首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 300 毫秒
1.
Exercise improves glucose metabolism and delays the onset and/or reverses insulin resistance in the elderly by an unknown mechanism. In the present study, we examined the effects of exercise training on glucose metabolism, abdominal adiposity, and adipocytokines in obese elderly. Sixteen obese men and women (age = 63 +/- 1 yr, body mass index = 33.2 +/- 1.4 kg/m2) participated in a 12-wk supervised exercise program (5 days/wk, 60 min/day, treadmill/cycle ergometry at 85% of heart rate maximum). Visceral fat (VF), subcutaneous fat, and total abdominal fat were measured by computed tomography. Fat mass and fat-free mass were assessed by hydrostatic weighing. An oral glucose tolerance test was used to determine changes in insulin resistance. Exercise training increased maximal oxygen consumption (21.3 +/- 0.8 vs. 24.3 +/- 1.0 ml.kg(-1).min(-1), P < 0.0001), decreased body weight (P < 0.0001) and fat mass (P < 0.001), while fat-free mass was not altered (P > 0.05). VF (176 +/- 20 vs. 136 +/- 17 cm2, P < 0.0001), subcutaneous fat (351 +/- 34 vs. 305 +/- 28 cm2, P < 0.03), and total abdominal fat (525 +/- 40 vs. 443 +/- 34 cm2, P < 0.003) were reduced through training. Circulating leptin was lower (P < 0.003) after training, but total adiponectin and tumor necrosis factor-alpha remained unchanged. Insulin resistance was reversed by exercise (40.1 +/- 7.7 vs. 27.6 +/- 5.6 units, P < 0.01) and correlated with changes in VF (r = 0.66, P < 0.01) and maximal oxygen consumption (r = -0.48, P < 0.05) but not adipocytokines. VF loss after aerobic exercise training improves glucose metabolism and is associated with the reversal of insulin resistance in older obese men and women.  相似文献   

2.
Human immunodeficiency virus (HIV)-associated lipodystrophy syndrome (HALS) is a side effect of highly active antiretroviral therapy of HIV-infected patients; however, the mechanism of the lipodystrophy and insulin resistance seen in this syndrome remains elusive. Adiponectin, an adipocyte-specific protein, is thought to play an important role in regulating insulin sensitivity. We investigated circulating levels and gene expression of adiponectin in subcutaneous abdominal adipose tissue (AT) from 18 HIV-infected patients with HALS compared with 18 HIV-infected patients without HALS. Implications of cytokines for adiponectin levels were investigated by determining circulating levels of TNF-alpha, IL-6, and IL-8 as well as gene expression of these cytokines in AT. HALS patients exhibited 40% reduced plasma adiponectin levels (P < 0.05) compared with non-HALS subjects. Correspondingly, adiponectin mRNA levels in AT were reduced by >50% (P = 0.06). HALS patients were insulin resistant, and a positive correlation was found between plasma adiponectin and insulin sensitivity (r = 0.55, P < 0.01) and percent limb fat (r = 0.61, P < 0.01). AT mRNA of TNF-alpha, IL-6, and IL-8 was increased in AT of HALS subjects (P < 0.05), and both AT TNF-alpha mRNA and plasma TNF-alpha were negatively correlated to plasma adiponectin (P < 0.05). Finally, TNF-alpha was found in vitro to inhibit human AT adiponectin mRNA by 80% (P < 0.05). In conclusion, HALS patients have reduced levels of plasma adiponectin and adiponectin mRNA in AT. Increased cytokine mRNA in AT is hypothesized to exert an inhibitory effect on adiponectin gene expression and, consequently, to play a role in the reduced plasma adiponectin levels found in HALS patients.  相似文献   

