首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 358 毫秒
1.
The specificities of pyruvate dehydrogenase kinase and pyruvate dehydrogenase phosphatase were probed using synthetic peptides corresponding to the sequence around phosphorylation sites 1 and 2 on pyruvate dehydrogenase [Tyr-His-Gly-His-Ser(P1)-Met-Ser-Asp-Pro-Gly-Val-Ser(P2)-Tyr-Arg]. The dephosphotetradecapeptide containing aspartic acid at position 8 was a better substrate for the kinase than was the tetradecapeptide containing asparagine at position 8. The apparent Km and V values for the two peptides were 0.43 and 6.1 mM and 2.7 and 2.4 nmol of 32P incorporated/min/mg, respectively. Methylation of the aspartic acid residue also increased the apparent Km of the tetradecapeptide about 14-fold. These results indicate that an acidic residue on the carboxyl-terminal side of phosphorylation site 1 is an important specificity determinant for the kinase. Phosphate was incorporated only into site 1 of the synthetic peptide by the kinase. The phosphatase exhibited an apparent Km of 0.28 mM and a V of 2.3 mumol of 32P released/min/mg for the phosphorylated tetradecapeptide containing aspartic acid. Methylation of the aspartic acid residue had no significant effect on dephosphorylation. The octapeptide and phosphooctapeptide produced by cleavage of the aspartyl-prolyl bond by formic acid were poorer substrates for the kinase and phosphatase than were the tetradecapeptide and phosphotetradecapeptide, respectively. Modification of the amino terminal by acetylation or lysine addition had only a slight effect on the kinase and phosphatase activities.  相似文献   

2.
The pyruvate kinase gene pyk from Corynebacterium glutamicum was cloned by applying a combination of PCR, site-specific mutagenesis, and complementation. A 126-bp DNA fragment central to the C. glutamicum pyk gene was amplified from genomic DNA by PCR with degenerate oligonucleotides as primers. The cloned DNA fragment was used to inactivate the pyk gene in C. glutamicum by marker rescue mutagenesis via homologous recombination. The C. glutamicum pyk mutant obtained was unable to grow on minimal medium containing ribose as the sole carbon source. Complementation of this phenotype by a gene library resulted in the isolation of a 2.8-kb PstI-BamHI genomic DNA fragment harboring the C. glutamicum pyk gene. Multiple copies of plasmid-borne pyk caused a 20-fold increase of pyruvate kinase activity in C. glutamicum cell extracts. By using large internal fragments of the cloned C. glutamicum gene, pyk mutant derivatives of the lysine production strain Corynebacterium lactofermentum 21799 were generated by marker rescue mutagenesis. As determined in shake flask fermentations, lysine production in pyk mutants was 40% lower than that in the pyk+ parent strain, indicating that pyruvate kinase is essential for high-level lysine production. This finding questions an earlier hypothesis postulating that redirection of carbon flow at the phosphoenol pyruvate branch point of glycolysis through elimination of pyruvate kinase activity results in an increase of lysine production in C. glutamicum and its close relatives.  相似文献   

3.
The P130gag-fps transforming protein of Fujinami sarcoma virus (FSV) possesses tyrosine-specific protein kinase activity and autophosphorylates at Tyr-1073. Within the kinase domain of P130gag-fps is a putative ATP-binding site containing a lysine (Lys-950) homologous to lysine residues in cAMP-dependent protein kinase and p60v-src which bind the ATP analogue p-fluorosulfonylbenzoyl-5' adenosine. FSV mutants in which the codon for Lys-950 has been changed to codons for arginine or glycine encode metabolically stable but enzymatically defective proteins which are unable to effect neoplastic transformation. Kinase-defective P130gag-fps containing arginine at residue 950 was normally phosphorylated at serine residues in vivo suggesting that this amino acid substitution has a minimal effect on protein folding and processing. The inability of arginine to substitute for lysine at residue 950 suggests that the side chain of Lys-950 is essential for P130gag-fps catalytic activity, probably by virtue of a specific interaction with ATP at the phosphotransfer active site. Tyr-1073 of the Arg-950 P130gag-fps mutant protein was not significantly autophosphorylated either in vitro or in vivo, but could be phosphorylated in trans by enzymatically active P140gag-fps. These data indicate that Tyr-1073 can be modified by intermolecular autophosphorylation.  相似文献   

