首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The recently identified adipocytokine adiponectin has been shown to improve insulin action and decrease triglyceride content in skeletal muscle (by stimulating lipid oxidation) in mice. In the present study, we tested the hypothesis that high serum concentrations of adiponectin are associated with lower intramyocellular (IMCL) fat content by promoting lipid oxidation in humans. IMCL-content in predominantly non-oxidative tibialis anterior muscle and oxidative soleus was determined by proton magnetic resonance spectroscopy in a cross- sectional study involving 63 healthy volunteers. In a second set of experiments, changes in IMCL in both muscles were measured after a three days dietary lipid challenge (n = 18) and after intravenous lipid challenge (n = 12) with suppressed lipid oxidation under hyperinsulinemia. Adiponectin serum concentrations were found to be negatively correlated with IMCL in the oxidative soleus muscle (IMCL [sol]) (r = - 0.46, p < 0.001) independent of measures of obesity, but not with IMCL in the non-oxidative tibialis anterior muscle (IMCL [tib]) (p = 0.40). Adiponectin serum concentrations were negatively correlated with the observed increase in IMCL load after dietary lipid challenge in the tibialis (r = 0.53, p = 0.03) but not in the soleus muscle. During suppression of lipid oxidation by hyperinsulinemia, no effect of adiponectin on IMCL was observed in either soleus or tibialis muscle. Overall, the presented findings are consistent with the hypothesis that adiponectin promotes lipid oxidation in humans resulting in lower intracellular lipid content in human muscle. These results are consistent with animal data, where adiponectin could be shown to enhance lipid oxidation and reduce muscle triglycerides.  相似文献   

2.
Adiponectin is a novel adipocytokine negatively correlated with parameters of the metabolic syndrome, such as body mass index (BMI), body fat mass (BFM), and circulating insulin levels. Furthermore, metabolic actions directly on the liver have been described. The aim of the present study was to characterize circulating adiponectin levels, hepatic turnover, and the association of adiponectin with key parameters of hepatic as well as systemic metabolism in cirrhosis, a catabolic disease. Circulating adiponectin levels and hepatic turnover were investigated in 20 patients with advanced cirrhosis. Hepatic hemodynamics [portal pressure, liver blood flow, hepatic vascular resistance, indocyanine green (ICG) half-life], body composition, resting energy expenditure, hepatic free fatty acids (FFA) and glucose turnover, and circulating levels of hormones (catecholamines, insulin, glucagon) and proinflammatory cytokines (IL-1beta, TNF-alpha, IL-6) were also assessed. Circulating adiponectin increased dependently on the clinical stage in cirrhosis compared with controls (15.2 +/- 1.7 vs. 8.2 +/- 1.1 microg/ml, respectively, P < 0.01), whereas hepatic extraction decreased. Adiponectin was negatively correlated with parameters of hepatic protein synthesis (prothrombin time: r = -0.62, P = 0.003; albumin: r = -0.72, P < 0.001) but not with transaminases or parameters of lipid metabolism. In addition, circulating adiponectin increased with portal pressure (r = 0.67, P = 0.003), hepatic vascular resistance (r = 0.60, P = 0.008), and effective hepatic blood flow (ICG half-life: r = 0.69, P = 0.001). Adiponectin in cirrhosis was not correlated with BMI, BFM, parameters of energy metabolism, insulin levels, hepatic FFA and glucose turnover, and circulating proinflammatory cytokines. These results demonstrate that 1) adiponectin plasma levels in cirrhosis are significantly elevated, 2) the liver is a major source of adiponectin extraction, and 3) adiponectin levels in cirrhosis do not correlate with parameters of body composition or metabolism but exclusively with reduced liver function and altered hepatic hemodynamics.  相似文献   

