首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The metastatic spread of a tumor is dependent upon the ability of the tumor to stimulate surrounding stromal cells to express enzymes required for tissue remodeling. The immunoglobulin superfamily protein basigin (EMMPRIN/CD147) is a cell surface glycoprotein expressed by tumor cells that stimulates matrix metalloproteinase and vascular endothelial growth factor expression in stromal cells. The ability of basigin to stimulate expression of molecules involved in tissue remodeling and angiogenesis makes basigin a potential target for the development of strategies to block metastasis. However, the identity of the cell surface receptor for basigin remains controversial. The goal of this study was to determine the identity of the receptor for basigin. Using a novel recombinant basigin protein (rBSG) corresponding to the extracellular domain of basigin, it was demonstrated that the native, nonglycosylated rBSG protein forms dimers in solution. Furthermore, rBSG binds to the surface of uterine fibroblasts, activates the ERK1/2 signaling pathway, and induces expression of matrix metalloproteinases 1, 2, and 3. Proteins that interact with rBSG were isolated using a biotin label transfer technique and sequenced by matrix-assisted laser desorption ionization tandem mass spectrophotometry. The results demonstrate that rBSG interacts with basigin expressed on the surface of fibroblasts and is subsequently internalized. During internalization, rBSG associates with a novel form of human basigin (basigin-3). It was concluded that cell surface basigin functions as a membrane receptor for soluble basigin and this homophilic interaction is not dependent upon glycosylation of the basigin ligand.  相似文献   

2.
Excitotoxicity due to the excessive activation of glutamatergic receptors leads to neuronal dysfunction and death. Excitotoxicity has been implicated in the pathogenesis of a myriad of neurodegenerative diseases with distinct etiologies such as Alzheimer’s and Parkinson’s. Numerous studies link apolipoprotein D (apoD), a secreted glycoprotein highly expressed in the central nervous system (CNS), to maintain and protect neurons in various mouse models of acute stress and neurodegeneration. Here, we used a mouse model overexpressing human apoD in neurons (H-apoD Tg) to test the neuroprotective effects of apoD in the kainic acid (KA)-lesioned hippocampus. Our results show that apoD overexpression in H-apoD Tg mice induces an increased resistance to KA-induced seizures, significantly attenuates inflammatory responses and confers protection against KA-induced cell apoptosis in the hippocampus. The apoD-mediated protection against KA-induced toxicity is imputable in part to increased plasma membrane Ca2+ ATPase type 2 expression (1.7-fold), decreased N-methyl-d-aspartate receptor (NMDAR) subunit NR2B levels (30 %) and lipid metabolism alterations. Indeed, we demonstrate that apoD can attenuate intracellular cholesterol content in primary hippocampal neurons and in brain of H-apoD Tg mice. In addition, apoD can be internalised by neurons and this internalisation is accentuated in ageing and injury conditions. Our results provide additional mechanistic information on the apoD-mediated neuroprotection in neurodegenerative conditions.  相似文献   

3.
Basigin (Bsg) is a transmembrane glycoprotein with two immunoglobulin-like domains, and forms a family with embigin and neuroplastin. In these proteins a conserved glutamic acid is present in the middle for the transmembrane domain. Bsg is also called CD147 and EMMPRIN, and the symbol for the human basigin gene is BSG. BSG is located in chromosome 19 band p13. 3. Knockout mice deficient in the Bsg gene are sterile and show various neurological abnormalities. Bsg-deficient embryos are also difficult to implant. Bsg has been found to participate in the cell-surface orientation of monocarboxylic acid transporters (MCTs) to the plasma membrane. Dysfunction of the retina in Bsg-deficient mice is ascribed to the failure of plasma membrane integration of MCTs in the tissue. Bsg is also involved in inflammatory processes and is proposed to be a receptor of cyclophilin A; it is also likely to participate in HIV infection. Bsg in tumor cells triggers the production or release of matrix metalloproteinases in the surrounding mesenchymal cells and tumor cells, thereby contributing to tumor invasion. Furthermore, the association of Bsg with integrins might be important in signaling through Bsg.  相似文献   