4.
Rat liver L-type pyruvate kinase was phosphorylated in vitro by a Ca2+/calmodulin-dependent protein kinase purified from rabbit liver. The calmodulin (CaM)-dependent kinase catalyzed incorporation of up to 1.7 mol of 32P/mol of pyruvate kinase subunit; maximum phosphorylation was associated with a 3.0-fold increase in the K0.5 for P-enolpyruvate. This compares to incorporation of 0.7 to 1.0 mol of 32P/mol catalyzed by the cAMP-dependent protein kinase with a 2-fold increase in K0.5 for P-enolpyruvate. When [32P]pyruvate kinase, phosphorylated by the CaM-dependent protein kinase, was subsequently incubated with 5 mM ADP and cAMP-dependent protein kinase (kinase reversal conditions), 50-60% of the 32PO4 was removed from pyruvate kinase, but the K0.5 for P-enolpyruvate decreased only 20-30%. Identification of 32P-amino acids after partial acid hydrolysis showed that the CaM-dependent protein kinase phosphorylated both threonyl and seryl residues (ratio of 1:2, respectively) whereas the cAMP-dependent protein kinase phosphorylated only seryl groups. The two phosphorylation sites were present in the same 3-4-kDa CNBr fragment located near the amino terminus of the enzyme subunit. These results indicate that the CaM-dependent protein kinase catalyzed phosphorylation of L-type pyruvate kinase at two discrete sites. One site is apparently the same serine which is phosphorylated by the cAMP-dependent protein kinase. The second site is a unique threonine residue whose phosphorylation also inactivates pyruvate kinase by elevating the K0.5 for P-enolpyruvate. These results may account for the Ca2+-dependent phosphorylation of pyruvate kinase observed in isolated hepatocytes.  相似文献   

5.
We have compared the protein kinase activities of the R1 subunits from herpes simplex virus types 1 (HSV-1) and 2 (HSV-2) ribonucleotide reductase following expression in Escherichia coli. Autophosphorylation activity was observed when kinase assays were performed with immunoprecipitated R1 or proteins purified to homogeneity, and the activity was stimulated by the basic protein protamine. Transphosphorylation of histones or calmodulin by purified or immunoprecipitated HSV-1 and HSV-2 R1 was not observed, and our results suggest that the activities of these two proteins are similar. We further characterized the protein kinase activity of HSV-1 R1 by producing insertion and deletion mutants constructed with a plasmid expressing R1 amino acids 1 to 449. C-terminal deletion analysis identified the catalytic core of the enzyme as comprising residues 1 to 292, and this polypeptide will be useful for structural determinations by X-ray crystallography. Insertion of a 4-amino-acid sequence at sites within the protein kinase domain identified regions essential for activity; insertions at residues 22 and 112 completely inactivated activity, and an insertion at residue 136 reduced activity sixfold. Similar insertions at residues 257, 262, 292, and 343 had no effect on activity. The ATP analog 5'-fluorosulfonylbenzoyladenosine, which covalently modifies conventional eukaryotic kinases at an essential lysine residue within the active site, did label HSV R1, but this labelling occurred outside the N-terminal domain. These data indicate that the HSV R1 kinase is novel and distinct from other eukaryotic protein kinases.  相似文献   