3.
Insulin decreases human adiponectin plasma levels.   总被引:6,自引:0,他引:6  
Insulin resistance and hyperinsulinemia are known atherosclerosis risk factors. The association between adiponectin plasma levels and obesity, insulinemia, and atherosclerosis has been shown. Thus, adiponectin may be a link between hyperinsulinemia and vascular disease. In vitro data demonstrated a reduction of adiponectin expression by insulin. However, it is still unclear whether insulin regulates adiponectinemia in vivo in humans. Five healthy male volunteers were studied. Circulating adiponectin levels were determined before and during hyperinsulinemic euglycemic clamp. Adiponectin was measured by radioimmunoassay. Hyperinsulinemia (85.0 +/- 33.2 at baseline vs. 482.8 +/- 64.4 pmol/l during steady state; p < 0.01) was achieved using a euglycemic hyperinsulinemic clamp, keeping blood glucose levels basically unchanged during the intervention (4.6 +/- 0.14 vs. 4.37 +/- 0.15 mmol/l, respectively; ns). We found a significant decrease of adiponectin plasma levels during the steady state of hyperinsulinemic euglycemic clamp (26.7 +/- 3.5 micro g/ml) compared to baseline levels (30.4 +/- 5 micro g/ml; p < 0.05). Hyperinsulinemia caused a significant decrease of adiponectin plasma levels under euglycemic conditions. Considering existing data about adiponectin dependent effects, hypoadiponectinemia might at least partly be a link between hyperinsulinemia and vascular disease in metabolic syndrome.  相似文献   

4.
Several studies have reported an association between markers of liver injury, including elevated concentrations of alanine aminotransferase (ALT) aspartate aminotransferase (AST), and prospective risk of type 2 diabetes. We therefore examined the relationship between ALT and AST on the one hand, and serum adiponectin and highly sensitive CRP on the other, both of which have been reported to be associated with prospective risk of type 2 diabetes; we also tested for variable components of metabolic syndrome in 198 male college students aged 18-20 years. ALT showed a positive relationship with percentage body fat (r = 0.19, p = 0.02), serum leptin (r = 0.21, p = 0.01), LDL cholesterol (r = 0.29, p = 0.0003), triglyceride (r = 0.28, p = 0.0004) and apolipoprotein B (r = 0.35, p < 0.0001) even after adjustment for body mass index (BMI). Although there was a significant relationship with serum insulin, adiponectin (inversely), homeostasis model assessment of insulin resistance, systolic and diastolic blood pressure, HDL cholesterol (inversely) and LDL particle diameter in simple regression analysis, significance disappeared after adjustment for BMI. In contrast, CRP (r = 0.16, p = 0.04) was associated with ALT after adjustment for BMI, although simple regression analysis revealed no association between the two. Relationships were smaller for AST, and significance disappeared after adjustment for BMI. Multiple regression analysis excluding lipid variables revealed significant and independent associations of ALT with adiponectin and percentage body fat. In a model including lipid variables, apolipoprotein B emerged as an independent predictor of ALT in addition to adiponectin and percentage body fat. These variables explained 29 % of ALT variability. In conclusion, serum ALT levels were associated with leptin and CRP as well as many components of the insulin resistance syndrome in young healthy men. Adiponectin, apolipoprotein B and percentage body fat emerged as significant and independent predictors of ALT. Since adiponectin and chronic subclinical inflammation have been reported to predict the development of type 2 diabetes and since abnormalities in apolipoprotein B metabolism occur in the early course of insulin resistance, these findings may be compatible with the association between liver markers and risk of diabetes.  相似文献   

5.
The human immunodeficiency virus (HIV)-lipodystrophy syndrome is characterized by abnormalities of lipid metabolism, glucose homeostasis, and fat distribution. Overaccumulation of intramuscular lipid may contribute to insulin resistance in this population. We examined 63 men: HIV positive with lipodystrophy (n = 22), HIV positive without lipodystrophy (n = 20), and age- and body mass index-matched HIV-negative controls (n = 21). Single-slice computed tomography was used to determine psoas muscle attenuation and visceral fat area. Plasma free fatty acids (FFA), lipid profile, and markers of glucose homeostasis were measured. Muscle attenuation was significantly decreased in subjects with lipodystrophy [median (interquartile range), 55.0 (51.0-58.3)] compared with subjects without lipodystrophy [57.0 (55.0-59.0); P = 0.05] and HIV-negative controls [59.5 (57.3-64.8); P < 0.01]. Among HIV-infected subjects, muscle attenuation correlated significantly with FFA (r = -0.38; P = 0.02), visceral fat (r = -0.49; P = 0.002), glucose (r = -0.38; P = 0.02) and insulin (r = -0.60; P = 0.0001) response to a 75-g oral glucose tolerance test. In forward stepwise regression analysis with psoas attenuation as the dependent variable, visceral fat (P = 0.02) and FFA (P < 0.05), but neither body mass index, subcutaneous fat, nor antiretroviral use, were strong independent predictors of muscle attenuation (r2 = 0.39 for model). Muscle attenuation (P = 0.02) and visceral fat (P = 0.02), but not BMI, subcutaneous fat, FFA, or antiretroviral use, were strong independent predictors of insulin response (area under the curve) to glucose challenge (r2 = 0.47 for model). These data demonstrate that decreased psoas muscle attenuation due to intramuscular fat accumulation may contribute significantly to hyperinsulinemia and insulin resistance in HIV-lipodystrophy patients. Further studies are needed to assess the mechanisms and consequences of intramuscular lipid accumulation in HIV-infected patients.  相似文献   

