首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Abstract

Objectives: The purpose of the present study was to evaluate the distribution and magnitude of stresses through the bone tissue surrounding Morse taper dental implants at different positioning relative to the bone crest. Materials and Methods: A mandibular bone model was obtained from a computed tomography scan. A three-dimensional (3D) model of Morse taper implant-abutment systems placed at the bone crest (equicrestal) and 2?mm bellow the bone crest (subcrestal) were assessed by finite element analysis (FEA). FEA was carried out on axial and oblique (45°) loading at 150 N relatively to the central axis of the implant. The von Mises stresses were analysed considering magnitude and volume of affected peri-implant bone. Results: On vertical loading, maximum von Mises stresses were recorded at 6-7?MPa for trabecular bone while values ranging from 73 up to 118?MPa were recorded for cortical bone. On oblique loading at the equiquestral or subcrestal positioning, the maximum von Mises stresses ranged from 15 to 21?MPa for trabecular bone while values at 150?MPa were recorded for the cortical bone. On vertical loading, >99.9vol.% cortical bone volume was subjected to a maximum of 2?MPa while von Mises stress values at 15?MPa were recorded for trabecular bone. On oblique loading, >99.9vol.% trabecular bone volume was subjected to maximum stress values at 5?MPa, while von Mises stress values at 35?MPa were recorded for >99.4vol.% cortical bone. Conclusions: Bone volume-based stress analysis revealed that most of the bone volume (>99% by vol) was subjected to significantly lower stress values around Morse taper implants placed at equicrestal or subcrestal positioning. Such analysis is commentary to the ordinary biomechanical assessment of dental implants concerning the stress distribution through peri-implant sites.  相似文献   

2.
The aim of this study was to analyze the influence of three different transmucosal heights of the abutments in single and multiple implant-supported prostheses through the finite element method. External hexagon implants, MicroUnit, and EsthetiCone abutments were scanned and placed in an edentulous maxillary model obtained from a tomography database. The simulations were divided into two groups: (1) one implant with 3.75 × 10 mm placed in the upper central incisor, simulating a single implant-supported fixed prosthesis with an EsthetiCone abutment; and (2) two implants with 3.75 × 10 mm placed in the upper lateral incisors with MicroUnit abutments, simulating a multiple implant-supported prosthesis. Subsequently, each group was subdivided into three models according to the transmucosal height (1, 2, and 3 mm). A static oblique load at an angle of 45 degrees to the long axis of the implant in palatal-buccal direction of 150 and 75 N was applied for multiple and single implant-supported prosthesis, respectively. The implants and abutments were assessed according to the equivalent Von Mises stress analyses while the bone and ceramics were analyzed through maximum and minimum principal stresses. The total deformation values increased in all models, while the transmucosal height was augmented. The transmucosal height of the abutments influences the stress values at the bone, ceramics, implants, and abutments of both the single and multiple implant-supported prostheses, with the transmucosal height of 1 mm showing the lowest stress values.  相似文献   

3.
Dental implant failure is mainly the consequence of bone loss at peri-implant area. It usually begins in crestal bone. Due to this gradual loss, implants cannot withstand functional force without bone overload, which promotes complementary loss. As a result, implant lifetime is significantly decreased. To estimate implant success prognosis, taking into account 0.2 mm annual bone loss for successful implantation, ultimate occlusal forces for the range of commercial cylindrical implants were determined and changes of the force value for each implant due to gradual bone loss were studied. For this purpose, finite element method was applied and von Mises stresses in implant–bone interface under 118.2 N functional occlusal load were calculated. Geometrical models of mandible segment, which corresponded to Type II bone (Lekholm & Zarb classification), were generated from computed tomography images. The models were analyzed both for completely and partially osseointegrated implants (bone loss simulation). The ultimate value of occlusal load, which generated 100 MPa von Mises stresses in the critical point of adjacent bone, was calculated for each implant. To estimate longevity of implants, ultimate occlusal loads were correlated with an experimentally measured 275 N occlusal load (Mericske-Stern & Zarb). These findings generally provide prediction of dental implants success.  相似文献   

4.
ObjectiveIn this research it was aimed to evaluate stress distribution on the implants supporting a complete overdenture in addition to compare between two different types of low-profile attachments for implant-retained mandibular overdenture with two techniques (with/without using connecting bar).Materials and methodsTwo 3D finite element models were constructed simulating supported lower complete overdenture with two implants and with two implants and bar. Where, models components were modeled in 3D on commercial general purpose CAD/CAM software. Four runs were carried out, two runs on each model, as linear static analysis.ResultsUsing bar is generally preferred for mucosa and cortical bone, while its effect can be considered as negligible on overdenture. On the other hand, it slightly increases the stresses on spongy bone. Using bar ensures the same level of energy transfer to the spongy bone and increases its maximum Von Mises stresses by about 50%. In addition, increase in maximum Von Mises stress was noticed by about 1% on cortical bone.ConclusionUsing bar is not recommended for patients with flat ridge.  相似文献   