6.
《Journal of molecular biology》2019,431(11):2127-2142
Cyclin-dependent kinase 1 (CDK1) is essential for cell-cycle progression. While dependence of CDK activity on cyclin levels is well established, molecular mechanisms that regulate their binding are less understood. Here, we report for the first time that CDK1:cyclin-B binding is not default but rather determined by the evolutionarily conserved catalytic residue, lysine-33 in CDK1. We demonstrate that the charge state of this lysine allosterically remodels the CDK1:cyclin-B interface. Cell cycle-dependent acetylation of lysine-33 or its mutation to glutamine, which mimics acetylation, abrogates cyclin-B binding. Using biochemical approaches and atomistic molecular dynamics simulations, we have uncovered both short-range and long-range effects of perturbing the charged state of the catalytic lysine, which lead to inhibition of kinase activity. Specifically, although loss of the charge state of catalytic lysine did not impact ATP binding significantly, it altered its orientation in the active site. In addition, the catalytic lysine also acts as an intra-molecular electrostatic tether at the active site to orient structural elements interfacing with cyclin-B. Physiologically, opposing activities of SIRT1 and P300 regulate acetylation and thus control the charge state of lysine-33. Importantly, cells expressing acetylation mimic mutant of Cdc2/CDK1 in yeast are arrested in G2 and fail to divide, indicating the requirement of the deacetylated state of the catalytic lysine for cell division. Thus, by illustrating the molecular role of the catalytic lysine and cell cycle-dependent deacetylation as a determinant of CDK1:cyclin-B interaction, our results redefine the current model of CDK1 activation and cell-cycle progression.  相似文献   

7.
C Roustan  A Fattoum  L A Pradel 《Biochimie》1979,61(5-6):663-669
The effect of 7-chloro-4-nitrobenzofurazan on yeast 3-phosphoglycerate kinase causes a modification of one tyrosyl residue concomitantly with a total loss of activity of the enzyme. The modification is not accompanied by any significant conformational change. A total protection against inactivation is observed with the substrates : furthermore, AMP, tripolyphosphate and pyrophosphate afford an effective protection. At pH 9, a shift in the absorbance spectrum of the tyrosine O-nitrobenzofurazan derivative of 3-phosphoglycerate kinase is observed. It can be related to the transfer of the reagent from tyrosine to lysine. The N-nitrobenzofurazan derivative is also completely inactive. It is concluded that a lysine residue is located close to the essential tyrosyl residue.  相似文献   

8.
That red muscle pyruvate kinase from anoxic Busycotypus canaliculatum (PK-anoxic) is a phosphoprotein was demonstrated by the anoxia-dependent, in vivo, covalent incorporation of injected [32P]orthophosphate into the enzyme molecule. Specificity in labelling of PK-anoxic was strongly suggested by: (a) coincidental elution of pyruvate kinase activity and radioactivity following chromatography of purified PK-anoxic on Sepharose CL-6B, and (b) comigration of the area containing [32P]phosphate and Coomassie-Blue-staining protein following SDS-polyacrylamide gel electrophoresis of homogenous PK-anoxic. The [32P]phosphate content of the enzyme was calculated to be 7.3 mol phosphate/mol enzyme (233 kDa, 180 units/mg protein). Evidence for the reversibility of this phosphorylation was provided by the consistent kinetic similarities between purified red muscle pyruvate kinase from aerobic animals (PK-aerobic) and homogenous, unlabelled, alkaline phosphatase treated PK-anoxic. Comparison of the electrophoretic mobilities of products derived from acid hydrolysis of purified 32P-labelled PK-anoxic with authentic substances suggest the presence of an O-phospho-L-threonine residue in the protein. That this residue plays a probable role in an interconversion mechanism was suggested by the lack of phosphate exchange of homogenous 32P-labelled PK-anoxic in the presence of all substrates. A possible role of protein phosphorylation as a mechanism for the overall control of molluscan anaerobic metabolism is suggested.  相似文献   