4.
Receptor internalization from the cell surface occurs through several mechanisms. Some of these mechanisms, such as clathrin coated pits, are well understood. The M(2) muscarinic acetylcholine receptor undergoes internalization via a poorly-defined clathrin-independent mechanism. We used isotope coded affinity tagging and mass spectrometry to identify the scaffolding protein, receptor for activated C kinase (RACK1) as a protein enriched in M(2)-immunoprecipitates from M(2)-expressing cells over those of non-M(2) expressing cells. Treatment of cells with the agonist carbachol disrupted the interaction of RACK1 with M(2). We further found that RACK1 overexpression inhibits the internalization and subsequent down regulation of the M(2) receptor in a receptor subtype-specific manner. Decreased RACK1 expression increases the rate of agonist internalization of the M(2) receptor, but decreases the extent of subsequent down-regulation. These results suggest that RACK1 may both interfere with agonist-induced sequestration and be required for subsequent targeting of internalized M(2) receptors to the degradative pathway.  相似文献   

5.
Once internalized, some G protein-coupled receptors (GPCRs) can recycle back to the cell surface, while some of them are delivered to lysosomes for degradation. Because recycling and degradation represent two opposing receptor fates, understanding the mechanisms that determine post-endocytic fate of GPCRs is of great importance. Our recent work has verified that agonist-induced internalization of delta-opioid receptor (DOR) employs both phosphorylation-dependent and -independent mechanisms in HEK293 cells. To investigate whether these two internalization mechanisms work differently in receptor regulation, we monitored receptor post-endocytic fates using flow cytometry, surface receptor biotinylation and radioligand binding assays. Results showed that the internalized wild type DOR could either recycle to the cell surface or be degraded. Mutant DOR M4/5/6, which lacks all three G protein-coupled receptor kinase 2 (GRK2) phosphorylation sites, could also internalize upon agonist challenge although in a reduced level as compared with the wild type counterpart. However, the internalized mutant DOR could not recycle back to the cell surface and all mutant DOR was degraded after internalization. Inhibition of GRK2 expression by GRK2 RNAi also strongly attenuated recycling of DOR. Furthermore, overexpression of GRK2, which significantly increased receptor phosphorylation and internalization, also targeted more internalized receptors to the recycling pathway. These data suggest that GRK2-catalyzed receptor phosphorylation is critically involved in DOR internalization and recycling, and the phosphorylation-independent internalization leads to receptor degradation. Data obtained from beta-arrestin1 and beta-arrestin2 RNAi experiments indicated that both beta-arrestin1 and beta-arrestin2 participate in phosphorylation-dependent internalization and the subsequent recycling of DOR. However, phosphorylation-independent internalization and degradation of DOR were strongly blocked by beta-arrestin2 RNAi, but not beta-arrestin1 RNAi. Taken together, these data demonstrate for the first time that GRK2 phosphorylation-dependent internalization mediated by both beta-arrestin1 and beta-arrestin2 leads DOR to recycle, whereas GRK2-independent internalization mediated by beta-arrestin2 alone leads to receptor degradation. Thus, the post-endocytic fate of internalized DOR can be regulated by GRK2-catalyzed receptor phosphorylation as well as distinct beta-arrestin isoforms.  相似文献   