6.
Reduced plasma adiponectin levels are associated with insulin resistance. Black South Africans, like African Americans, are more insulin-resistant than BMI-matched white subjects, as are Asian Indians. We investigated whether this interethnic variation in insulin resistance is due to differences in plasma adiponectin levels. Blood and anthropometric measurements were taken from black, white and Asian-Indian subjects. Serum adiponectin, lipids, glucose and insulin were measured; insulin sensitivity was calculated using HOMA. Black (HOMA = 2.62 +/- 0.99) and Asian-Indian subjects (HOMA = 3.41 +/- 2.85) were more insulin-resistant than BMI-matched white (HOMA = 1.76 +/- 0.63) subjects (p = 0.0001). Furthermore, the white subjects had higher adiponectin levels (8.11 +/- 4.39 microg/ml) compared to black (5.71 +/- 2.50 microg/ml) and Asian Indian (5.86 +/- 2.50 microg/ml) subjects (p = 0.003). When all ethnic groups were combined, multiple regression analysis demonstrated that serum adiponectin levels corrected for BMI and ethnicity did not correlate with HOMA, but did explain 10.0 % of the variance in HDL-cholesterol levels. Within each ethnic group, adiponectin only correlated inversely with HOMA in white subjects. Adiponectin may play a role in determining serum HDL-cholesterol levels, but ethnic variation in insulin sensitivity is not dependent on serum levels of this adipokine. The relationship between adiponectin and insulin resistance varies across ethnic groups.  相似文献   

7.
Adiponectin is an adipocyte-derived hormone involved in the regulation of carbohydrate and lipid metabolism. Its concentrations are decreased in patients with obesity, type 2 diabetes and atherosclerosis and are higher in females than in males. Gender differences of adiponectin levels raise the possibility that sex hormones directly regulate its serum concentrations, which may in turn influence insulin sensitivity in different phases of the menstrual cycle. To test this hypothesis we measured serum adiponectin, estradiol, progesterone, luteinizing hormone and follicle-stimulating hormone concentrations daily throughout the menstrual cycle in six healthy women. Mean adiponectin levels strongly positively correlated with serum cortisol concentrations [R=0.94286; p=0.0048 (Spearman correlation test)], but were not significantly related to other anthropometric, biochemical and hormonal characteristics of the subjects (BMI, blood glucose, insulin, testosterone, prolactin, cholesterol, HDL cholesterol, LDL cholesterol, triglycerides concentrations, or atherogenic index). Furthermore, no significant changes of serum adiponectin levels were found throughout the menstrual cycle. We conclude that changes in sex hormones during the menstrual cycle do not affect total circulating adiponectin levels in healthy women. Therefore, the differences in insulin sensitivity in various phases of the menstrual cycle are not due to changes of circulating adiponectin levels.  相似文献   

8.
New scores and biochemical markers have recently been published for diagnosis of insulin resistance and beta-cell dysfunction (such as intact proinsulin, adiponectin, IRISII-score). One goal of this 6-month prospective controlled study was to evaluate the impact of pioglitazone (45 mg) vs. glimepiride (1-6 mg, in the intend to optimize therapy) on these markers. Observation parameters were: IRIS-II score, HOMA-score, ATP III score, HbA (1c), fasting glucose, lipids, intact proinsulin, adiponectin, and adverse events. The study was completed by 173 patients (66 female, 107 male, age +/- STD: 63 +/- 8 years, disease duration: 7.2 +/- 7.2 years, HbA (1c): 7.53 +/- 0.85 %, pioglitazone arm: 89 patients). The groups were not different for any of the observation parameters at baseline, and a similar reduction in HbA (1c) was seen in both groups (p < 0.001). In the pioglitazone group, reductions were observed for the IRIS-II and HOMA scores (p < 0.001 vs. glimepiride at endpoint) fasting glucose (p < 0.001), insulin (p < 0.001), LDL/HDL ratio (p < 0.001), hsCRP (p < 0.05), intact proinsulin (p < 0.001), and an increase was seen in HDL (p < 0.001), adiponectin (p < 0.001) and BMI (p < 0.001). In conclusion, treatment with pioglitazone resulted in an improvement of markers for insulin resistance and beta-cell dysfunction, independent from blood glucose control. Adiponectin, intact proinsulin, and the IRIS-II score may be suitable parameters for monitoring of these additional beneficial therapeutic effects.  相似文献   

