首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of different growth conditions (ventilated and closed vessels, medium with 0, 15 and 30 g dm−3 sucrose) during proliferation of donor quince (Cydonia oblonga Mill.) shoots (stage I) on net photosynthetic rate and soluble sugars content were evaluated. In order to assess the influence of these physiological parameters on morphogenesis, leaf explants harvested from donor shoots were induced to form somatic embryos and adventitious roots under ventilated and closed Petri dishes (stage II). Natural ventilation and low sucrose contents (0–15 g dm−3) promoted the photosynthetic rate of quince shoots whereas biomass accumulation was the highest in those shoots cultured with 30 g dm−3 sucrose in both vessel types and 15 g dm−3 sucrose under natural ventilation. Increasing sucrose content in the medium induced greater accumulation of sucrose in leaf tissues of donor shoots. The content of reducing sugars was higher than that of sucrose, and it appeared to be higher in shoots cultured under natural ventilation compared to those in closed vessels. Somatic embryogenesis and root regeneration were influenced by stage I and II treatments. A significant correlation between sucrose content in the leaves of donor shoots and the number of somatic embryos regenerated was found, suggesting that identification of biochemical and physiological characteristics of donor shoots associated with increased regeneration ability might be helpful for improving morphogenesis in plant tissue culture.  相似文献   

2.
3.
In this study we evaluated the effect of quercetin on D-galactose-induced aged mice using the Morris water maze (MWM) test. Based on the free radical theory of aging, experiments were performed to study the possible biochemical mechanisms of glutathione (GSH) level and hydroxyl radical (OH) in the hippocampus and cerebral cortex and the brain tissue enzyme activity of the mice. The results indicated that quercetin can enhance the exploratory behavior, spatial learning and memory of the mice. The effects relate with enhancing the brain functions and inhibiting oxidative stress by quercetin, and relate with increasing the GSH level and decreasing the OH content. These findings suggest that quercetin can work as a possible natural anti-aging pharmaceutical product.  相似文献   

4.
Cholesterol is a prominent modulator of the integrity and functional activity of physiological membranes and the most abundant sterol in the mammalian brain. DHCR24-knock-out mice lack cholesterol and accumulate desmosterol with age. Here we demonstrate that brain cholesterol deficiency in 3-week-old DHCR24−/− mice was associated with altered membrane composition including disrupted detergent-resistant membrane domain (DRM) structure. Furthermore, membrane-related functions differed extensively in the brains of these mice, resulting in lower plasmin activity, decreased β-secretase activity and diminished Aβ generation. Age-dependent accumulation and integration of desmosterol in brain membranes of 16-week-old DHCR24−/− mice led to the formation of desmosterol-containing DRMs and rescued the observed membrane-related functional deficits. Our data provide evidence that an alternate sterol, desmosterol, can facilitate processes that are normally cholesterol-dependent including formation of DRMs from mouse brain extracts, membrane receptor ligand binding and activation, and regulation of membrane protein proteolytic activity. These data indicate that desmosterol can replace cholesterol in membrane-related functions in the DHCR24−/− mouse. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. An erratum to this article can be found at  相似文献   

5.
Primary production by phytoplankton in the eutrophic Mikawa Bay, Japan, was studied by simultaneous measurements of natural carbon isotope ratio (δ 13C) and short-term carbon uptake rates (13C tracer study) of size-fractionated nannoplankton (<10 μm) and net plankton (>10 μm) samples. Short-term photosynthetic rates, which represent the physiological state of algae, were variable regardless of standing stock sizes. Theδ 13C values of particulate organic carbon (POC) in June and July displayed horizontal variations for both the net plankton fraction (−19.8 to −12.7‰) and the nannoplankton fraction (−22.0 to −12.8‰). For both fractions, low concentrations of POC had more negativeδ 13C values (−22 to −18‰). Highδ 13C values for the net plankton were found when POC concentrations were much higher, due to red tide. This suggests that the increase in algal standing crop for the net plankton fraction resulted from accelerated photosynthetic activity. However the nannoplankton fractions with higher POC values have relatively lowδ 13C values.  相似文献   