6.
The internalization of G protein-coupled receptors is regulated by several important proteins that act in concert to finely control this complex cellular process. Here, we have applied the RNA interference approach to demonstrate that ADP-ribosylation factor 6 (ARF6) is essential for the endocytosis of a broad variety of receptors. Reduction of endogenous expression of ARF6 in HEK 293 cells resulted in a correlated inhibition of the beta(2) -adrenergic receptor internalization previously characterized as being sequestered via the clathrin-coated vesicle pathway. Furthermore, other receptors internalizing via this endocytic route, namely the angiotensin type 1 receptor and the vasopressin type 2 receptor, were also impaired in their ability to be sequestered when levels of endogenous ARF6 in cells were reduced. Interestingly, endocytosis of the endothelin type B receptor, characterized as being internalized via the caveolae pathway, was also markedly inhibited in ARF6-depleted cells. In contrast, internalization of the vasoactive intestinal peptide receptor was unaffected by reduced levels of ARF6. Finally, internalization of the acetylcholine-muscarinic type 2 receptor via the non-clathrin-coated vesicle pathway was also inhibited in ARF6-depleted cells. Taken together, our results demonstrate that ARF6 proteins play an essential role in the internalization process of most G protein-coupled receptors regardless of the endocytic route being utilized. However, this phenomenon is not general. In some cases, another ARF isoform or other proteins may be essential to regulate the endocytic process.  相似文献   

7.
IL-1 elicits its cellular effects by binding a heterodimeric receptor consisting of IL-1RI and the accessory protein, IL-1RAcPr. In addition, it binds to IL-1RII, which lacking signaling function has been ascribed a decoy role. The fate of the ligand following interaction with the decoy receptor was examined in human polymorphonuclear cells (PMN), which express predominantly (>90%) IL-1RII. Incubation of PMN with IL-1beta results in a rapid decrease in cell surface-associated ligand accompanied by a concomitant increase in internalized IL-1 with 50-60% of IL-1beta located intracellularly within 1 h at 37 degrees C. The use of blocking Abs revealed that IL-1 internalization is mediated exclusively by the decoy receptor. The results of inhibitor analysis demonstrate that internalization requires ATP synthesis and involves clathrin-mediated endocytosis. Following removal of the ligand, the receptor was rapidly re-expressed on the cell surface. Cyclohexamide, a protein synthesis inhibitor, had no effect upon the process, suggesting that the re-expressed receptor was recycled. In addition, human keratinocytes stably transfected with IL-1RII (HaCAT 811) also internalized the IL-1RII with 43% cell surface receptor internalized after 90 min. Immunofluorescence microscopy revealed colocalization of the internalized receptor with wheat germ agglutinin-labeled internalized glycoproteins and early endosome Ag-1, a protein associated with the early endosome compartments, indicative of cellular uptake of IL-1RII by endocytosis. In contrast, little or no internalization was observed in other cells of immune origin. These results suggest that the decoy receptor IL-1RII can act as a scavenger of IL-1, representing a novel autoregulatory mechanism of the IL-1 system.  相似文献   

8.
We previously demonstrated that long term treatment of the Ag-specific CD4+ T cell clone P28D with soluble HIV envelope glycoprotein gp120 results in a marked impairment of CD3/TCR-mediated responses. In this report, to further understand these inhibitory effects, the binding properties and internalization of gp120 have been investigated, in parallel with functional studies, in long term incubations of P28D cells with gp120. Immunofluorescence studies show that surface-bound gp120 level is maximal within 1 h of incubation at 37 degrees C and then gradually decreases. This decrease is accompanied by a progressive down-modulation of membrane CD4 (30-35% loss over a 18-h incubation period) without concomitant alteration of the CD4 mRNA steady-state level. Similar experiments performed with 125I-labeled gp120 demonstrate that the glycoprotein is progressively internalized (up to 35% internalized material after 18 h) and that it accumulates inside the cells. Confocal microscopy studies show that internalized gp120 is concentrated in localized intracellular compartments. CD4 also accumulates in compartments with a similar localization and is stained with mAb OKT4 but not with mAb OKT4a. Concomitantly to internalization of gp120 and disappearance of membrane CD4, a correlated loss of the CD4-associated tyrosine kinase p56lck is evidenced. Interestingly, a progressive impairment of the P28D responses to specific Ag or to anti-CD3 mAb is also observed. Inhibitions of T cell proliferation increase with the degree of both CD4 and p56lck down-modulation. Removal of exogenous gp120 results in a rapid and spontaneous release of internalized gp120 into a degraded form. A progressive restoration of CD4 and p56lck levels is also noticed. In parallel, CD3/TCR-mediated responses of clone P28D are fully recovered. Altogether, our results suggest that HIV-1 glycoprotein gp120 is able to down-modulate membrane CD4 presumably by a cointernalization process and to further down-modulate the associated p56lck. This dual phenomenon is presumably involved in the direct immunosuppressive effect of gp120 on the CD3/TCR-mediated activation pathway.  相似文献   

