首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Elevated rates of sediment run-off, as a result of changes in land-use and climate, are a significant threat to marine coastal communities, with a potential to cause broad-scale, long-term alteration of habitats. Individual sedimentation events can smother estuarine flats with terrigenous sediments, creating a significant disturbance to local benthic communities. Variations in the degree to which a habitat is altered, the rate at which mixing occurs, and species-specific dispersal and responses to the altered habitat, suggest that colonisation of terrestrial sediment depositions will vary with location, both between and within estuaries. This study was designed to explore the effect that variations in wave-induced hydrodynamics would have on long-term colonisation of terrestrial sediment depositions on intertidal flats. Sites for the experimental deposition of terrestrial sediment were located along a gradient in wave exposure, with only limited variation in immersion times (30 min) and ambient sediment particle sizes (predominantly fine sand). Over 20 months, periodic measurements were made of factors predicted to affect colonisation: the sediment characteristics of the deposited sediment; local-scale wave climate; bioturbation of the deposited sediment; and local populations of benthic invertebrates. Neither opportunistic use of the new resource, progressive recovery or facilitation by colonising macrofauna was observed. Little vertical mixing of the deposited and existing sediment by either waves or bioturbators occurred; instead bedload transport was the dominant process. Local differences in hydrodynamic conditions and macrobenthic communities resulted in site-specific colonisation of the experimental plots. The strength and duration of the macrofaunal response to deposited sediment observed in this study suggest that chronic small-scale (m's) patchy deposition of terrestrial sediment in the intertidal marine environment has a strong potential to alter both habitats and communities.  相似文献   

2.
We investigated the influence of bioturbation by macrofauna on the vertical distribution of living (stained) benthic foraminifera in marine intertidal sediments. We investigated the links between macrofaunal bioturbation and foraminiferal distribution, by sampling from stations situated on a gradient of perturbation by oyster-farming, which has a major effect on benthic faunal assemblages. Sediment cores were collected on the French Atlantic coast, from three intertidal stations: an oyster farm, an area without oysters but affected by oyster biodeposits, and a control station. Axial tomodensitometry (CT-scan) was used for three-dimensional visualization and two-dimensional analysis of the cores. Biogenic structure volumes were quantified and compared between cores. We collected the macrofauna, living foraminifera, shells and gravel from the cores after scanning, to validate image analysis. We did not investigate differences in the biogenic structure volume between cores. However, biogenic structure volume is not necessarily proportional to the extent of bioturbation in a core, given that many biodiffusive activities cannot be detected on CT-scans. Biodiffusors and larger gallery-diffusors were abundant in macrofaunal assemblage at the control station. By contrast, macrofaunal assemblages consisted principally of downward-conveyors at the two stations affected by oyster farming. At the control station, the vertical distribution of biogenic structures mainly built by the biodiffusor Scorbicularia plana and the large gallery-diffusor Hediste diversicolor was significantly correlated with the vertical profiles of living foraminifera in the sediment, whereas vertical distributions of foraminifera and downward-conveyors were not correlated at the station affected by oyster farming. This relationship was probably responsible for the collection of foraminifera in deep sediment layers (> 6 cm below the sediment surface) at the control station. As previously suggested for other species, oxygen diffusion may occur via the burrows built by S. plana and H. diversicolor, potentially increasing oxygen penetration and providing a favorable microhabitat for foraminifera in terms of oxygen levels. By contrast, the absence of living foraminifera below 6 cm at the stations affected by oyster farming was probably associated with a lack of biodiffusor and large gallery-diffusor bioturbation. Our findings suggest that the effect of macrofaunal bioturbation on the vertical distribution of foraminiferal assemblages in sediments depends on the effects of the macrofauna on bioirrigation and sediment oxidation, as deduced by Eh values, rather than on the biogenic structure volume produced by macrofauna. The loss of bioturbator functional diversity due to oyster farming may thus indirectly affect infaunal communities by suppressing favorable microhabitats produced by bioturbation.  相似文献   