6.
In the present study, it was aimed to investigate the influence of exogenous mammalian sex hormones (MSH) (progesterone, β-estradiol and androsterone) on the morphological (root and shoot growth) and biochemical parameters (protein and sugar content, antioxidant enzyme activities, and lipid peroxidation and H2O2 levels) of chickpea (Cicer arietinum L.) plants growing under control conditions. The solutions of hormones prepared at different concentrations (10−4, 10−6, 10−9, 10−12 and 10−15 M) were sprayed once on the leaves of 7-day plants. The plants were harvested on 18 days after the hormone treatment. Although all of the hormones at the tested concentrations significantly increased plant growth, soluble protein and sugar contents, and antioxidant enzyme activities [superoxide dismutase (SOD), peroxidase (POX) and catalase (CAT)], they decreased H2O2 content and lipid peroxidation level when compared with control plants. The activities of SOD, POX and CAT reached to the highest levels at 10−6 M for progesterone, and 10−9 M for β-estradiol and androsterone, which maximum growth, protein and sugar contents were determined. The same concentrations also resulted in the lowest levels for H2O2 content and lipid peroxidation. It can be interpreted that the MSH improve plant growth and development by affecting some biochemical parameters including antioxidative system.  相似文献   

7.
Gordonia alkanivorans strain 1B is able to desulfurize dibenzothiophene (DBT) to 2-hydroxybiphenyl (2-HBP), the final product of the 4S pathway. However, both the cell growth and the rate of desulfurization can be largely affected by the nutrient composition of the growth medium due to cofactor requirements of many enzymes involved in the biochemical pathways. In this work, the effect of several metal ions on the growth and DBT desulfurization by G. alkanivorans was studied. From all the metal ions tested, only the absence of zinc significantly affected the cell growth and the desulfurization rate. By increasing the concentration of Zn from 1 to 10 mg L−1, 2-HBP productivity was improved by 26%. The absence of Zn2+, when sulfate was also used as the only sulfur source, did not cause any difference in the bacterial growth. Resting cells grown in the presence of Zn2+ exhibited a 2-HBP specific productivity of 2.29 μmol g−1 (DCW) h−1, 7.6-fold higher than the specific productivity obtained by resting cells grown in the absence of Zn2+ (0.30 μmol g−1 (DCW) h−1). These data suggests that zinc might have a key physiological role in the metabolism of DBT desulfurization.  相似文献   

8.
The interaction between benzophenone (BP) and bovine serum albumin (BSA) was investigated by the methods of fluorescence spectroscopy combined with UV–Vis absorption and circular dichroism (CD) measurements under simulative physiological conditions. The experiment results showed that the fluorescence quenching of BSA by BP was resulted from the formation of a BP–BSA complex and the corresponding association constants (K a) between BP and BSA at four different temperatures had been determined using the modified Stern–Volmer equation. The enthalpy change (ΔH) and entropy change (ΔS) were calculated to be –43.73 kJ mol−1 and −53.05 J mol−1 K−1, respectively, which suggested that hydrogen bond and van der Waals force played major roles in stabilizing the BP–BSA complex. Site marker competitive experiments indicated that the binding of BP to BSA primarily took place in site I (sub-domain IIA). The conformational investigation showed that the presence of BP decreased the α-helical content of BSA and induced the slight unfolding of the polypeptides of protein, which confirmed some micro-environmental and conformational changes of BSA molecules.  相似文献   

9.
The SLC26 gene family encodes anion transporters with diverse functional attributes: (a) anion exchanger, (b) anion sensor, and (c) anion conductance (likely channel). We have cloned and studied Slc26a9, a paralogue expressed mostly in lung and stomach. Immunohistochemistry shows that Slc26a9 is present at apical and intracellular membranes of lung and stomach epithelia. Using expression in Xenopus laevis oocytes and ion-sensitive microelectrodes, we discovered that Slc26a9 has a novel function not found in any other Slc26 proteins: cation coupling. Intracellular pH and voltage measurements show that Slc26a9 is a nCl-HCO3 exchanger, suggesting roles in gastric HCl secretion or pulmonary HCO3 secretion; Na+ electrodes and uptakes reveal that Slc26a9 has a cation dependence. Single-channel measurements indicate that Slc26a9 displays discrete open and closed states. These experiments show that Slc26a9 has three discrete physiological modes: nCl-HCO3 exchanger, Cl channel, and Na+-anion cotransporter. Thus, the Slc26a9 transporter channel is uniquely suited for dynamic and tissue-specific physiology or regulation in epithelial tissues. Min-Hwang Chang, Consuelo Plata, and Kambiz Zandi-Nejad have contributed equally to this work.  相似文献   