9.
We have investigated trafficking of two negative regulators of growth hormone receptor (GHR) signaling: a human, truncated receptor, GHR1-279, and a GH antagonist, B2036. Fluorescent-labeled growth hormone (GH) was rapidly internalized by the full-length GHR, with >80% of the hormone internalized within 5 min of exposure to GH. In contrast, <5% of labeled GH was internalized by cells expressing truncated GHR1-279. Using another truncated receptor, GHR1-317 fused to enhanced green fluorescent protein (EGFP), we have exploited fluorescence energy transfer to monitor the trafficking of ligand-receptor complexes. The data confirmed that internalization of this truncated receptor is very inefficient. It was possible to visualize the truncated GHR1-317-EGFP packaged in the endoplasmic reticulum, its rapid movement in membrane bound vesicles to the Golgi apparatus, and subsequent transport to the cell membrane. The GH antagonist, B2036, blocked Jak2-Stat5-mediated GHR signaling but was internalized with a similar time course to native GH. The results: 1) demonstrate the rapid internalization of GH when studied under physiological conditions; 2) confirm the hypothesis that internalization of cytoplasmic domain truncated human GHRs is very inefficient, which explains their dominant negative action; and 3) show that the antagonist action of B2036 is independent of receptor internalization.  相似文献   

10.
MUC1 is a type I transmembrane glycoprotein aberrantly overexpressed in various cancer cells. It is thought to serve as a physical barrier from the extracellular environment and also as a receptor for various extracellular molecules. However, little is known about the fate of MUC1 during and after the interaction with these molecules. In the present study, we used anti-MUC1 antibody as an interacting molecule and investigated the cellular trafficking of MUC1. Our results showed that: (1) anti-MUC1 antibody was internalized only in MUC1 expressing cells and triggered internalization and down-regulation of MUC1; (2) the internalization of MUC1 by anti-MUC1 antibody required the cytoplasmic tail of MUC1 and was suppressed by inhibitors of Na+/H+ exchanger, and caveola/raft-dependent internalization, but not by an inhibitor of clathrin-dependent internalization. We conclude that antibody-induced internalization of MUC1 involves the macropinocytotic pathway.  相似文献   

11.
G protein-coupled receptors form the largest family of membrane receptors and transmit diverse ligand signals to modulate various cellular responses. After activation by their ligands, some of these G protein-coupled receptors are desensitized, internalized (endocytosed), and down-regulated (degraded). In HEK 293 cells, the G(s)-coupled beta2-adrenergic receptor was postulated to initiate a second wave of signaling, such as the activation of the mitogen-activated protein kinase (MAPK) pathway after the receptor is internalized. The tyrosine kinase c-Src plays a critical role in these events. Here we used mouse embryonic fibroblast (MEF) cells deficient in Src family tyrosine kinases to examine the role of Src in beta2-adrenergic receptor signaling to the MAPK pathway and in receptor internalization. We found that in Src-deficient cells the beta2-adrenergic receptor could activate the MAPK pathway. However, the internalization of beta2-adrenergic receptors was blocked in Src-deficient MEF cells. Furthermore, we observed that in MEF cells deficient in beta-arrestin 2 the internalization of the beta2-adrenergic receptor was impaired, whereas the activation of the MAPK pathway by the beta2-adrenergic receptor was normal. Our data demonstrate that although Src and beta-arrestin 2 play essential roles in beta2-adrenergic receptor internalization, they are not required for the activation of the MAPK pathway by the beta2-adrenergic receptor. In other words, our finding suggests that receptor internalization is not required for beta2-adrenergic receptor signaling to the MAPK pathway in MEF cells.  相似文献   