3.
Globally, soils and sediments are affected by the bioturbation activities of benthic species. The consequences of these activities are particularly impactful in intertidal sediment, which is generally anoxic and nutrient-poor. Mangrove intertidal sediments are of particular interest because, as the most productive forests and one of the most important stores of blue carbon, they provide global-scale ecosystem services. The mangrove sediment microbiome is fundamental for ecosystem functioning, influencing the efficiency of nutrient cycling and the abundance and distribution of key biological elements. Redox reactions in bioturbated sediment can be extremely complex, with one reaction creating a cascade effect on the succession of respiration pathways. This facilitates the overlap of different respiratory metabolisms important in the element cycles of the mangrove sediment, including carbon, nitrogen, sulphur and iron cycles, among others. Considering that all ecological functions and services provided by mangrove environments involve microorganisms, this work reviews the microbial roles in nutrient cycling in relation to bioturbation by animals and plants, the main mangrove ecosystem engineers. We highlight the diversity of bioturbating organisms and explore the diversity, dynamics and functions of the sediment microbiome, considering both the impacts of bioturbation. Finally, we review the growing evidence that bioturbation, through altering the sediment microbiome and environment, determining a ‘halo effect’, can ameliorate conditions for plant growth, highlighting the potential of the mangrove microbiome as a nature-based solution to sustain mangrove development and support the role of this ecosystem to deliver essential ecological services.  相似文献   

4.
Parasitism has long been emphasised as an important process structuring animal communities. However, empirical evidence documenting the impact of parasites in other than simple laboratory settings is lacking. Here we examine the trait-mediated indirect effects of echinostome trematodes on a New Zealand soft bottom intertidal community of macroinvertebrates. Curtuteria australis and a second related but undescribed trematode both utilise the cockle Austrovenus stutchburyi as second intermediate host in which the parasites infect the foot tissue. Heavily infected cockles are therefore more sessile than lightly infected individuals, and, unable to bury, often rest on the sediment surface. We utilised these behavioural changes in two long term field experiments, respectively manipulating the parasite load of buried cockle (i.e. bioturbation), and the density of surfaced cockles (i.e. surface structures and seabed hydrodynamics). Both high parasite loads in buried cockles and the presence of surfaced cockles increased species richness and generally also the density of certain species and of major systematic and functional groups of benthic macroinvertebrates. Species diversity (alpha) peaked under intermediate densities of surfaced cockles. Our results demonstrate that parasites, solely through their impact on the behaviour of a single community member, can be significant determinants of animal community structure and function.  相似文献   

5.
Abstract:  Trace fossils such as Climactichnites offer rare insights into the palaeobiology of Cambrian soft-bodied animals, especially those that inhabited emergent sand flats and are not known from body fossils. Analysis of field and museum Climactichnites , together with experiments on the preservation of similar modern trails, indicates that the tracemaker was an elongate, bilaterally symmetrical, dorsoventrally flattened, soft-bodied animal with a muscular foot. These characteristics are consistent with the tracemaker being a primitive mollusc or mollusc-like animal. Unlike most Neoproterozoic and Cambrian molluscs, the tracemaker could reach considerable size; at up to c . 69 cm long, it was one of the largest Cambrian animals of its time. When moving on the sediment surface, locomotion resulted from muscular waves generated along the sole of its flexible foot; the foot was extended and then clamped onto the substrate. Contraction of pedal muscles then pulled the body forward. Sedimentary structures associated with Climactichnites  wilsoni , such as polygonal desiccation cracks, raindrop impressions, adhesion structures and gas escape structures demonstrate that the animal inhabited intermittently subaerially exposed environments. The tracemaker's method of locomotion is similar to that employed by modern intertidal gastropods, which make Climactichnites -like trails on exposed sand flats. However, these modern trails are not preserved because of erosion by wind, waves, tides and subsequent bioturbation. Abundant microbial sedimentary structures are associated with C. wilsoni , and together with low levels of vertical bioturbation, intimate that microbial binding may have mediated the preservation of these early mollusc trails.  相似文献   