10.
N-acetyl-5-methoxytryptamine or melatonin is a multifunctional molecule. The main physiological function, at least in vertebrates, is to transduce to the animal the photoperiodic information and regulate rhythmic parameters. But studies have also observed the action of this molecule on pigment migration in ectothermic vertebrates. Thus the aim of this paper was to investigate in vivo and in vitro the influence of melatonin on the pigment migration in melanophores of the crab Neohelice granulate. Injections of melatonin (2 × 10−9 moles · crab−1) at 07:00 h or 19:00 h did not affect (p > 0.05) the circadian pigment migration of the melanophores in constant darkness. Additionally no significant pigment migration (p > 0.05) was verified in normal and eyestalkless crabs injected with melatonin (10−10–10−7 moles · crab−1) during the day or night. In the in vitro assay, the response of melanophores to the pigment-dispersing hormone in eyestalkless crabs injected with melatonin (2 × 10−9 moles · crab−1) 1 and 12 hours before the observations did not differ (p > 0.05) from the control group (injected with physiological solution). These results suggest that melatonin does not act as a signaling factor for pigment dispersion or aggregation in the melanophores of N. Granulate.  相似文献   

11.
Morphological, anatomical, biochemical and physiological traits of sun and shade leaves of adult Quercus ilex, Phillyrea latifolia and Pistacia lentiscus shrub species co-occurring in the Mediterranean maquis at Castelporziano (Latium) were studied. Fully expanded sun leaves had 47% (mean of the three species) greater leaf mass area (LMA) and 31% lower specific leaf area (SLA) than shade leaves. Palisade parenchyma thickness contributed on an average 42% to the total leaf thickness, spongy layer 43%, upper epidermal cells 5%, and upper cuticle thickness 3%. Stomatal size was greater in sun (25.5 μm) than in shade leaves (23.6 μm). Total chlorophyll content per fresh mass was 71% greater in shade than in sun leaves, and nitrogen content was the highest in sun (13.7 mg g−1) than in shade leaves (11.8 mg g−1). Difference of net photosynthetic rates (P N) between sun and shade leaves was 97% (mean of the three species). The plasticity index (sensu Valladares et al., New Phytol 148:79–91, 2000a) was the highest for physiological leaf traits (0.86) than for morphological, anatomical and biochemical ones. Q. ilex had the highest plasticity index of morphological, anatomical and physiological leaf traits (0.37, 0.28 and 0.71, respectively) that might explain its wider ecological distribution. The higher leaf plasticity of Q. ilex might be advantageous in response to varying environmental conditions, including global change.  相似文献   

12.
We report that Drosophila retinal photoreceptors express inwardly rectifying chloride channels that seem to be orthologous to mammalian ClC-2 inward rectifier channels. We measured inwardly rectifying Cl currents in photoreceptor plasma membranes: Hyperpolarization under whole-cell tight-seal voltage clamp induced inward Cl currents; and hyperpolarization of voltage-clamped inside-out patches excised from plasma membrane induced Cl currents that have a unitary channel conductance of ∼3.7 pS. The channel was inhibited by 1 mM Zn2+ and by 1 mM 9-anthracene, but was insensitive to DIDS. Its anion permeability sequence is Cl = SCN> Br>> I, characteristic of ClC-2 channels. Exogenous polyunsaturated fatty acid, linolenic acid, enhanced or activated the inward rectifier Cl currents in both whole-cell and excised patch-clamp recordings. Using RT-PCR, we found expression in Drosophila retina of a ClC-2 gene orthologous to mammalian ClC-2 channels. Antibodies to rat ClC-2 channels labeled Drosophila photoreceptor plasma membranes and synaptic regions. Our results provide evidence that the inward rectification in Drosophila retinal photoreceptors is mediated by ClC-2-like channels in the non-transducing (extra-rhabdomeral) plasma membrane, and that this inward rectification can be modulated by polyunsaturated fatty acid. G. Ugarte and R. Delgado contributed equally to this work.  相似文献   