3.
ZAG, a lipid mobilizing adipokine, is downregulated in human obesity   总被引:1,自引:0,他引:1  
The main goal of this study was to compare the expression of Zinc-alpha2-glycoprotein (ZAG), a recently described adipokine, in obese and lean subjects. ZAG expression was determined by Real-time PCR analysis in subcutaneous abdominal adipose tissue of eighteen young men, 9 lean (BMI = 23.1 +/- 0.4 kg/m2) and 9 obese (34.7 +/- 1.2 kg/m2) with a similar habitual dietary intake of fat and physical activity, which were assessed by validated methods. Our data revealed that ZAG gene was downregulated (-70%; p < 0.05) in subcutaneous adipose tissue of obese compared to lean subjects. Moreover, statistically significant positive correlations between ZAG gene expression and serum adiponectin (r = 0.89; p < 0.01) and a negative correlation with the plasma levels of leptin (r = -0.82; p < 0.05) and waist circumference (r = -0.64; p < 0.05) were found in obese subjects. Our data suggest that this novel adipokine could play a role in human susceptibility to obesity related disorders and that upregulation of ZAG could be a promising therapeutic target for metabolic syndrome treatment.  相似文献   

4.
The human immunodeficiency virus (HIV)-lipodystrophy syndrome is associated with fat redistribution and metabolic abnormalities, including insulin resistance. Increased intramyocellular lipid (IMCL) concentrations are thought to contribute to insulin resistance, being linked to metabolic and body composition variables. We examined 46 women: HIV infected with fat redistribution (n = 25), and age- and body mass index-matched HIV-negative controls (n = 21). IMCL was measured by 1H-magnetic resonance spectroscopy, and body composition was assessed with computed tomography, dual-energy X-ray absorptiometry (DEXA), and magnetic resonance imaging. Plasma lipid profile and markers of glucose homeostasis were obtained. IMCL was significantly increased in tibialis anterior [135.0 +/- 11.5 vs. 85.1 +/- 13.2 institutional units (IU); P = 0.007] and soleus [643.7 +/- 61.0 vs. 443.6 +/- 47.2 IU, P = 0.017] of HIV-infected subjects compared with controls. Among HIV-infected subjects, calf subcutaneous fat area (17.8 +/- 2.3 vs. 35.0 +/- 2.5 cm2, P < 0.0001) and extremity fat by DEXA (11.8 +/- 1.1 vs. 15.6 +/- 1.2 kg, P = 0.024) were reduced, whereas visceral abdominal fat (125.2 +/- 11.3 vs. 74.4 +/- 12.3 cm2, P = 0.004), triglycerides (131.1 +/- 11.0 vs. 66.3 +/- 12.3 mg/dl, P = 0.0003), and fasting insulin (10.8 +/- 0.9 vs. 7.0 +/- 0.9 microIU/ml, P = 0.004) were increased compared with control subjects. Triglycerides (r = 0.39, P = 0.05) and extremity fat as percentage of whole body fat by DEXA (r = -0.51, P = 0.01) correlated significantly with IMCL in the HIV but not the control group. Extremity fat (beta = -633.53, P = 0.03) remained significantly associated with IMCL among HIV-infected patients, controlling for visceral abdominal fat, abdominal subcutaneous fat, and antiretroviral medications in a regression model. These data demonstrate increased IMCL in HIV-infected women with a mixed lipodystrophy pattern, being most significantly associated with reduced extremity fat. Further studies are necessary to determine the relationship between extremity fat loss and increased IMCL in HIV-infected women.  相似文献   

5.
Ten patients with type 2 diabetes were enrolled in an isoglycemic glucose clamp study to determine the impact of intra-abdominal fat, subcutaneous abdominal fat and total abdominal fat on the metabolic effect of a single bolus (0.2 IU/kg) of sc-injected human regular insulin. The maximum metabolic effect associated highly and negatively with intra-abdominal fat (r = - 0.72, p < 0.02) and with the homeostasis model assessment insulin resistance score (HOMA, r = - 0.71, p < 0.03). Likewise, the total metabolic effect of sc-injected insulin correlated strongly and negatively with intra-abdominal fat (r = - 0.77, p < 0.01), HOMA (r = - 0.74, p < 0.02) and HbA (1c) (r = - 0.70, p < 0.03). Stepwise multiple regression analyses showed that the highest metabolic effect was only significantly predicted by intra-abdominal fat, indicating a high negative correlation with the maximum effect (beta = - 0.72) whereas time to maximum metabolic effect showed a strong (beta = 0.72) and positive correlation with HOMA. In combination with the HOMA, it is intra-abdominal fat, and not subcutaneous abdominal fat, which explains 50 - 75 % of the variability of the effect of sc human regular insulin in patients with type 2 diabetes.  相似文献   