5.
Implant dimensions greatly influence load transfer characteristics and the lifetime of a dental system. Excessive stresses at peri-implant area may result in bone failure. Finding the critical point at the implant–bone interface and evaluating the influence of implant diameter-to-length ratio on adjacent bone stresses makes it possible to select implant dimensions. For this, different cylindrical implants were numerically analysed using geometrical models generated from computed tomography images of mandible with osseointegrated implants. All materials were assumed to be linearly elastic and isotropic. Masticatory load was applied in its natural direction, oblique to occlusal plane. Maximum von Mises stresses were located around the implant neck at the critical point of its intersection with the plane of loading and were functions of implant diameter-to-length ratio. It was demonstrated that there exists a certain spectrum of diameter-to-length ratios, which will keep maximum bone stresses at a preset level chosen in accordance with patient's bone strength.  相似文献   

6.
A three dimensional nonlinear finite element model was developed to investigate tibial fixation designs and friction models (Coulomb's vs nonlinear) in total knee arthroplasty in the immediate postoperative period with no biological attachment. Bi-directional measurement-based nonlinear friction constitutive equations were used for the bone-porous coated implant interface. Friction properties between the polyethylene and femoral components were measured for this study. Linear elastic isotropic but heterogeneous mechanical properties taken from literature were considered for the bone. The Tensile behaviour of polyethylene was measured and subsequently modeled by an elasto-plastic model. Based on the earlier finite element and experimental pull-out studies, pegs and screws were also realistically modeled. The geometry of every component was obtained through measurement. The PCA tibial baseplate with three different configurations was considered; one with three screws, one with one screw and two short inclined porous-coated pegs, and a third one with no fixation for the sake of comparison. The axial load of 2000N was applied through the femoral component on the medial plateau of articular insert. It was found that Coulomb's friction significantly underestimates the relative micromotion at the bone-implant interface. The lowest micromotion and lift-off were found for the design with screws. Relative micromotion and stress transfer at the bone-implant interface depended significantly on the friction model and on the baseplate anchorage configuration. Cortical and cancellous bones carried, respectively, 10-13% and 65-86% of the axial load depending on the fixation configuration used. The remaining portion was transmitted as shear force by screws and pegs. Normal and Mises stresses as well as contact area in the polyethylene insert were nearly independent of the baseplate fixation design. The Maximum Mises stress in the polyethylene exceeded yield and was found 1-2 mm below the contact surface for all designs.  相似文献   

7.
Abstract

A three dimensional nonlinear finite element model was developed to investigate tibial fixation designs and friction models (Coulomb's vs nonlinear) in total knee arthroplasty in the immediate postoperative period with no biological attachment. Bi-directional measurement-based nonlinear friction constitutive equations were used for the bone-porous coated implant interface. Friction properties between the polyethylene and femoral components were measured for this study. Linear elastic isotropic but heterogeneous mechanical properties taken from literature were considered for the bone. The Tensile behaviour of polyethylene was measured and subsequently modeled by an elasto-plastic model. Based on the earlier finite element and experimental pull-out studies, pegs and screws were also realistically modeled. The geometry of every component was obtained through measurement. The PCA tibial baseplate with three different configurations was considered; one with three screws, one with one screw and two short inclined porous-coated pegs, and a third one with no fixation for the sake of comparison. The axial load of 2000N was applied through the femoral component on the medial plateau of articular insert. It was found that Coulomb's friction significantly underestimates the relative micromotion at the bone-implant interface. The lowest micromotion and lift-off were found for the design with screws. Relative micromotion and stress transfer at the bone-implant interface depended significantly on the friction model and on the baseplate anchorage configuration. Cortical and cancellous bones carried, respectively, 10–13% and 65–86% of the axial load depending on the fixation configuration used. The remaining portion was transmitted as shear force by screws and pegs. Normal and Mises stresses as well as contact area in the polyethylene insert were nearly independent of the baseplate fixation design. The Maximum Mises stress in the polyethylene exceeded yield and was found 1–2 mm below the contact surface for all designs.  相似文献   