13.
The effects of temperature, irradiance, and daylength on Sargassum horneri growth were examined at the germling and adult stages to discern their physiological differences. Temperature–irradiance (10, 15, 20, 25, 30°C × 20, 40, 80 μmol photons m−2s−1) and daylength (8, 12, 16, 24 h) experiments were carried out. The germlings and blades of S. horneri grew over a wide range of temperatures (10–25°C), irradiances (20–80 μmol photons m−2s−1), and daylengths (8–24 h). At the optimal growth conditions, the relative growth rates (RGR) of the germlings were 21% day−1 (25°C, 20 μmol photons m−2s−1) and 13% day−1 (8 h daylength). In contrast, the RGRs of the blade weights were 4% day−1 (15°C, 20 μmol photons m−2s−1) and 5% day−1 (12 h daylength). Negative growth rates were found at 20 μmol photons m−2s−1 of 20°C and 25°C treatments after 12 days. This phenomenon coincides with the necrosis of S. horneri blades in field populations. In conclusion, we found physiological differences between S. horneri germlings and adults with respect to daylength and temperature optima. The growth of S. horneri germlings could be enhanced at 25°C, 20 μmol photons m−2s−1, and 8 h daylength for construction of Sargassum beds and restoration of barren areas.  相似文献   

14.
Two carotenoid 1,2-hydratase (CrtC) genes from the photosynthetic bacteria Rubrivivax gelatinosus and Thiocapsa roseopersicina were cloned and expressed in Escherichia coli in an active form and purified by affinity chromatography. The biochemical properties of the recombinant enzymes and their substrate specificities were studied. The purified CrtCs catalyze cofactor independently the conversion of lycopene to 1-HO- and 1,1′-(HO)2-lycopene. The optimal pH and temperature for hydratase activity was 8.0 and 30°C, respectively. The apparent K m and V max values obtained for the hydration of lycopene were 24 μM and 0.31 nmol h−1 mg−1 for RgCrtC and 9.5 μM and 0.15 nmol h−1 mg−1 for TrCrtC, respectively. Sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis revealed two protein bands of 44 and 38 kDa for TrCrtC, which indicate protein processing. Both hydratases are also able to convert the unnatural substrate geranylgeraniol (C20 substrate), which functionally resembles the natural substrate lycopene.  相似文献   

15.
Metrosideros polymorpha, a dominant tree species in Hawaiian ecosystems, occupies a wide range of habitats. Complementary field and common-garden studies of M. polymorpha populations were conducted across an altitudinal gradient at two different substrate ages to ascertain if the large phenotypic variation of this species is determined by genetic differences or by phenotypic modifications resulting from environmental conditions. Several characteristics, including ecophysiological behavior and anatomical features, were largely induced by the environment. However, other characteristics, particularly leaf morphology, appeared to be mainly determined by genetic background. Common garden plants exhibited higher average rates of net assimilation (5.8 μmol CO2 m−2 s−1) and higher average stomatal conductance (0.18 mol H2O m−2 s−1) than their field counterparts (3.0 μmol CO2 m−2 s−1, and 0.13 mol H2O m−2 s−1 respectively). Foliar δ13C of most common-garden plants was similar among sites of origin with an average value of −26.9‰. In contrast, mean values of foliar δ13C in field plants increased substantially from −29.5‰ at low elevation to −24.8‰ at high elevation. Leaf mass per unit area increased significantly as a function of elevation in both field and common garden plants; however, the range of values was much narrower in common garden plants (211–308 g m−2 for common garden versus 107–407 g m−2 for field plants). Nitrogen content measured on a leaf area basis in common garden plants ranged from 1.4 g m−2 to 2.4 g m−2 and from 0.8 g m−2 to 2.5 g m−2 in field plants. Photosynthetic nitrogen use efficiency (PNUE) decreased 50% with increasing elevation in field plants and only 20% in plants from young substrates in the common garden. This was a result of higher rates of net CO2 assimilation in the common garden plants. Leaf tissue and cell layer thickness, and degree of leaf pubescence increased significantly with elevation in field plants, whereas in common garden plants, variation with elevation of origin was much narrower, or was entirely absent. Morphological characteristics such as leaf size, petiole length, and internode length decreased with increasing elevation in the field and were retained when grown in the common garden, suggesting a potential genetic basis for these traits. The combination of environmentally induced variability in physiological and anatomical characteristics and genetically determined variation in morphological traits allows Hawaiian M. polymorpha to attain and dominate an extremely wide ecological distribution not observed in other tree species. Received: 12 March 1997 / Accepted: 27 August 1997  相似文献   