9.
The protein lipoyl synthase (LipA) is essential for lipoic acid biosynthesis via sulfur insertions into a protein-bound octanoyl group. We have developed an in vitro assay for LipA using a synthetic tetrapeptide substrate, containing an N(epsilon)-octanoyl lysine residue, corresponding in sequence to the lipoyl binding domain of the E2 subunit of pyruvate dehydrogenase. A putative LipA from the hypothermophilic archaea Sulfolobus solfataricus was expressed in Escherichia coli and purified, and the activity was measured using this novel assay. The optimal temperature for the S. solfataricus LipA-dependent formation of the lipoyl group was found to be 60 degrees C.  相似文献   

10.
The transforming protein of Rous sarcoma virus, pp60v-src, is covalently coupled to myristic acid by an amide linkage to glycine 2. Myristylation promotes the association of pp60v-src with cellular membranes, and this subcellular location is essential for transforming activity. The findings presented here, in conjunction with the previous reports of others, imply that the seventh amino acid encoded by v-src might be important in the myristylation reaction. Replacement of lysine 7 by asparagine greatly reduced the myristylation, membrane association, and transforming activity of pp60v-src. In contrast, substitution of arginine at residue 7 had no effect on any of these properties of pp60v-src. Addition of amino acids 1 to 7 encoded by v-src was sufficient to cause myristylation of a src-pyruvate kinase fusion protein. We conclude that the recognition sequence for myristylation of pp60v-src comprises amino acids 1 to 7 and that lysine 7 is a critical component of this sequence.  相似文献   

11.
Lv L  Li D  Zhao D  Lin R  Chu Y  Zhang H  Zha Z  Liu Y  Li Z  Xu Y  Wang G  Huang Y  Xiong Y  Guan KL  Lei QY 《Molecular cell》2011,42(6):719-730
Most tumor cells take up more glucose than normal cells but metabolize glucose via glycolysis even in the presence of normal levels of oxygen, a phenomenon known as the Warburg effect. Tumor cells commonly express the embryonic M2 isoform of pyruvate kinase (PKM2) that may contribute to the metabolism shift from oxidative phosphorylation to aerobic glycolysis and tumorigenesis. Here we show that PKM2 is acetylated on lysine 305 and that this acetylation is stimulated by high glucose concentration. PKM2 K305 acetylation decreases PKM2 enzyme activity and promotes its lysosomal-dependent degradation via chaperone-mediated autophagy (CMA). Acetylation increases PKM2 interaction with HSC70, a chaperone for CMA, and association with lysosomes. Ectopic expression of an acetylation mimetic K305Q mutant accumulates glycolytic intermediates and promotes cell proliferation and tumor growth. These results reveal an acetylation regulation of pyruvate kinase and the link between lysine acetylation and CMA.  相似文献   

12.
One dominating peptic phosphopeptide, Asx-Thr-Lys-Gly-Pro-Glx-Ile-Glx-Thr-Gly-Val-Leu-Arg-Arg-Ala-(32P)SerP-Val-Ala-Glx-Leu, was obtained from rat liver pyruvate kinase (type L) phosphorylated by cyclic 3′,5′-AMP-stimulated protein kinase from the same tissue. The sequence around the phosphorylated serine residue is similar to that of a corresponding but smaller peptic phosphopeptide previously isolated from pig liver (type L) pyruvate kinase, Leu-Arg-Arg-Ala-(32P)SerP-Leu.  相似文献   

13.
Here we identified the human serine/threonine kinase HIPK2 as a novel member of the DYRK kinase subfamily. Alignment of several DYRK family proteins including the kinases minibrain, MJAK, PKY, the Dictyostelium kinase YakA and Saccharomyces YAK1 allowed the identification of several evolutionary conserved DYRK consensus motifs within the kinase domain. A lysine residue conserved between all DYRK kinase family members was found to be essential for the kinase function of HIPK2. Human HIPK2 was mapped to chromosome 7q32-q34 and murine HIPK2 to chromosome 6B, the homologue to human chromosome 7.  相似文献   