9.
Type 2 diabetes has been associated with high synthesis and low absorption of cholesterol independent of weight, indicating that insulin resistance may be a link between glucose and cholesterol metabolism. Therefore, we investigated the relationship of serum cholesterol precursors, reflecting cholesterol synthesis, and serum plant sterols and cholestanol, reflecting cholesterol absorption efficiency, with insulin sensitivity measured with the hyperinsulinemic euglycemic clamp in 72 healthy normoglycemic men. Men in the most insulin-resistant tertile had higher serum cholesterol precursor ratios (P < 0.05), whereas no significant differences in serum absorption sterols were observed. In bivariate analysis, cholesterol synthesis markers correlated with fasting insulin (r = 0.36-0.46, P < 0.01) and the rates of insulin-stimulated whole-body glucose uptake (WBGU; r = -0.37-0.40, P < 0.01). Also, cholesterol absorption markers correlated with fasting insulin and WBGU (P < 0.05). Fasting insulin correlated with desmosterol (r = 0.286, P = 0.015) and lathosterol (r = 0.248, P = 0.037) even when the rates of WBGU and body mass index (BMI) were controlled for. We conclude that insulin resistance is linked to high cholesterol synthesis and decreased cholesterol absorption. Because fasting insulin correlated with cholesterol synthesis independent of the rates of BMI and WBGU, it is possible that regulation of cholesterol synthesis by hyperinsulinemia may be a link between insulin resistance and cholesterol metabolism.  相似文献   

10.
The aim of the current investigation was to investigate any potential effect of fasting plasma adiponectin concentration on bone tissue, and to find possible relationships of fasting plasma adiponectin level with different body composition, insulin sensitivity and physical performance parameters in a group of healthy perimenopausal women. Twenty-one premenopausal and 17 early postmenopausal women participated in this study. The women were matched for body mass index (BMI) and level of mean daily energy expenditure. Women had similar adiponectin (8.4 +/- 3.9 vs. 9.9 +/- 5.4 microg/ml) and leptin values (12.0 +/- 7.7 vs. 14.0 +/- 8.2 ng/ml) before and after menopause. Significant relationships were observed between plasma adiponectin and bone mineral content, total bone mineral density (BMD) and lumbar spine BMD values (r > - 0.36; p < 0.05). Furthermore, adiponectin had a significant negative association with total BMD (beta = - 1.228; p = 0.004) and lumbar spine BMD (beta = - 0.312; p = 0.005) independent of the influence that other measured body compositional, hormonal or physical performance factors may exert on BMD. Adiponectin was also significantly related to waist-to-hip ratio (WHR) (beta = - 2.300; p = 0.002) and fasting insulin resistance index (FIRI) (beta = - 0.006; p = 0.007) in separate regression models. No relationship was observed between leptin and measured bone, physical performance and insulin resistance values. Leptin significantly correlated to BMI (beta = 0.018; p = 0.034), lean body mass (beta = 0.025; p = 0.024) and fat mass (beta = 0.019; p = 0.001) in separate regression models. In conclusion, the results of present study show that circulating adiponectin appears to exert an independent effect on BMD in perimenopausal women and may represent a link between adipose tissue and bone mineral density.  相似文献   

