the lysosome, which is the activation site of mTORC1. In contrast, CuE rapidly activated AMPK leading to increased phosphorylation of its substrates. AMPK activation contributed to CuE-induced suppression of mTORC1/p70S6K signaling and autophagy induction, since AMPK knockdown diminished these effects. Collectively, our data suggested that CuE induced autophagy in human cancer cells at least partly via downregulation of mTORC1 signaling and upregulation of AMPK activity.  相似文献   

11.
12.
AMP-activated protein kinase (AMPK) regulates cellular proliferation, growth and metabolism. Targeted activation of AMPK is considered an important therapeutic strategy for cancer treatment. To evaluate the effect of growth hormone-releasing hormone (GHRH) and its antagonist MZ-5-156 on the phosphorylation of AMPK and other related regulatory intracellular proteins we employed human non-small cell lung cancer cell line A549, which expresses GHRH receptors. Treatment of A549 cells with GHRH antagonist decreased cell proliferation and activated AMPK as well as glycogen synthase kinase (GSK)3β. Furthermore, MZ-5-156 inhibited Akt, the mammalian target of rapamycin (mTOR) and its downstream target eIF4E which controls protein synthesis and cell growth. GHRH(1-29)NH2 counteracted all these effects. HeLa human endometrial cancer cells which do not express any GHRH receptors were used as a negative control and GHRH did not induce the AMPK activation in these cells. Our results demonstrate for the first time that GHRH antagonists can regulate the AMPK metabolic pathway, which is crucial for the growth of non-small cell lung cancer and other major cancers.  相似文献   

13.
Here we report that activation of AMP-activated protein kinase (AMPK) mediates plumbagin-induced apoptosis and growth inhibition in both primary cultured human colon cancer cells and cell lines. Knocking-down of AMPKα by the target shRNA significantly inhibits plumbagin-induced cytotoxicity in cultured colon cancer cells, while forced activation of AMPK by introducing a constitutively active AMPK (CA-AMPK), or by the AMPK activator, inhibits HT-29 colon cancer cell growth. Our Western-blots and immunoprecipitation (IP) results demonstrate that plumbagin induces AMPK/Apoptosis signal regulating kinase 1 (ASK1)/TNF receptor-associated factor 2 (TRAF2) association to activate pro-apoptotic c-Jun N-terminal kinases (JNK)-p53 signal axis. Further, after plumbagin treatment, activated AMPK directly phosphorylates Raptor to inhibit mTOR complex 1 (mTORC1) activation and Bcl-2 expression in colon cancer cells. Finally, we found that exogenously-added short-chain ceramide (C6) enhances plumbagin-induced AMPK activation and facilitates cell apoptosis and growth inhibition. Our results suggest that AMPK might be the key mediator of plumbagin's anti-tumor activity.  相似文献   

14.
Vitamin E-succinate (VES) induced HL-60 human leukemia cells to undergo apoptosis. Treatment with VES induced membrane translocation of Fas; cleavages of caspase-3, PARP, and lamin B; hypophosphorylation of retinoblastoma protein; and increase of p21(WAF1) protein level. During the induction of apoptosis, activity of PKC was gradually increased with downregulation of VES-induced ERK activity and accompanied by activation of caspase-3. Inhibition of PKC by GF109203X blocked VES-mediated membrane translocation of PKC-alpha and cleavage of caspase-3 cascade, resulting in prevention of VES-induced apoptosis. On the contrary, PKC activation by cotreatment with LPC or thapsigargin and VES synergistically increased VES-mediated apoptosis. However, inhibition of ERK activity by PD98059 showed no significant effect on VES-induced PKC activity and apoptosis. Taken together, our data suggest that VES induces activation of PKC and PKC-dependent hypophosphorylation of retinoblastoma protein, which results in induction of apoptosis, and that VES-induced early activation of ERK and ERK-dependent induction of p21(WAF1) are not required for apoptosis.  相似文献   