14.
Expression of mutant avian c-erbB1 genes results in tissue-specific transformation in chickens. Site-directed mutagenesis was used to generate kinase-defective mutants of several tissue-specific v-erbB transforming mutants by replacement of the ATP-binding lysine residue in the kinase domain with an arginine residue. These kinase-defective v-erbB mutants were analyzed for their in vitro and in vivo transforming potentials. Specifically, kinase-defective mutants of erythroleukemogenic, hemangioma-inducing, and sarcomagenic v-erbB genes were assessed for their oncogenic potential. In vitro transformation potential was assessed by soft-agar colony formation in primary cultures of chick embryo fibroblasts (CEF). In vivo transformation potential was determined by infection of 1-day-old line 0 chicks with concentrated recombinant retrovirus and then monitoring of birds for tumor formation. These transformation assays demonstrate that kinase activity is absolutely essential for transformation by tissue-specific transforming mutants of the avian c-erbB1 gene. Since all of the tissue-specific v-erbB mutants characterized to date exhibit tyrosine kinase activity in vitro but do not transform all tissues in which they are expressed, we conclude that v-erbB-associated tyrosine kinase activity may be necessary but is not sufficient to induce tumor formation.  相似文献   

15.
Pyruvate carboxylase was recently sequenced in Corynebacterium glutamicum and shown to play an important role of anaplerosis in the central carbon metabolism and amino acid synthesis of these bacteria. In this study we investigate the effect of the overexpression of the gene for pyruvate carboxylase (pyc) on the physiology of C. glutamicum ATCC 21253 and ATCC 21799 grown on defined media with two different carbon sources, glucose and lactate. In general, the physiological effects of pyc overexpression in Corynebacteria depend on the genetic background of the particular strain studied and are determined to a large extent by the interplay between pyruvate carboxylase and aspartate kinase activities. If the pyruvate carboxylase activity is not properly matched by the aspartate kinase activity, pyc overexpression results in growth enhancement instead of greater lysine production, despite its central role in anaplerosis and aspartic acid biosynthesis. Aspartate kinase regulation by lysine and threonine, pyruvate carboxylase inhibition by aspartate (shown in this study using permeabilized cells), as well as well-established activation of pyruvate carboxylase by lactate and acetyl coenzyme A are the key factors in determining the effect of pyc overexpression on Corynebacteria physiology.  相似文献   

16.
A number of elongation factor-2 kinase (eEF-2K) mutants were constructed to investigate features of this kinase that may be important in its activity. Typical protein kinases possess a highly conserved lysine residue in subdomain II which follows the GXGXXG motif of subdomain I. Mutation of two lysine residues, K340 and K346, which follow the GXGXXG motif in eEF-2K had no effect on activity, showing that such a lysine residue is not important in eEF-2K activity. Mutation of a conserved pair of cysteine residues C-terminal to the GXGXXG sequence, however, completely inactivated eEF-2K. The eEF-2K CaM binding domain was localised to residues 77-99 which reside N-terminal to the catalytic domain. Tryptophan 84 is an important residue within this domain as mutation of this residue completely abolishes CaM binding and eEF-2K activity. Removal of approximately 130 residues from the C-terminus of eEF-2K completely abolished autokinase activity; however, removal of only 19 residues inhibited eEF-2 kinase activity but not autokinase activity, suggesting that a short region at the C-terminal end may be important in interacting with eEF-2. Likewise, removal of between 75 and 100 residues from the N-terminal end completely abolished eEF-2K activity.  相似文献   