11.
Adiponectin is secreted by adipocytes and has been implicated in the regulation of energy homeostasis. Vigorous training program represents a physical stress condition in which heavy changes in energy expenditure might increase adiponectin concentration in athletes. Therefore, the aim of the present study was to investigate if there are changes in fasting adiponectin concentration during preparatory period in elite male rowers. Twelve rowers (mean and SD; age: 20.8+/-3.0 years; height: 192.9+/-4.7 cm; body mass: 91.9+/-5.3 kg; body fat percentage: 11.9+/-1.4%) were tested seven times over a 24-week training season. In addition to adiponectin, leptin, insulin, growth hormone, and glucose values were evaluated. Maximal oxygen consumption (VO (2 max)) and aerobic power (Pa (max)) were determined before and after the training period. Training was mainly organized as low-intensity prolonged training. Significant increases in VO (2 max) (by 3.2+/-1.8%; from 6.2+/-0.5 to 6.4+/-0.4 l/min), VO (2 max/kg) (by 2.2+/-2.0%; from 67.9+/-3.0 to 69.4+/-3.0 ml/min/kg) and Pa (max) (by 4.6+/-6.3%; from 444.6+/-39.1 to 465.8+/-25.0 W) were observed after the 24-week period. All measured body compositional values were similar to pretraining values after the training period. Fasting adiponectin did not change during the preparatory period. Likewise, leptin, insulin, growth hormone, and glucose values were not significantly changed after the training period. Adiponectin concentration was significantly correlated (all p<0.05) with body mass (r=-0.40), body fat mass (r=-0.33), body fat free mass (r=0.38), and leptin (r=-0.31) values. In conclusion, fasting adiponectin does not change throughout the prolonged training period in elite male rowers despite substantial changes in training volume. Further studies are needed to clarify possible mechanisms by which adiponectin might influence energy homeostasis during heavy training in elite athletes.  相似文献   

12.
Plasma concentrations of adiponectin, tumor necrosis factor-alpha (TNF-alpha) and its soluble receptors sTNFR-1 and sTNFR-2 were measured in 80 patients with gestational diabetes (GDM) (mean age 29.0 +/- 4.9 years) and 30 pregnant women with normal glucose tolerance (NGT) (mean age 28.2 +/- 6.0 years). We found that GDM patients had significantly lower concentrations of adiponectin (11.28 +/- 5.91 vs. 16.31 +/- 6.04 microg/ml, p = 0.00009) and elevated levels of TNF-alpha (1.71 +/- 0.92 vs. 1.27 +/- 0.42 pg/ml, p = 0.0175) in comparison to NGT women. The differences remained statistically significant after adjusting for BMI. Plasma levels of sTNFR-1 and sTNFR-2 also tended to be higher in GDM patients. In the GDM group TNF-alpha concentrations correlated significantly with sTNFR-1 (r = 0.444, p = 0.00008), sTNFR-2 (r = 0.364, p = 0.0016) and with C-peptide concentrations (r = 0.318, p = 0.016), whereas in women with NGT TNF-alpha correlated only with TG levels (r = 0.50, p = 0.024). Multivariate linear regression analysis revealed that prepregnant BMI was the most predictive indicator of TNF-alpha concentrations in GDM women. TG concentrations as well as BMI before pregnancy and at the time of sampling in pregnant NGT women were significant predictors, explaining 62% of the variance in TNF-alpha concentration. There were also negative correlations between adiponectin concentrations and a pregestational BMI (r = - 0.298, p = 0.009), BMI at the time of sampling (r = - 0.239, p = 0.034) and TG concentrations (r = - 0.379, p = 0.039) in GDM patients, whereas women with NGT showed only a negative correlation between adiponectin and TG concentrations (r = - 0.488, p = 0.025). In a multivariate regression analysis, prepregnancy BMI and TG levels remained significant predictors, explaining 39% of the variation in plasma adiponectin concentration in GDM women. In conclusion, our results suggest that decreased adiponectin concentration in GDM may not simply reflect maternal adiposity and insulin resistant state, but may contribute to the impaired glucose metabolism during pregnancy, with potential implications for screening and prevention of the disease.  相似文献   