12.
Recently, we showed that the internalization of the epidermal growth factor (EGF) receptor is inhibited by hydrogen peroxide (H(2)O(2)) in human fibroblasts. In order to test the effect of various stress conditions on receptor internalization and to test a variety of antioxidants in their capacity to prevent or reduce the H(2)O(2)-induced inhibition of internalization, a screening assay was developed to measure the internalization in 96-well plates. In this assay, cells are exposed to biotin-conjugated EGF and the amount of internalized EGF is detected with horseradish peroxidase-conjugated streptavidin. We show that the results obtained by this new assay are comparable with those from internalization studies performed with radioactive labeled EGF. Therefore, the cellular internalization assay as presented here is a reliable method to measure EGF receptor internalization. Moreover, because elaborate processing of the cells is not required, the assay is a relatively fast and inexpensive method to study ligand-induced internalization in 96-well plates and thereby is suitable for large-scale screening of compounds or conditions interfering with this internalization.  相似文献   

13.
The internalization of CD4, a T cell differentiation antigen and the receptor for the human immunodeficiency viruses (HIV-1 and -2), has been examined in HeLa and murine 3T3 cells transfected with CD4 cDNA. Fab' fragments of the anti-CD4 monoclonal antibody Leu3a were generated by pepsin digestion and used as a specific monovalent, non-crosslinking ligand for CD4. These Fab' fragments were shown to bind to CD4 on the transfected cells with an affinity similar to that of HIV gp120, and inhibited HIV infection of lymphocytic cells. The Fab' fragments were radioiodinated and used in an acid-stripping endocytosis assay to demonstrate that the CD4 expressed on transfected HeLa and NIH3T3 cells was internalized. Approximately 1.5-2% of the total cell-bound [125I]Fab' fragments were internalized per minute. Furthermore, the internalized [125I]Fab' fragments could be shown to recycle to the cell surface. After 30-60 min a steady state was reached between internalization and recycling, with approximately 30-40% of the total cellular CD4 pool residing inside the cell. Similar results were obtained in studies with the intact divalent radiolabelled Leu3a antibody. These data demonstrate that CD4 expressed on transfected non-lymphoid cells is constitutively endocytosed and recycled.  相似文献   

14.
The corticotropin releasing factor (CRF) type 1 receptor (CRF1) is a class B family G protein-coupled receptor that regulates the hypothalamic-pituitary-adrenal stress axis. Astressin is an amino-terminal truncated analog of CRF that retains high affinity binding to the extracellular domain of the receptor and is believed to act as a neutral competitive antagonist of receptor activation. Here we show that despite being unable to activate the CRF1 receptor, astressin binding results in the internalization of the receptor. Furthermore, entirely different pathways of internalization of CRF1 receptors are utilized following CRF and astressin binding. CRF causes the receptor to be phosphorylated, recruit beta-arrestin2, and to be internalized rapidly, likely through clathrin-coated pits. Astressin, however, fails to induce receptor phosphorylation or beta-arrestin2 recruitment, and internalization is slow and occurs through a pathway that is insensitive to inhibitors of clathrin-coated pits and caveolae. The fate of the internalized receptors also differs because only CRF-induced internalization results in receptor down-regulation. Furthermore, we present evidence that for astressin to induce internalization it must interact with both the extracellular amino terminus and the juxtamembrane domain of the receptor. Astressin binds with 6-fold higher affinity to full-length CRF1 receptors than to a chimeric protein containing only the extracellular domain attached to the transmembrane domain of the activin IIB receptor, yet two 12-residue analogs of astressin have similar affinities for both proteins but are unable to induce receptor internalization. These data demonstrate that agonists and antagonists for CRF1 receptors promote distinct conformations, which are then differentially regulated.  相似文献   