17.
Shikimate kinase, despite low sequence identity, has been shown to be structurally a member of the nucleoside monophosphate (NMP) kinase family, which includes adenylate kinase. In this paper we have explored the roles of residues in the P-loop of shikimate kinase, which forms the binding site for nucleotides and is one of the most conserved structural features in proteins. In common with many members of the P-loop family, shikimate kinase contains a cysteine residue 2 amino acids upstream of the essential lysine residue; the side chains of these residues are shown to form an ion pair. The C13S mutant of shikimate kinase was found to be enzymatically active, whereas the K15M mutant was inactive. However, the latter mutant had both increased thermostability and affinity for ATP when compared to the wild-type enzyme. The structure of the K15M mutant protein has been determined at 1.8 A, and shows that the organization of the P-loop and flanking regions is heavily disturbed. This indicates that, besides its role in catalysis, the P-loop lysine also has an important structural role. The structure of the K15M mutant also reveals that the formation of an additional arginine/aspartate ion pair is the most likely reason for its increased thermostability. From studies of ligand binding it appears that, like adenylate kinase, shikimate kinase binds substrates randomly and in a synergistic fashion, indicating that the two enzymes have similar catalytic mechanisms.  相似文献   

18.
p-Fluorosulfonylbenzoyl 5'-adenosine (FSO2BzAdo) was shown previously to be an irreversible inhibitor of the catalytic subunit of cAMP-dependent protein kinase II from porcine skeletal muscle (Zoller, M. J., and Taylor, S. S. (1979) J. Biol. Chem. 254, 8363-8368). The catalytic subunit of porcine heart cAMP-dependent protein kinase was also inhibited following incubation with FSO2[14C]BzAdo, and inhibition was shown to result from the stoichiometric, covalent modification of a single lysine residue. The amino acid sequence in an extended region around the carboxybenzenesulfonyl lysine (CBS-lysine) was elucidated by characterizing both tryptic and cyanogen bromide peptides containing the 14C-modified residue. The sequence in this region was Leu-Val-Lys-His-Lys-Glu-Thr-Gly-Asn-His-Phe-Ala-Met-Lys(CBS)-Ile-Leu-Asp-Lys-Glu-Lys-Val-Val-Lys-Leu-Lys-Gln-Ile. The covalently modified residue corresponded to lysine 71 in the overall polypeptide chain. Homologies to bovine heart catalytic subunit and to a site modified by FSO2BzAdo in phosphofructokinase are considered.  相似文献   

19.
Isothiocyanates are recognized inhibitors acting on ATP-binding sites of P-type ATPases. Detailed studies with modification of proteins in molecules of purified ATPases by fluorescein isothiocyanate (FITC) and consequent tryptic hydrolysis followed by isolation and sequencing of the respective peptide fragments revealed FITC bound to a lysine residue. This residue was then indicated to be essential for the interaction of ATP with the P-type ATPases. Nevertheless, upon an exchange by site directed mutagenesis of lysine, believed to be essential, the expected total inhibition of ATPase activity was missing. In addition, in the case of the plasma membrane Ca2+-ATPase, the residual activity still remained sensitive to FITC. It was attempted to explain the latter finding by hypothetical existence of some other lysine residue essential for the ATPase activity. On the contrary, in our previous studies we have shown that, based on the reactivity of isothiocyanates, the primary target of FITC in P-type ATPases has to be the SH group of a cysteine residue. However, later on, in altered conditions during trypsinolysis and sequencing, FITC may become transferred from its original site of interaction to a lysine residue and this may lead to final identification of the label on a false place. The present study represents all attempt of elucidating the controversy whether it is lysine or cysteine that represents the FITC-sensitive group truly responsible for the recognition by the active site of P-type ATPases of ATP and its binding.  相似文献   

20.
A method was devised to purify branched-chain oxo acid dehydrogenase (BCOAD) from rat kidney which retains endogenous kinase activity. Incorporation of 32P into purified enzyme parallels the time course of enzyme inhibition by ATP. Phosphorylation occurs on a serine residue(s) of the 46000-mol.wt. subunit of the enzyme complex. Endogenous phosphatase activity is not present after purification, and added pyruvate dehydrogenase phosphate phosphatase does not re-activate BCOAD or liberate 32P from previously labelled enzyme. These results demonstrate that BCOAD can be regulated by an endogenous protein kinase and that the phosphorylation-cycle enzymes regulating BCOAD appear to be distinct from those associated with pyruvate dehydrogenase complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号