13.
Elevated serum gamma-glutamyltransferase (GGT) concentrations have been related to features of the metabolic syndrome as well as increased risk of cardiovascular and liver disease. More recently, elevated GGT levels were shown to predict development of type 2 diabetes in a longitudinal study from Korea. The aim of the present study was to test the hypothesis that serum GGT is associated with glucose tolerance, insulin sensitivity and beta-cell function in a healthy, non-diabetic Caucasian population from the Tübingen family study. Insulin sensitivity was estimated by oGTT (n = 850) or measured by hyperinsulinemic euglycemic clamp (n = 245), respectively. A subgroup (n = 70) underwent additional determination of intrahepatic lipid content using 1H magnetic resonance spectroscopy. Serum GGT was positively correlated with two-hour glucose during oGTT (r = 0.15, p < 0.0001) and negatively correlated with insulin sensitivity from oGTT (r = -0.31, p < 0.0001) and clamp (r = -0.27, p < 0.0001). The relationship between GGT and insulin sensitivity remained significant after adjusting for sex, age, BMI, and AST using multivariate regression analysis. Inclusion of serum triglyceride levels as a parameter of lipid metabolism kept the relationship significant in the oGTT group (p < 0.0001), but not in the smaller clamp group (p = 0.11). Additionally, serum GGT was positively correlated with hepatic lipid content (r = 0.49, p < 0.001) independent of sex, age, BMI, AST or serum triglycerides. There was no significant correlation between GGT and the index for beta-cell function after adjusting for age, sex, BMI and insulin sensitivity (p = 0.74). In conclusion, elevated serum GGT levels predict glucose intolerance probably via insulin resistance rather than beta-cell dysfunction. This may be primarily related to hepatic insulin resistance and increased intrahepatic lipids. The association observed between elevated hepatic lipids and reduced insulin sensitivity might explain the increased diabetes risk observed in subjects with elevated serum GGT concentrations. In the absence of overt liver disease, elevated serum GGT concentrations may point the clinician to incipient disturbances in the glucose metabolism.  相似文献   

14.
To investigate the effects of recombinant human adiponectin on the metabolism of diabeticswine induced by feeding a high-fat/high-sucrose diet (HFSD),diabetic animal models were constructedby feeding swine with HFSD for 6 months.The effects of recombinant adiponectin were assessed bydetecting the change of plasma glucose levels by commercially available enzymatic method test kits andevaluating the insulin sensitivity by oral glucose tolerance test (OGTT). About 1.5 g purified recombinantadiponectin was produced using a 15-liter fermenter.A single injection of purified recombinant humanadiponectin to diabetic swine led to a 2- to 3-fold elevation in circulating adiponectin,which triggered atransient decrease in basal glucose level (P<0.05).This effect on glucose was not associated with anincrease in insulin level.Moreover,after adiponectin injection,swine also showed improved insulin sensitivitycompared with the control (P<0.05).Adiponectin might have the potential to be a glucose-lowering agentfor metabolic disease.Adiponectin as a potent insulin enhancer linking adipose tissue and glucose metabolismcould be useful to treat insulin resistance.  相似文献   

15.
Adipose tissue is a major source of inflammatory and thrombotic cytokines. This study investigated the relationship of abdominal subcutaneous adipose tissue cytokine gene expression to body composition, fat distribution, and metabolic risk during obesity. We determined body composition, abdominal fat distribution, plasma lipids, and abdominal subcutaneous fat gene expression of leptin, TNF-alpha, IL-6, PAI-1, and adiponectin in 20 obese, middle-aged women (BMI, 32.7 +/- 0.8 kg/m2; age, 57 +/- 1 yr). A subset of these women without diabetes (n = 15) also underwent an OGTT. In all women, visceral fat volume was negatively related to leptin (r = -0.46, P < 0.05) and tended to be negatively related to adiponectin (r = -0.38, P = 0.09) gene expression. Among the nondiabetic women, fasting insulin (r = 0.69, P < 0.01), 2-h insulin (r = 0.56, P < 0.05), and HOMA index (r = 0.59, P < 0.05) correlated positively with TNF-alpha gene expression; fasting insulin (r = 0.54, P < 0.05) was positively related to, and 2-h insulin (r = 0.49, P = 0.06) tended to be positively related to, IL-6 gene expression; and glucose area (r = -0.56, P < 0.05) was negatively related to, and insulin area (r = -0.49, P = 0.06) tended to be negatively related to, adiponectin gene expression. Also, adiponectin gene expression was significantly lower in women with vs. without the metabolic syndrome (adiponectin-beta-actin ratio, 2.26 +/- 0.46 vs. 3.31 +/- 0.33, P < 0.05). We conclude that abdominal subcutaneous adipose tissue expression of inflammatory cytokines is a potential mechanism linking obesity with its metabolic comorbidities.  相似文献   