15.
Nicotinic acid (niacin) has been widely used as a favorable lipid-lowering drug for several decades, and the orphan G protein-coupled receptor GPR109A has been identified to be a receptor for niacin. Mechanistic investigations have shown that as a Gi-coupled receptor, GPR109A inhibits adenylate cyclase activity upon niacin activation, thereby inhibiting free fatty acid liberation. However, the underlying molecular mechanisms that regulate signaling and internalization of GPR109A remain largely unknown. To further characterize GPR109A internalization, we made a construct to express GPR109A fused with enhanced green fluorescent protein (EGFP) at its carboxyl-terminal end. In stable GPR109A-EGFP-expressing HEK-293 cells, GPR109A-EGFP was mainly localized at the plasma membrane and was rapidly internalized in a dose- and time-dependent manner upon agonist stimulation. GPR109A internalization was completely blocked by hypertonic sucrose, indicating that GPR109A internalizes via the clathrin-coated pit pathway. Further investigation demonstrated that internalized GPR109A was recycled to the cell surface after the removal of agonist, and recycling of the internalized receptors was not blocked by treatment with acidotropic agents, NH4Cl and monensin. Pertussis toxin pretreatment not only inhibited forskolin-induced cAMP accumulation and intracellular Ca2+ mobilization; it also significantly attenuated agonist-promoted GPR109A internalization. Moreover, RNA interference experiments showed that knockdown of GRK2 (G protein-coupled receptor kinase 2) and arrestin3 expression significantly impaired receptor internalization. Taken together, these results indicate that the agonist-induced internalization of GPR109A receptors is regulated by GRK2 and arrestin3 in a pertussis toxin-sensitive manner and that internalized receptor recycling is independent of endosomal acidification.  相似文献   

16.
Varicella-zoster virus (VZV) encodes a cell surface Fc receptor, glycoprotein gE. VZV gE has previously been shown to display several features common to nonviral cell surface receptors. Most recently, VZV gE was reported to be tyrosine phosphorylated on a dimeric form (J. K. Olson, G. A. Bishop, and C. Grose, J. Virol. 71:110-119, 1997). Thereafter, attention focused on the ability of VZV gE to undergo receptor-mediated endocytosis. The current transient transfection studies demonstrated by confocal microscopy and internalization assays that VZV gE was endocytosed when expressed in HeLa cells. Endocytosis of gE was shown to be dependent on clathrin-coated vesicle formation within the cells. Subsequent colocalization studies showed that endocytosis of VZV gE closely mimicked endocytosis of the transferrin receptor. The gE cytoplasmic tail and more specifically tyrosine residue 582 were determined by mutagenesis studies to be important for efficient internalization of the protein; this tyrosine residue is part of a conserved YXXL motif. The amount of gE internalized at any given time reached a steady state of 32%. In addition, like the transferrin receptor, internalized gE recycled to the cell surface. The finding of gE endocytosis provided insight into earlier documentation of gE serine/threonine and tyrosine phosphorylation, since these phosphorylation events may serve as sorting signals for internalized receptors. Taken together with the previous discovery that both human and simian immunodeficiency virus envelope proteins can undergo endocytosis, the gE findings suggest that endocytosis of envelope components may be a posttranslational regulatory mechanism among divergent families of enveloped viruses.  相似文献   

17.
IL-1 and its receptor are translocated to the nucleus   总被引:19,自引:0,他引:19  
The internalization and intracellular transport of IL-1 and its receptor were examined in the murine T cell line EL-4. For 4 h after internalization intracellular 125I-IL-1 alpha remains bound to its receptor without degradation. Electron microscope autoradiography demonstrates that internalized IL-1 accumulates in purified nuclei. The IL-1 extracted from these nuclei is still bound to receptor. As no receptors for IL-1 were detected in untreated nuclei, these results suggest IL-1 driven translocation of the cell surface IL-1R complex to the nucleus. IL-1R internalization was correlated with IL-1 signal transduction events required to induce growth factor production from several subclones of EL-4 cells. The subsequent transport of the internalized IL-1R complex to the nucleus suggests the possibility for a nuclear site for IL-1R signaling.  相似文献   