8.
Correlation of the mean and standard deviation of trabecular stresses has been proposed as a mechanism by which a strong relationship between the apparent strength and stiffness of cancellous bone can be achieved. The current study examined whether the relationship between the mean and standard deviation of trabecular von Mises stresses can be generalized for any group of cancellous bone. Cylindrical human vertebral cancellous bone specimens were cut in the infero-superior direction from T12 of 23 individuals (inter-individual group). Thirty nine additional specimens were prepared similarly from the T4-T12 and L2-L5 vertebrae of a 63 year old male (intra-individual group). The specimens were scanned by micro-computed tomography (microCT) and trabecular von Mises stresses were calculated using finite element modeling. The expected value, standard deviation and coefficient of variation of the von Mises stress were calculated form a three-parameter Weibull function fitted to von Mises stress data from each specimen. It was found that the average and standard deviation of trabecular von Mises shear stress were: (i) correlated with each other, supporting the idea that high correlation between the apparent strength and stiffness of cancellous bone can be achieved through controlling the trabecular level shear stress variations, (ii) dependent on anatomical site and sample group, suggesting that the variation of stresses are correlated to the mean stress to different degrees between vertebrae and individuals, and (iii) dependent on bone volume fraction, consistent with the idea that shear stress is less well controlled in bones with low BV/TV. The conversion of infero-superior loading into trabecular von Mises stresses was maximum for the tissue at the junction of the thoracic and lumbar spine (T12-L1) consistent with this junction being a common site of vertebral fracture.  相似文献   

9.
The retaining screw of the implant-supported dental prosthesis is the weakest point of the crown/implant system. Furthermore, crown height is another important factor that may increase the lever arm. Therefore, the aim of this study was to assess the stress distribution in implant prosthetic screws with different heights of the clinical crown of the prosthesis using the method of three-dimensional finite element analysis. Three models were created with implants (3.75 mm × 10 mm) and crowns (heights of 10, 12.5 and 15 mm). The results were visualised by means of von Mises stress maps that increased the crown heights. The screw structure exhibited higher levels of stresses in the oblique load. The oblique loading resulted in higher stress concentration when compared with the axial loading. It is concluded that the increase of the crown was damaging to the stress distribution on the screw, mainly in oblique loading.  相似文献   

10.
In implantology, when financial or biological feasibility limitations appear, it is necessary to use prostheses with geometries that deviate from the conventional, with a pontic in the absence of an intermediate implant. The aim of this study was analyze and understand the general differences in the stresses generated in implants, components and infrastructures according to the configuration of the prosthesis over three or two implants. Thus, this paper analyzes the von Mises equivalent stresses (VMES) of ductile materials on their external surfaces. The experimental groups: Regular Splinted Conventional Group (RCG), which had conventional infrastructures on 3 regular-length Morse taper implants (4x11?mm); Regular Splinted Pontic Group (RPG), which had infrastructures with intermediate pontics on 2 regular-length Morse taper implants (4x11?mm). The simulations of the groups were created with Ansys Workbench 10.0 software. The results revealed that the RPG presented greater areas of possible fragility due to higher stress concentrations, for example, in the cervical area of the union between the implant and component the top platform of the abutment, as well as greater coverage of the stress by the cervical implant threads. The RPG infrastructure was also more affected by stresses in the connection areas between the prostheses and on the occlusal surface. There is an advantage to using prostheses supported by a greater number of implants (RCG) because this decreases the stress in the analyzed structures and consequently improves stress dissipation to the supporting bone, which would preserve the system.  相似文献   

11.
A finite element model of a semiconstrained ankle implant with the tibia and fibula was constructed so that the stresses in the polyethylene liner could be computed. Two different widths of talar components were studied and proximal boundary conditions were computed from an inverse process providing a load of five times body weight appropriately distributed across the osseous structures. von Mises stresses indicated small regions of localized yielding and contact stresses that were similar to those in acetabular cup liners. A wider talar component with 36% more surface area reduced contact stress and von Mises stresses at the center of the polyethylene component by 17%.  相似文献   

12.
The aim of this study was to investigate the interactions of implant position, implant–abutment connection and loading condition influencing bone loss of an implant placed in the maxilla using finite element (FE) analysis and mathematical bone remodeling theory. The maxilla section contours were acquired using CT images to construct FE models containing RS (internal retaining-screw) and the TIS (taper integrated screwed-in) implants placed in SC (along the axis of occlusal force) and RA (along the axis of residual ridge) positions. The adaptive strain energy density (SED) algorithm was combined with FE approach to study the preliminary bone remodeling around implant systems under different load conditions. The simulated results showed that the implant position obviously influenced the bone loss. An implant placed in the RA position resulted in substantially increased bone loss. Implant receiving a lateral load slightly increased bone loss compared with an axial load. The implant type did not significantly influence bone loss. It was found that buccal site suffered the most bone loss around the implant, followed by distal, lingual and mesial sites. The implant position primarily influenced bone loss and it was found most obviously at the buccal site. Implant placed along the axial load direction of a proposed prosthesis could obtain less bone loss around the implant. Attaining proper occlusal adjustments to reduce the lateral occlusal force is recommended in implant–bone–prosthesis system. Abutments of internal engagement with or without taper-fit did not affect the bone loss in the surrounding bone.  相似文献   