6.
Hu B  Shen L  Du P  Zheng P  Xu X  Zeng J 《PloS one》2012,7(3):e33826
Continuous chemical pollution is one of the most serious environmental problems in the Jiaojiang Estuary of the East Sea (China). This chemical pollution has significantly changed the estuarine environmental conditions and may have profoundly influenced the distribution of anammox bacterial communities in this estuary. Here, we investigated the influence of chemical pollution on the community composition, diversity and abundance of anammox bacteria in Jiaojiang estuarine sediments. Phylogenetic analysis of 16S rRNA genes showed that the majority of anammox bacterial sequences retrieved from the estuarine intertidal sediments were associated with Kuenenia. In contrast, different anammox communities composed of Brocadia, Kuenenia, Scalindua and Jettenia were found in the estuarine subtidal sediments. Redundancy analysis (RDA) indicated that the sediment nitrobenzene and organic content had significant impacts on the distribution of anammox communities in the intertidal sediments. Pearson correlation analysis showed that the diversity of anammox bacteria in the intertidal sediments was positively correlated with the organic content. In contrast, RDA results showed that the nitrobenzene content, NO(3)(-) concentration and salinity significantly influenced the distribution of anammox communities in the subtidal sediments. The diversity and relative abundance of anammox bacteria in the subtidal sediments were positively correlated with NO(3)(-) concentration.  相似文献   

7.
The Macoma balthica community, which is widely distributed in intertidal soft sediments bordering the north Atlantic, is dominated by two functional groups with different sediment mixing modes: the biodiffusers M. balthica and Mya arenaria and the gallery-diffuser Nereis virens. To compare the effects of these two groups on sediment oxygen uptake rates, we used experimental microcosms with identical biovolumes to measure the influence of each species on oxygen uptake. The two biodiffusers had similar effects on oxygen uptake in spite of different space occupation and different feeding, ventilation and burrowing modes. Biodiffusers and gallery-diffusers had different effects on oxygen uptake. Periodic ventilation by the gallery-diffusers stimulated the oxygen uptake by the sediment more than the steady activities of the biodiffusers. Temporal variation in oxygen fluxes in bioturbated microcosms was linked to construction and maintenance of biogenic structures. The results confirm that the functional group approach to bioturbation is a useful tool for quantifying the effects of intertidal benthic communities on benthic fluxes.  相似文献   

8.
The early Paleozoic emergence of bioturbating (sediment-dwelling and -mixing) animals has long been assumed to have led to substantial changes in marine biogeochemistry, seafloor ecology, and the preservation potential of both sedimentary and fossil archives. However, the timing of the rise of bioturbation and environmental patterns in its expansion have long been subjects of debate—resolution of which has been hampered, in part, by a paucity of high-resolution bioturbation data or of systematic investigations of facies trends in lower Paleozoic bioturbation. To address these issues, we conducted an integrated sedimentological and ichnological characterization of the Cambrian–Ordovician Port au Port succession and Cow Head Group of western Newfoundland, encompassing over 350 meters of stratigraphy logged at the centimeter to decimeter scale. We find that, across a wide range of marine facies, bioturbation does not on average exceed moderate intensities—corroborating observations from other lower Paleozoic successions indicating that the early Paleozoic development of bioturbation was a protracted process. Moreover, bioturbation intensities in the Port au Port succession and Cow Head Group are commonly characterized by considerable variability at even fine scales of stratigraphic resolution and changes in bioturbation intensity correlate strongly with variability in sedimentary facies. We observe that facies recording nearshore depositional environments and carbonate-rich lithologies are each characterized by the highest intensities of both burrowing and sediment mixing. These data highlight the need for a high-resolution and facies-specific approach to reconstructing the evolutionary history of bioturbation and suggest that average levels of bioturbation, although relatively low throughout this interval, increased notably earlier in nearshore marine settings.  相似文献   