18.
The movements of mouse MHC-encoded class II (H-2E) and class I (H-2K), transferrin receptor and surface Ig molecules of B lymphocytes were studied using radiolabeled mAb and electron microscopy. A total of 10 to 20% of antibodies specific for H-2E molecules were gradually internalized with a t 1/2 of 15 min, reaching a plateau after 30 min at 37 degrees C. Equivalent results were obtained either with the whole antibody or Fab' fragments, suggesting that the internalization of class II molecules was spontaneous. Similar results were obtained with antibodies specific for the transferrin receptor, of which 50% were internalized with t 1/2 of 5 min, reaching a plateau after 30 min. In contrast to antibodies specific for H-2E molecules and the transferrin receptor, antibodies specific for H-2K were not internalized. Reappearance of internalized H-2E-specific antibodies at the cell surface was observed at 37 degrees C. When compared to antibodies specific for surface Ig, degradation of antibodies specific for H-2E molecules was limited even after 5 h incubation. Neither ammonium chloride nor cycloheximide inhibited internalization and recycling. Electron microscopy showed that internalization of H-2E molecules occurred via coated pits/coated vesicles. These results indicate that class II molecules are spontaneously internalized and recycled by B lymphocytes.  相似文献   

19.
Many viruses gain access to the cell via the endosomal route and require low endosomal pH for infectivity. The GTPase dynamin is essential for clathrin-dependent endocytosis, and in HeLa cells overexpressing the nonfunctional dynaminK44A mutant the formation of clathrin-coated vesicles is halted. HRV2, a human minor group rhinovirus, is internalized by members of the low-density lipoprotein receptor family in a clathrin-independent manner. The low endosomal pH then leads to conversion of the capsid to C-antigen, which is required for release (uncoating) and transfer of the viral RNA into the cytosol and de novo synthesis of infectious virus. We here demonstrate that overexpression of dynaminK44A reduces this antigenic conversion and results in diminished viral synthesis. In contrast, lysosomal degradation is unaffected. The kinetics of the formation of C-antigen in vitro and in vivo suggest that the pH in endosomes is elevated by about 0.4 units upon overexpression of dynaminK44A. As a consequence, HRV2 uncoating is diminished early after internalization but attains control levels upon prolonged internalization. Thus, overexpression of dynaminK44A, in addition to trafficking defects, results in an elevated endosomal pH and thereby affects virus infection and most likely endosomal sorting and processing.  相似文献   

20.
Recent studies have characterized a specific binding site for the C-terminal 3-8 fragment of angiotensin II (Ang IV). In the present study we looked at the internalization process of this receptor on bovine aortic endothelial cells (BAEC). Under normal culture conditions, BAEC efficiently internalized (125)I-Ang IV as assessed by acid-resistant binding. Internalization of (125)I-Ang IV was considerably decreased after pretreatment of cells with hyperosmolar sucrose or after pretreatment of BAEC with inhibitors of endosomal acidification such as monensin or NH(4)Cl. About 50% of internalized (125)I-Ang IV recycled back to the extracellular medium during a 2 h incubation at 37 degrees C. (125)I-Ang IV remained mostly intact during the whole process of internalization and recycling as assessed by thin layer chromatography. As expected, internalization of (125)I-Ang IV was completely abolished by divalinal-Ang IV, a known AT(4) receptor antagonist. Interestingly, (125)I-divalinal-Ang IV did not internalize into BAEC. These results suggest that AT(4) receptor undergoes an agonist-dependent internalization and recycling process commonly observed upon activation of functional receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号