13.
This study investigates the bone/implant mechanical responses in an implant overdenture retained by ball attachments on two conventional regular dental implants (RDI) and four mini dental implants (MDI) using finite element (FE) analysis. Two FE models of overdentures retained by RDIs and MDIs for a mandibular edentulous patient with validation within 6% variation errors were constructed by integrating CT images and CAD system. Bone grafting resulted in 2 mm thickness at the buccal side constructed for the RDIs-supported model to mimic the bone augmentation condition for the atrophic alveolar ridge. Nonlinear hyperelastic material and frictional contact element were used to simulate characteristic of the ball attachment-retained overdentures. The results showed that a denture supported by MDIs presented higher surrounding bone strains than those supported by RDIs under different load conditions. Maximum bone micro strains were up to 6437/2987 and 13323/5856 for MDIs/RDIs under single centric and lateral contacts, respectively. Corresponding values were 4429/2579 and 9557/5774 under multi- centric and lateral contacts, respectively. Bone micro strains increased 2.06 and 1.96-folds under single contact, 2.16 and 2.24-folds under multiple contacts for MDIs and RDIs when lateral to axial loads were compared. The maximum RDIs and MDIs implant stresses in all simulated cases were found by far lower than their yield strength. Overdentures retained using ball attachments on MDIs in poor edentulous bone structure increase the surrounding bone strain over the critical value, thereby damaging the bone when compared to the RDIs. Eliminating the occlusal single contact and oblique load of an implant-retained overdenture reduces the risk for failure.  相似文献   

14.
Effect of an interspinous implant on loads in the lumbar spine.   总被引:3,自引:0,他引:3  
Interspinous process implants are increasingly used to treat canal stenoses. Little information exists about the effects of implant height and stiffness on the biomechanical behavior of the lumbar spine. Therefore, a three-dimensional nonlinear finite element model of the osseoligamentous lumbar spine (L1 to L5) was created with a slightly degenerated disc at L3/L4. An interspinous implant was inserted at that segment. Implants with different heights and stiffnesses were studied. The model was loaded with the upper body weight and muscle forces to simulate walking and 25 degrees extension. Implant forces are influenced strongly by the height and negligibly by the elastic modulus of the implant. Intersegmental rotation at implant level is markedly reduced, while intradiscal pressure is slightly increased. Implant size and stiffness have only a minor effect on intradiscal pressure. The maximum von Mises stress in the vertebral arch is strongly increased by the implant.  相似文献   

15.
Natural teeth and dental implants have differing degrees of mobility thus causing a potential biomechanical problem when connected by fixed bridgework. The clinical follow-up often discloses marginal bone loss around an implant neck probably due to high stress factors. An implant with a built-in compliance resembling the tooth mobility could be advantageous for stress distribution. With axial loading the proposed 'elastic'-test model accomplishes this demand. By means of theoretical and experimental studies this 'elastic'-test model is optimized and compared with a stiff implant-model. The results show a 20 times reduction of stress accumulation in bone with the 'elastic'-test model.  相似文献   

16.
With the resurgence of composite materials in orthopaedic applications, a rigorous assessment of stress is needed to predict any failure of bone-implant systems. For current biomechanics research, strain gage measurements are employed to experimentally validate finite element models, which then characterize stress in the bone and implant. Our preliminary study experimentally validates a relatively new nondestructive testing technique for orthopaedic implants. Lock-in infrared (IR) thermography validated with strain gage measurements was used to investigate the stress and strain patterns in a novel composite hip implant made of carbon fiber reinforced polyamide 12 (CF/PA12). The hip implant was instrumented with strain gages and mechanically tested using average axial cyclic forces of 840 N, 1500 N, and 2100 N with the implant at an adduction angle of 15 deg to simulate the single-legged stance phase of walking gait. Three-dimensional surface stress maps were also obtained using an IR thermography camera. Results showed almost perfect agreement of IR thermography versus strain gage data with a Pearson correlation of R(2) = 0.96 and a slope = 1.01 for the line of best fit. IR thermography detected hip implant peak stresses on the inferior-medial side just distal to the neck region of 31.14 MPa (at 840 N), 72.16 MPa (at 1500 N), and 119.86 MPa (at 2100 N). There was strong correlation between IR thermography-measured stresses and force application level at key locations on the implant along the medial (R(2) = 0.99) and lateral (R(2) = 0.83 to 0.99) surface, as well as at the peak stress point (R(2) = 0.81 to 0.97). This is the first study to experimentally validate and demonstrate the use of lock-in IR thermography to obtain three-dimensional stress fields of an orthopaedic device manufactured from a composite material.  相似文献   