15.
RRR-alpha-Tocopheryl succinate (vitamin E succinate, VES) is a potent antitumor agent, inducing DNA synthesis arrest, differentiation, and apoptosis. Because little is known about VES-induced differentiation, studies reported here characterize VES effects on the differentiation status of human breast cancer cell lines and investigate possible molecular mechanisms involved. VES-induced differentiation of human MCF-7 and MDA-MB-435 breast cancer cells was characterized by morphological changes, induction of lipid droplets, induction of beta-casein mRNA expression, and down-regulation of Her2/neu protein. In contrast, VES treatment of normal human mammary epithelial cells, MCF-10A cells, and T-47D cells did not induce differentiation. Studies addressing mechanisms showed that neither antibody neutralization of the transforming growth factor-beta signaling pathway nor expression of a dominant-negative mutant of c-Jun N-terminal kinase blocked the ability of VES to induce differentiation; however, treatment of cells with PD 98059, a chemical inhibitor of mitogen-activated protein kinase kinase (MEK1/2), blocked the ability of VES to induce differentiation.  相似文献   

16.
AMP-activated protein kinase (AMPK) is an important energy-sensing protein in skeletal muscle. Mammalian target of rapamycin (mTOR) mediates translation initiation and protein synthesis through ribosomal S6 kinase 1 (S6K1) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1). AMPK activation reduces muscle protein synthesis by down-regulating mTOR signaling, whereas insulin mediates mTOR signaling via Akt activation. We hypothesized that AMPK-mediated inhibitory effects on mTOR signaling depend on catalytic alpha2 and regulatory gamma3 subunits. Extensor digitorum longus muscle from AMPK alpha2 knockout (KO), AMPK gamma3 KO, and respective wild-type (WT) littermates (C57BL/6) were incubated in the presence of 5-aminoimidazole-4-carboxamide-1-beta-d-ribonucleoside (AICAR), insulin, or AICAR plus insulin. Phosphorylation of AMPK, Akt, and mTOR-associated signaling proteins were assessed. Insulin increased Akt Ser473 phosphorylation (P < 0.01), irrespective of genotype or presence of AICAR. AICAR increased phosphorylation of AMPK Thr172 (P < 0.01) in WT but not KO mice. Insulin stimulation increased phosphorylation of S6K1 (Thr389), ribosomal protein S6 (Ser235/236), and 4E-BP1 (Thr37/46) (P < 0.01) in WT, AMPK alpha2 KO, and AMPK gamma3 KO mice. However, in WT mice, preincubation with AICAR completely inhibited insulin-induced phosphorylation of mTOR targets, suggesting mTOR signaling is blocked by prior AMPK activation. The AICAR-induced inhibition was partly rescued in extensor digitorum longus muscle from either alpha2 or gamma3 AMPK KO mice, indicating functional alpha2 and gamma3 subunits of AMPK are required for the reduction in mTOR signaling. AICAR alone was without effect on basal phosphorylation of S6K1 (Thr389), ribosomal protein S6 (Ser235/236), and 4E-BP1 (Thr37/46). In conclusion, functional alpha2 and gamma3 AMPK subunits are required for AICAR-induced inhibitory effects on mTOR signaling.  相似文献   

17.
J Tesarik  L Garrigosa  C Mendoza 《Steroids》1999,64(1-2):22-27
It is known that steroids can induce cell surface receptor aggregation followed by activation of receptor and nonreceptor tyrosine kinases. It has been shown recently that 17beta-estradiol (E2) can stimulate the Src/p21ras/mitogen-activated protein kinase pathway in breast cancer cells, and this effect is supposed to mediate the E2-induced stimulation of breast cancer cell proliferation, possibly via activation of the c-fos and c-jun early genes or of genes involved in cell cycle control. Here we demonstrate the existence of an alternative mechanism of the cancer-promoting effect of E2. Human breast cancer cells (MCF-7) were exposed to the known proapoptotic agent vitamin E succinate (VES), added alone or together with different concentrations of E2. E2 conjugated with bovine serum albumin (E2-BSA), which cannot cross the plasma membrane of living cells, was also used in some experiments to assess whether E2 acted on the cell surface or at intracellular receptors. Apoptosis was analyzed by fluorescence-activated cell sorting after cell staining with propidium iodide and FITC-labeled annexin V. E2 showed a concentration-dependent stimulatory effect on spontaneous apoptosis but inhibited the VES-induced apoptosis. However, effects produced by the same molar concentrations of E2 were different when the hormone was free and when it was used in the form of the E2-BSA conjugate. The effects of E2 and E2-BSA were sensitive to genistein, a tyrosine kinase inhibitor. These data show that E2 modulates apoptosis of breast cancer cells, probably acting both at the cell surface and inside the cells. Tyrosine phosphorylation is involved in the signaling pathways mediating this E2 effect.  相似文献   