16.
Arsenic content of cyanobacterial biomass, soil and water samples from arsenic-contaminated area of eastern India were estimated. It was found that arsenic content in cyanobacterial biomass (276.9 μg g−1) was more than soil (19.01 μg g−1) or water sample (244.13 μg L−1). Shallow tube well water showed more arsenic (244.13 μg L−1) than deep tube well water (146.13 μg L−1). Arsenic resistant genera recorded from the contaminated area were Oscillatoria princeps, Oscillatoria limosa, Anabaena sp. and Phormidium laminosum. Among these, P. laminosum was isolated and exposed to different concentration of Arsenic in vitro (0.1–100 ppm) to study the toxicity level of arsenic. Modulation in stress enzymes and stress-related compounds were studied in relation to lipid peroxidase, catalase, super oxide dismutase (SOD), ascorbate peroxidase (APX), reduced glutathione and carotenoids in arsenic exposed biomass to understand the resistance mechanism of the genus both in laboratory condition as well as in natural condition. Arsenic content of cyanobacterial biomass from contaminated area was more (276.9 μg g−1) than laboratory exposed sample (37.17 μg g−1), indicating bioconcentration of arsenic in long-term-exposed natural biomass. Overall, more activity of catalase was recorded in cyanobacterial biomass of natural condition whereas SOD and APX were at higher level in laboratory culture.  相似文献   

17.
This article reports rate constants for thiol–thioester exchange (k ex), and for acid-mediated (k a), base-mediated (k b), and pH-independent (k w) hydrolysis of S-methyl thioacetate and S-phenyl 5-dimethylamino-5-oxo-thiopentanoate—model alkyl and aryl thioalkanoates, respectively—in water. Reactions such as thiol–thioester exchange or aminolysis could have generated molecular complexity on early Earth, but for thioesters to have played important roles in the origin of life, constructive reactions would have needed to compete effectively with hydrolysis under prebiotic conditions. Knowledge of the kinetics of competition between exchange and hydrolysis is also useful in the optimization of systems where exchange is used in applications such as self-assembly or reversible binding. For the alkyl thioester S-methyl thioacetate, which has been synthesized in simulated prebiotic hydrothermal vents, k a = 1.5 × 10−5 M−1 s−1, k b = 1.6 × 10−1 M−1 s−1, and k w = 3.6 × 10−8 s−1. At pH 7 and 23°C, the half-life for hydrolysis is 155 days. The second-order rate constant for thiol–thioester exchange between S-methyl thioacetate and 2-sulfonatoethanethiolate is k ex = 1.7 M−1 s−1. At pH 7 and 23°C, with [R″S(H)] = 1 mM, the half-life of the exchange reaction is 38 h. These results confirm that conditions (pH, temperature, pK a of the thiol) exist where prebiotically relevant thioesters can survive hydrolysis in water for long periods of time and rates of thiol–thioester exchange exceed those of hydrolysis by several orders of magnitude.  相似文献   