9.
生物扰动对沉积物中污染物环境行为的影响研究进展   总被引:4,自引:0,他引:4  
生物扰动由于显著改变沉积物结构和性质,进而影响沉积物中污染物的环境行为。综述生物扰动对沉积物中氮、磷、重金属和疏水性有机污染物环境行为的影响。生物扰动促进这些污染物从沉积物向水体释放。生物扰动还对不同的污染物产生其它不同的影响。对于氮,生物扰动还影响其硝化与反硝化作用;对于磷,生物扰动不仅改变其化学形态,还提高有机磷降解。对于重金属,生物扰动还能改变其在沉积物中的分布及化学形态。对于疏水性有机污染物,生物扰动主要增强生物富集和代谢,以及提高生物降解。  相似文献   

10.
Algorithms for simulating the response of a benthic animal communityand several abiotic environmental variables to organic pollutionare described. An IBM PC compatible computer program incorporatingthese methods has been written. The program simulates the abundanceresponse of 23 species, the redox potential depth profile andseveral other sediment variables at any distance from a pointsource of pollution. The program has been designed as a teachingtool and examples of its use to study pollution biology andbiometrics are given. Received on April 3, 1990; accepted on September 6, 1990  相似文献   

11.
Benthic communities show changes in composition and structure across different environmental characteristics and habitats. However, incorporating species biological traits into the analysis can provide a better understanding of system functioning within habitats. We compare the functional diversity of macrobenthic communities from a contrasting shallow (15 m) and deep (50 m) sublittoral soft-sediment habitats in northern Chile, using biological traits analysis. Our aim was to highlight the biological characteristics responsible for differences between habitats and the implications for ecosystem functioning. Trait analysis showed that the deep habitat was restricted in providing functionally important biogenic structure and bioturbation and supports less diverse feeding-related energy pathways. The shallow habitat is characterized by more diverse energy pathways and a higher potential for matter exchange through bioturbation. We provide support to the predictions of transfer of energy from the benthos to upper trophic levels in the shallow, which is characterized mainly by normoxia and little organic matter content in the sediment. In the deep habitat, characterized by hypoxia and more organic matter, energy appears to be transferred to microbial components. We suggest that trait analysis should be added to the traditional approaches based on species diversity, because it provides indicators of ecosystem stress.  相似文献   

12.
The radiation of bioturbation during the Ediacaran–Cambrian transition has long been hypothesized to have oxygenated sediments, triggering an expansion of the habitable benthic zone and promoting increased infaunal tiering in early Paleozoic benthic communities. However, the effects of bioturbation on sediment oxygen are underexplored with respect to the importance of biomixing and bioirrigation, two bioturbation processes which can have opposite effects on sediment redox chemistry. We categorized trace fossils from the Ediacaran and Terreneuvian as biomixing or bioirrigation fossils and integrated sedimentological proxies for bioturbation intensity with biogeochemical modeling to simulate oxygen penetration depths through the Ediacaran–Cambrian transition. Ultimately, we find that despite dramatic increases in ichnodiversity in the Terreneuvian, biomixing remains the dominant bioturbation behavior, and in contrast to traditional assumptions, Ediacaran–Cambrian bioturbation was unlikely to have resulted in extensive oxygenation of shallow marine sediments globally.  相似文献   

13.
Biogenic chaos, from an ichnological point of view, can be defined as total bioturbation of sediment by infaunal organisms, such that the original sedimentary fabric and associated sedimentary structures are entirely destroyed. The truth, however, is that not all forms of thorough bioturbation are purely destructive. As improbable as it initially sounds, sediment can be pervasively (potentially 100%) bioturbated, and yet have suffered remarkably little distortion of the original bedding. In nature there exist many different levels of organism communities. Historically, the study of any natural system begins with the most obvious, attention-grabbing elements. Only later do the more innocuous aspects come to be discovered and appreciated. Ichnology shows a similar historical pattern. The most obvious aspects of the science, the discrete burrow or track forms, have been well studied for many years. Only recently have more subtle biogenic disturbances, such as micro borings, bacterial trails, meiofaunal burrows, infaunal tiering, etc., gained attention. Likewise, another level of bioturbation – cryptobioturbation – exists and is becoming more evident in the rock record. Owing to its diminutive and obscure nature, cryptobioturbation has not received widespread attention. As the name implies, cryptobioturbation is characteristically small in scale and exceedingly subtle in expression. What sets it apart from other forms of bioturbation, however is its tendency to preserve rather than to destroy the sediment’s primary physical structure.The fabric that results from cryptobioturbation can have significant influence on resulting permeability and porosity trends. In some systems where both cryptically bioturbated sandstone and generally unburrowed sandstone are present, mini-permeameter measurements show that numerous heterogeneities are retained in the unburrowed sandstone, resulting in a wide range of permeabilities. In contrast, cryptically bioturbated sandstone intervals show that these heterogeneities are less pronounced, and the resulting permeability curve is more uniform. The effect of cryptobioturbation does not result in enhanced permeabilities, but rather diminishes internal heterogeneities, leading to a more uniform permeability distribution.  相似文献   