18.
Polyphyllin VII (PP7), a pennogenyl saponin isolated from Rhizoma Paridis, exhibited strong anticancer activities in various cancer types. Previous studies found that PP7 induced apoptotic cell death in human hepatoblastoma cancer (HepG2) cells. In the present study, we investigated whether PP7 could induce autophagy and its role in PP7-induced cell death, and elucidated its mechanisms. PP7 induced a robust autophagy in HepG2 cells as demonstrated by the conversion of LC3B-I to LC3B-II, degradation of P62, formation of punctate LC3-positive structures, and autophagic vacuoles tested by western blot analysis or InCell 2000 confocal microscope. Inhibition of autophagy by treating cells with autophagy inhibitor (chloroquine) abolished the cell death caused by PP7, indicating that PP7 induced an autophagic cell death in HepG2 cells. C-Jun N-terminal kinase (JNK) was activated after treatment with PP7 and pretreatment with SP600125, a JNK inhibitor, reversed PP7-induced autophagy and cell death, suggesting that JNK plays a critical role in autophagy caused by PP7. Furthermore, our study demonstrated that PP7 increased the phosphorylation of AMPK and Bcl-2, and inhibited the phosphorylation of PI3K, AKT and mTOR, suggesting their roles in the PP7-induced autophagy. This is the first report that PP7 induces an autophagic cell death in HepG2 cells via inhibition of PI3K/AKT/mTOR, and activation of JNK pathway, which induces phosphorylation of Bcl-2 and dissociation of Beclin-1 from Beclin-1/Bcl-2 complex, leading to induction of autophagy.  相似文献   

19.
Previous studies have evidenced that the anticancer potential of curcumin (diferuloylmethane), a main yellow bioactive compound from plant turmeric was mediated by interfering with PI3K/Akt signaling. However, the underlying molecular mechanism is still poorly understood. This study experimentally revealed that curcumin treatment reduced Akt protein expression in a dose- and time-dependent manner in MDA-MB-231 breast cancer cells, along with an activation of autophagy and suppression of ubiquitin-proteasome system (UPS) function. The curcumin-reduced Akt expression, cell proliferation, and migration were prevented by genetic and pharmacological inhibition of autophagy but not by UPS inhibition. Additionally, inactivation of AMPK by its specific inhibitor compound C or by target shRNA-mediated silencing attenuated curcumin-activated autophagy. Thus, these results indicate that curcumin-stimulated AMPK activity induces activation of the autophagy-lysosomal protein degradation pathway leading to Akt degradation and the subsequent suppression of proliferation and migration in breast cancer cell.  相似文献   

20.
BackgroundOvarian cancer is one of the most common gynecological malignancies in the world. Daphnetin (Daph) was previously reported to possess antitumor potential, but its potential and molecular mechanisms in ovarian cancer remain poorly understood.PurposeIn the current study, we aimed to explore the antitumor effect and detailed mechanisms of Daph in ovarian cancer cells.MethodsThe cytotoxic effect of Daph on ovarian cells was determined in vitro and in vivo. Cell growth, proliferation, apoptosis and ROS generation were measured by CCK8 assays, colony formation assays and flow cytometry. Western blotting was used to evaluate the related signal proteins. Immunofluorescence and transmission electron microscopy were used to evaluate markers of autophagy and autophagic flux. The antitumor effects were observed in the A2780 xenograft model. Moreover, Daph-induced autophagy was observed by enhanced LC3-II accumulation and endogenous LC3 puncta, and an autophagy inhibitor further enhanced the antitumor efficacy of Daph, which indicated that the cytoprotective role of autophagy in ovarian cancer.ResultsWe found that Daph exhibited antitumor effects by inducing ROS-dependent apoptosis in ovarian cancer, which could be reversed by N-acetyl cysteine (NAC). The AMPK/Akt/mTOR pathway was involved in Daph-mediated cytoprotective autophagy, and when Daph-mediated the expression level of AMPK and autophagy were blocked, there was robust inhibition of cell proliferation and induction of apoptosis. In addition, in the A2780 xenograft model, combined treatment with Daph and an autophagy inhibitor showed obvious synergetic effects on the inhibition of cell viability and promotion of apoptosis, without any side effects.ConclusionOur results suggest that Daph triggers ROS-induced cell apoptosis and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway. Moreover, the combination of Daph and autophagy inhibitor may be a potential therapeutic strategy for ovarian cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号