16.
Adiponectin is an adipocyte-derived hormone associated with insulin sensitivity and atherosclerotic risk. As central rather than gluteofemoral fat is known to increase the risk of type 2 diabetes and cardiovascular disease, we investigated the mRNA and protein expression of adiponectin in human adipose tissue depots. RNA was extracted from 46 human adipose tissue samples from non-diabetic subjects aged 44.33 +/- 12.4 with a BMI of 28.3 +/- 6.0 (mean +/- SD). The samples were as follows: 21 abdominal subcutaneous, 13 omentum, 6 thigh; samples were also taken from diabetic subjects aged 66.6 +/- 7.5 with BMI 28.9 +/- 3.17; samples were: 6 abdominal subcutaneous; 3 thigh. Quantitative PCR and Western analysis was used to determine adiponectin content. Protein content studies determined that when compared with non-diabetic abdominal subcutaneous adipose tissue (Abd Sc AT) (values expressed as percentage relative to Abd Sc AT -100 %). Adiponectin protein content was significantly lower in non-diabetic omental AT (25 +/- 1.6 %; p < 0.0001, n = 6) and in Abd Sc AT from diabetic subjects (36 +/- 1.5 %; p < 0.0001, n = 4). In contrast, gluteal fat maintained high adiponectin protein content from non-diabetic patients compared with diabetic patients. An increase in BMI was associated with lower adiponectin protein content in obese ND Abd Sc AT (25 +/- 0.4 %; p < 0.0001). These findings were in agreement with the mRNA expression data. In summary, this study indicates that adiponectin protein content in non-diabetic subjects remains high in abdominal subcutaneous fat, including gluteal fat, explaining the high serum adiponectin levels in these subjects. Omental fat, however, expresses little adiponectin. Furthermore, abdominal and gluteal subcutaneous fat appears to express significantly less adiponectin once diabetic status is reached. In conclusion, the adipose tissue depot-specific expression of adiponectin may influence the pattern of serum adiponectin concentrations and subsequent disease risk.  相似文献   

17.
Insulin resistance, impaired insulin secretion, and low adiponectin levels have been shown to be predictors for type 2 diabetes. However, it is not yet clear whether these associations (1) are independent of changes in body weight, or (2) are valid for changes in glucose tolerance in the prediabetic state. Sixty-two non-diabetics (50 with normal glucose tolerance) aged 41 +/- 11 years, BMI 30.5 +/- 5.3 kg/m2 (mean +/- SD) were studied twice with a standard oral glucose tolerance test (oGTT, mean follow-up time 3.0 +/- 1.8 years (mean +/- SD) [range 0.5-6.5 years]). Insulin sensitivity and insulin secretion were estimated from oGTT using validated indices. Two-hour blood glucose during oGTT deteriorated over time (baseline 2 h glucose 6.32 +/- 0.21 VS. follow-up 2 h glucose 7.14 +/- 0.22 mM, p < 0.001) while the percentage body fat did not change (32.7 +/- 1.2 VS. 32.6 +/- 1.2%, p = 0.46). Follow-up 2 h blood glucose was predicted by adiponectin (p = 0.01), baseline insulin sensitivity (p = 0.02) and baseline insulin secretion relative to insulin sensitivity (p = 0.03) independent of sex, age, baseline 2 h blood glucose or change in percentage body fat. Our results suggest that low adiponectin levels, insulin resistance and low beta cell function predict the continuous deterioration of glucose tolerance in early prediabetic states, independent of changes in adiposity. Therefore, the early influence of these parameters should be the subject of future prevention programs to prevent deterioration of glucose tolerance.  相似文献   

18.
The genetic background of obesity is under research. Obesity-related phenotype candidate genes include the gene encoding adiponectin (AdipoQ). In this study, exon 3 of the adiponectin gene was screened for the Y111 H (Tyr111His, or T415C, rs17366743) polymorphism, and adiponectin serum concentrations were measured in 206 obese subjects (110 women and 96 men, aged 50.5+/-16.9 years). Their BMI, % of body fat, plasma glucose, insulin, and glycosylated hemoglobin were measured. Adiponectin was determined by enzyme-linked immunosorbent assay. Genomic DNA was extracted from peripheral blood leukocytes. A fragment of exon 3 of the adiponectin gene was amplified in PCR and screened for the Y111 H polymorphism in SSCP analysis. Genetic screening revealed a different SSCP pattern in 2 subjects. Subsequent genotyping disclosed the TC genotype in both subjects, resulting in Y111 H heterozygote variant frequency of 0.01 in the whole cohort. Other results for SNP (single nucleotide polymorphism) positive and negative subjects were as follows, respectively: BMI (kg/m (2)) 39.95+/-9.83 vs. 38.12+/-8.56; waist circumference (cm) 122+/-18.4 vs.115+/-16; glucose (mmol/l) 7.51+/-1.86 vs. 5.56+/-0.74; HbA1c (%) 7.55+/-1.86 vs. 6.58+/-1.36; body fat (%) 51+/-2 vs. 44+/-10; plasma insulin (mU/l) 28.92+/-16.50 vs. 37.59+/-47.34; adiponectin (ng/ml) 1301+/-15.8 vs. 5682+/-4156. Due to a proportion of 2 vs. 204, statistical calculations were not possible. The Y111 H adiponectin gene variant is uncommon in Polish obese subjects. Although we observed low adiponectin concentrations in Y111 H SNP heterozygote carriers, this finding was not confirmed by statistics.  相似文献   