14.
Introduced ecosystem engineers can severely modify the functioning on invaded systems. Species-level effects on ecosystem functioning (EF) are context dependent, but the effects of introduced ecosystem engineers are frequently assessed through single-location studies. The present work aimed to identify sources of context-dependence that can regulate the impacts of invasive ecosystem engineers on ecosystem functioning. As model systems, four locations where the bivalve Ruditapes philippinarum (Adams and Reeve) has been introduced were investigated, providing variability in habitat characteristics and community composition. As a measure of ecosystem engineering, the relative contribution of this species to community bioturbation potential was quantified at each site. The relevance of bioturbation to the local establishment of the mixing depth of marine sediments (used as a proxy for EF) was quantified in order to determine the potential for impact of the introduced species at each site. We found that R. philippinarum is one of the most important bioturbators within analysed communities, but the relative importance of this contribution at the community level depended on local species composition. The net contribution of bioturbation to the establishment of sediment mixing depths varied across sites depending on the presence of structuring vegetation, sediment granulometry and compaction. The effects of vegetation on sediment mixing were previously unreported. These findings indicate that the species composition of invaded communities, and the habitat characteristics of invaded systems, are important modulators of the impacts of introduced species on ecosystem functioning. A framework that encompasses these aspects for the prediction of the functional impacts of invasive ecosystem engineers is suggested, supporting a multi-site approach to invasive ecology studies concerned with ecosystem functioning.  相似文献   

15.
To explore how climate may affect the structure of natural communities, we quantified the role of thermal stress in setting the high intertidal borders of the acorn barnacle, Semibalanus balanoides. At sites north and south of Cape Cod, a major faunal and thermal boundary on the east coast of North America, we examined the interacting effects of thermal stress and recruit density on individual survivorship. At hotter southern sites, particularly in bays, high intertidal barnacle survivorship was enhanced by experimental shading or by neighbors which ameliorate heat and desiccation stresses. In contrast, at cooler northern bay and coastal sites, neither shading nor group benefits increased barnacle survival, and mortality patterns were driven primarily by predators with largely boreal distributions. Our field results, like recent laboratory microcosm studies, suggest that predicting even simple community responses to climate change may be more complex than is currently appreciated. Received: 26 January 1999 / Accepted: 5 April 1999  相似文献   

16.
A. D. Naumov 《Hydrobiologia》2013,706(1):159-173
The effect on bottom organisms of periodic freezing of the upper layer of intertidal sediments during abnormal cold winters has been studied for a long time in seas of a moderate climatic zone. However, the effect of ice cover every year on intertidal communities in polar seas is still poorly investigated. Seasonal and long-term variation in the structure of intertidal soft-bottom communities in two small bights in the White Sea with annual ice cover was studied for over two decades. Sampling was carried out four times a year, in the hydrological spring, summer, autumn, and winter. It was found that bottom macrobenthic communities at upper and lower horizons of the intertidal distinctly differed in the studied sites. Periodic changes caused by the effect of abnormal ice conditions, including the partial removal by ice of sediment with in situ organisms, were discovered. Recovery of communities after disturbance normally took less than half a year. Communities at the lower and upper horizons of the intertidal zone were more stable than intermediate communities, which led to periodic shifts of the biological border between lower and upper intertidal assemblages.  相似文献   