18.
Cyclotides, a family of disulfide-rich mini-proteins, show a wide range of biological activities, making them interesting targets for pharmaceutical and agrochemical applications, but little is known about their natural function and the events that trigger their expression. An investigation of nutritional variations and irradiation during a batch process involving plant cell cultures has been performed, using the native African medical herb, Oldenlandia affinis, as a model plant. The results demonstrated the biosynthesis of kalata B1, the main cyclotide in O. affinis, in a combined growth/nongrowth-associated pattern. The highest concentration, 0.37 mg g−1 dry weight, was accumulated in irradiated cells at 35 μmol m−2 s−1. Furthermore, 12 novel cyclotides were identified and the expression of various cyclotides compared in irradiated vs non-irradiated cultures. The results indicate that cyclotide expression varies greatly depending on physiological conditions and environmental stress. Kalata B1 is the most abundant cyclotide in plant suspension cultures, which underlies its importance as a natural defense molecule. The identification of novel cyclotides in suspension cultures, compared to whole plants, indicates that there may be more novel cyclotides to be discovered and that the genetic network regulating cyclotide expression is a very sensitive system, ready to adapt to the current environmental growth condition.  相似文献   

19.
Atomic force microscopy (AFM) enables the topographical structure of cells and biological materials to be resolved under natural (physiological) conditions, without fixation and dehydration artefacts associated with imaging methods in vacuo. It also provides a means of measuring interaction forces and the mechanical properties of biomaterials. In the present study, AFM has been applied for the first time to the study of the mechanical properties of a natural adhesive produced by a green plant cell. Swimming spores of the green alga Enteromorpha linza (L.) J. Ag. (7–10 μm) secrete an adhesive glycoprotein which provides firm anchorage to the substratum. Imaging of the adhesive in its hydrated state revealed a swollen gel-like pad, approximately 1 μm thick, surrounding the spore body. Force measurements revealed that freshly released adhesive has an adhesion strength of 173 ± 1.7 mN m−1 (mean ± SE; n=90) with a maximum value for a single adhesion force curve of 458 mN m−1. The adhesive had a compressibility (equivalent to Young's modulus) of 0.54 × 106 ± 0.05 × 106 N m−2 (mean ± SE; n=30). Within minutes of release the adhesive underwent a progressive `curing' process with a 65% reduction in mean adhesive strength within an hour of settlement, which was also reflected in a reduction in the average length of the adhesive polymer strands (polymer extension) and a 10-fold increase in Young's modulus. Measurements on the spore surface itself revealed considerably lower adhesion-strength values but higher polymer-extension values than the adhesive pad, which may reflect the deposition of different polymers on this surface as a new cell wall is formed. The study demonstrates the value of AFM to the imaging of plant cells in the absence of fixation and dehydration artefacts and to the characterisation of the mechanical properties of plant glycoproteins that have potential utility as adhesives. Received: 22 February 2000 / Accepted: 20 April 2000  相似文献   

20.
The influx of glucose into the brain and plasma glucose disappearance were estimated in rainbow trout (Oncorhynchus mykiss) intravenously injected (1 ml · kg−1 body weight) with a single dose (15 μCi · kg−1 body weight) of 3-O-methyl-D-[U-14C]glucose ([U-14C]-3-OMG) at different times (2–160 min), and after intravenous injection at 15 min of increased doses (10–60 μCi · kg−1 body weight) of [U-14C]-3-OMG. Brain and plasma radiotracer concentrations were measured, and several kinetic parameters were calculated. The apparent brain glucose influx showed a maximum after 15–20 min of injection then decreased to a plateau after 80 min. Brain distribution space of 3-OMG increased from 2 min to 20 min reaching equilibrium from that time onwards at a value of 0.14 ml · g−1. The unidirectional clearance of glucose from blood to brain (k1) and the fractional clearance of glucose from brain to blood (k2) were estimated to be 0.093 ml · min−1 · g−1, and 0.867 min−1, respectively. A linear increase was observed in brain and plasma radiotracer concentrations when increased doses of [U-14C]-3-OMG were used. All these findings support a facilitative transport of glucose through the blood-brain barrier of rainbow trout with characteristics similar to those observed in mammals. The injection of different doses of melatonin (0.25–1.0 mg · kg−1) significantly increased brain glucose influx suggesting a possible role for melatonin in the regulation of glucose transport into the brain. Accepted: 26 January 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号