19.
Although chronic hyperinsulinemia has been shown to induce insulin resistance, the basic cellular mechanisms responsible for this phenomenon are unknown. The present study was performed 1) to determine the time-related effect of physiological hyperinsulinemia on glycogen synthase (GS) activity, hexokinase II (HKII) activity and mRNA content, and GLUT-4 protein in muscle from healthy subjects, and 2) to relate hyperinsulinemia-induced alterations in these parameters to changes in glucose metabolism in vivo. Twenty healthy subjects had a 240-min euglycemic insulin clamp study with muscle biopsies and then received a low-dose insulin infusion for 24 (n = 6) or 72 h (n = 14) (plasma insulin concentration = 121 +/- 9 or 143 +/- 25 pmol/l, respectively). During the baseline insulin clamp, GS fractional velocity (0.075 +/- 0.008 to 0.229 +/- 0.02, P < 0.01), HKII mRNA content (0.179 +/- 0.034 to 0.354 +/- 0.087, P < 0.05), and HKII activity (2.41 +/- 0.63 to 3.35 +/- 0.54 pmol x min(-1) x ng(-1), P < 0.05), as well as whole body glucose disposal and nonoxidative glucose disposal, increased. During the insulin clamp performed after 24 and 72 h of sustained physiological hyperinsulinemia, the ability of insulin to increase muscle GS fractional velocity, total body glucose disposal, and nonoxidative glucose disposal was impaired (all P < 0.01), whereas the effect of insulin on muscle HKII mRNA, HKII activity, GLUT-4 protein content, and whole body rates of glucose oxidation and glycolysis remained unchanged. Muscle glycogen concentration did not change [116 +/- 28 vs. 126 +/- 29 micromol/kg muscle, P = nonsignificant (NS)] and was not correlated with the change in nonoxidative glucose disposal (r = 0.074, P = NS). In summary, modest chronic hyperinsulinemia may contribute directly (independent of change in muscle glycogen concentration) to the development of insulin resistance by its impact on the GS pathway.  相似文献   

20.
Adiponectin is a recently discovered adipocytokine that correlates negatively with body mass index and body fat. In patients with GH deficiency, treatment with recombinant human growth hormone (rhGH) reduces body fat mass and thus may also have a favorable effect in patients with metabolic syndrome, and would also be expected to increase adiponectin levels. However, due to its diabetogenic effect, rhGH treatment also bears an increased risk for the development of type 2 diabetes mellitus. We conducted a 18-month randomized, double-blind, placebo-controlled study to assess the effect of rhGH in combination with metformin (MGH) in 14 obese men (7 MGH; 7 Metformin+Placebo, 54 +/- 2 years, BMI 33.0 +/- 1.2 kg/m(2)) with mildly elevated fasting plasma glucose (FPG) at screening (6.1-8.0 mmol/l). All patients received metformin (850 mg twice daily) for treatment of type 2 diabetes mellitus/impaired glucose tolerance, either alone or in combination with rhGH (daily dose 9.5 mug/kg body weight). Glucose disposal rate (GDR) was measured using the euglycemic hyperinsulinemic clamp technique, and body composition was measured by DEXA at 0 and 18 months. After 18 months, the mean adiponectin concentration increased by 32 +/- 11 % (p = 0.018) in the MGH group and did not change in the MP group (- 10 +/- 13 %; p = n. s.). The difference in relative changes in adiponectin levels between the two groups after 18 months was statistically significant (p = 0.026). Improvement in insulin sensitivity (GDR) correlated positively with adiponectin levels (r = 0.73; p = 0.004). In conclusion, the additional administration of rhGH increased adiponectin levels in patients with metabolic syndrome, indicating its potential role in adiponectin-associated insulin sensitivity alterations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号