17.
The ichnology of the Middle Ordovician Winnipeg Formation has been analysed based on the study of cores from five wells drilled in southeast Saskatchewan (Canada). Six sedimentary facies, ranging from upper shoreface to lower offshore settings in a shallow‐marine environment, have been characterized. Ichnological attributes are consistent with those in currently proposed models for shallow‐marine wave‐dominated settings, but ichnodiversity is lower than in post‐Palaeozoic settings. Low ichnodiversity in the Winnipeg Formation most likely reflects evolutionary factors rather than environmental controls. Interestingly, low‐energy, distal deposits of the Winnipeg Formation display intense degree of bioturbation, reflecting a well‐developed mixed layer and underscoring the importance of the Great Ordovician Biodiversification Event in terms of sediment mixing.  相似文献   

18.
In ice-covered Arctic seas, the ice algal production can be the main input of organic matter to the ecosystem. Pelagic–benthic coupling is thought to be particularly tight in those areas. The increase in ice algal production in Franklin Bay from January/February to April/May 2004 paralleled an increase in benthic oxygen demand. However, sedimentary chlorophyll a, which is usually an indicator of “fresh” organic matter inputs to the sea floor, did not increase. Consequently, it was asked what was the fate of the ice algal phytodetritus arriving at the sea floor? To answer this question, photosynthetic pigments from the sea ice, water column particulate organic matter, and sediment, as well as diatom frustules in the sediment, were studied from January to May 2004. The number of ice diatom cells in the sediment showed an increase in April/May, confirming higher inputs of fresh ice algae to the sediment. Changes in sedimentary pigment profiles in the first 10 cm suggested an increase in bioturbation due to enhanced benthic activities. Finally, the decrease in the ratio of chlorophyll a to phaeophorbide a implied an increase in macrobenthic activity. Benthic macrofauna consumed some of the deposited material and mixed some within the top five cm of sediment. The response of sedimentary pigments to an ice algal input can be studied at different levels and it is only the combination of these studies that will allow an understanding of the overall fate of phytodetritus in the benthic compartment.  相似文献   

19.
This study assessed the effects of food supply on sediment reworking by Nereis diversicolor. We hypothesized that food supply would enhance sediment reworking and that the frequency of food supply would affect the intensity of bioturbation. Mesocosm experiments consisted of four treatments: (1) without worms (control cores), (2) with worms and no food supply, (3) with worms and daily food supply, (4) with worms and weekly food supply. Fluorescent particles, used as tracers, were spread over the sediment surface. Sediment reworking was quantified after 28 days based on the tracer distribution profiles. Results showed that sediment reworking by N. diversicolor was exclusively due to non-local transport processes. Food supply greatly increased non-local transport coefficients (more than 3 times) in comparison with those measured in the absence of a food supply. However, the intensity of sediment bioturbation by these worms was unaffected by the frequency of food supply. This study showed that environmental conditions affecting the quantity of food supply at the water-sediment interface could strongly influence bioturbation process. Handling editor: P. Viaroli  相似文献   

20.
The effects of natural nematode communities on bacterial activity and abundance were investigated in a microcosm study. Nematodes were added at different densities to a freshwater sediment and bacterial parameters were measured after 1, 5, 9, and 17 days. Significant effects of nematode density on bacterial activity were noted on day 5. No long-term changes in bacterial activity were recorded. Bacterial abundance displayed an overall decrease in both treatments and controls. In a second experiment, the effect of nematode feeding-type on bacterial activity was studied. Microcosms were incubated with 100 individuals of a fungus-feeding (Aphelenchus avenae) or a bacteria-feeding nematode species (Caenorhabditis elegans) respectively, and bacterial activity was determined after 0, 1, 2, 4, and 7 days. Significant time and feeding-type effects were found, with consistently higher bacterial activity estimates in treatments with bacteria-feeding nematodes. These results suggest that grazing affects bacterial activity, and indicate that grazing by nematodes may be more important in stimulating bacterial activity than bioturbation or excretion. Combining these results, we conclude that natural nematode communities may have an impact on bacterial activity, and that the magnitude of this impact depends on the proportion of actively feeding bactivores within the community. Received: 2 September 1996 / Accepted: 20 May 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号