17.
This study aims to use computational methods for elucidating the effect of limb shape on subgarment and subcutaneous pressures, stresses and strains. A framework was built that generates computational models from 3D arm scans using a depth sensing camera. Finite Element Analysis (FEA) was performed on the scans taken from 23 lymphoedema patients. Subgarment pressures were calculated based on local curvature for each patient and showed a large variability of pressure across each arm. Across the cohort an average maximum subgarment pressure of 5100 Pa was found as opposed to an intended garment pressure of 2500 Pa. Subcutaneous results show that stresses/strains in the adipose tissues more closely follow the subgarment pressures than in the stiffer skin tissues. Another novel finding was that a negative axial gradient in subgarment pressure (from wrist to elbow) consistently led to positive axial gradients for the Von Mises stresses in the adipose tissues; a phenomenon caused by a combination of arm shape and the stiffness ratio between skin and adipose tissues. In conclusion, this work fills a knowledge gap in compression therapy in clinical practice and can inform garment design or lead to optimal treatment strategies.  相似文献   

18.
The stress distribution within the components and the micromotion of the interface significantly influence the long-term function of the taper lock joint in a modular segmental bone replacement prosthesis. Bending-induced gap opening between the cone and the sleeve can lead to an inflow of biological fluids, and thus accelerate implant corrosion. Local areas of high stress can also accelerate the corrosive processes and initiate local yielding, which may lead to a fracture in one of the components. In this study, a 3-D finite element (FE) model of a modular segmental bone replacement prosthesis was developed to study the interface micromotion and component stress distribution under the maximum loads applied during gait for a taper lock joint with multiple material combinations. Bending was the main cause of the local high stresses and interface separation within the taper joint. For Ti6A14V components, cortical bone bridging and ingrowth across the taper lock gap reduced the peak stress by 45% and reduced the contact interface separation by 55%. Such tissue formation around the taper lock joint could also form a closed capsule to restrict the migration of potential wear particles and thus prevent the biologic process of bone resorption induced by metal debris.  相似文献   

19.
Geometry and motion of the knee for implant and orthotic design   总被引:6,自引:0,他引:6  
By analysing sections of distal femurs in the computer, and by making direct measurements, the posterior femoral condyles were shown to closely fit spherical surfaces. The center of the spheres were then used as reference points and used to define reference axes in a motion study. In flexing from 0 to 120 degrees the medial femoral condyle moved little, the lateral moved posteriorly by 17 mm, and there was an axial rotation of 20 degrees. The data were applied to implant and orthotic design and evaluation.  相似文献   

20.
To restore femoral intramedullary bone stock loss in revision surgery of failed total hip arthroplasties, impacted morselized cancellous allograft is recommended. This study investigated the mechanical properties of both impacted cortical (group A) and cancellous (group B) morselized bone graft for reconstruction of femoral bones. Ten matched pairs of fresh frozen human femora were prepared by over-reaming to create a smooth-walled cortical shell. Each pair had one cortical and one cancellous impacted morselized allograft and cement. Stem subsidence was evaluated by a cyclic axial load, which was applied by a servohydraulic test. The stem subsidence was measured for initial subsidence (subsidence at the first 1000 cycles), the total axial subsidence (subsidence at the end of cycles under load) and the final axial subsidence (subsidence after the unloading phase). Torque test was measured by torsional loads through the prosthetic femoral heads. Total axial subsidence was significantly higher in group B (mean: 1.32+/-0.32 mm) compared to group A (mean: 0.94+/-0.26 mm) (P<0.01).There was no significant difference between the two groups in terms of initial subsidence (P=0.09) and final axial subsidence.The mean maximum torque before failure was 39.5+/-22.2 N-m for the cortical morselized allograft and 32.5+/-18.1N-m for cancellous.We concluded that impacted morselized cortical bone graft used for reconstruction of contained femoral bone loss in revision hip arthroplasty, may reduce the stem subsidence. Further animal experimentation for mechanical and histological evaluation of in vivo application is warranted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号