6.
The aim of the current investigation was to determine the possible relationships of fasting adiponectin level with body composition, bone mineral, insulin sensitivity, leptin, and cardiorespiratory fitness parameters in 153 women. Subjects were classified as premenopausal (n = 42; 40.8 +/- 5.7 yr) if they had regular menstrual periods, early postmenopausal (n = 49; 56.7 +/- 3.6 yr) if they had been postmenopausal for more than >1 yr but <7 yr (5.5 +/- 1.3 yr), and postmenopausal (n = 62; 72.2 +/- 4.5 yr) if they had been postmenopausal for >7 yr. All women studied had a body mass index (BMI) <30 kg/m(2). Adiponectin values were higher (P < 0.05) in middle-aged (12.0 +/- 5.1 microg/ml) and older (15.3 +/- 7.3 microg/ml) postmenopausal women compared with middle-aged premenopausal women (8.4 +/- 3.2 microg/ml). Mean plasma adiponectin concentration in the total group of women (n = 153) was 12.2 +/- 6.3 microg/ml and was positively related (P < 0.05) to age, indexes of overall obesity (BMI, body fat mass), and cardiorespiratory fitness (PWC) values. In addition, a negative association (P < 0.05) between adiponectin with central obesity (waist-to-hip and waist-to-thigh ratio), fat-free mass, bone mineral (bone mineral content, total and lumbar spine bone mineral density), and leptin and insulin resistance (insulin, fasting insulin resistance index) values was observed. However, multivariate regression analysis revealed that only age, fasting insulin resistance index, and leptin were independent predictors of adiponectin concentration. In conclusion, circulating adiponectin concentrations increase with age in normal-weight middle-aged and older women. It appears that adiponectin is independently related to age, leptin, and insulin resistance values in women across the age span and menstrual status.  相似文献   

7.
Vascular smooth muscle responsiveness to nitric oxide, as assessed by nitroglycerin-induced dilation (NID), is impaired in clinical cardiovascular disease, but its relation to adiposity is unknown. We determined the relation of NID to total and abdominal adiposity in healthy adults varying widely in adiposity. In 224 men and women [age, 18-79 years; body mass index (BMI), 16.4-42.2 kg/m(2)], we measured NID (brachial artery dilation to 0.4 mg sublingual nitroglycerin), total body adiposity [BMI and percent body fat (percent BF via dual-energy X-ray absorptiometry)], and indexes of abdominal adiposity [waist circumference (WC) and waist-to-hip ratio (WHR)]. In a subgroup (n = 74), we also measured total abdominal fat (TAF), abdominal visceral fat (AVF), and subcutaneous fat (ASF) using computed tomography. Based on multiple linear regression, NID was negatively related to BMI [part correlation coefficient (r(part)) = -0.19, P = 0.004] and abdominal adiposity (WC, r(part) = -0.22; WHR, r(part) = -0.19; TAF, r(part) = -0.36; AVF, r(part) = -0.36; and ASF, r(part) = -0.30; all P ≤ 0.009) independent of sex, but only tended to be related to total percent BF (r(part) = -0.12, P = 0.07). In a subgroup of subjects with the highest compared with the lowest amount of AVF, NID was 35% lower (P = 0.003). Accounting for systolic blood pressure, HDL cholesterol, glucose, insulin resistance, adiponectin, and brachial artery diameter reduced or abolished some of the relations between NID and adiposity. In conclusion, NID is or tends to be negatively associated with measures of total adiposity (BMI and percent BF, respectively) but is consistently and more strongly negatively associated with abdominal adiposity. Adiposity may influence NID in part via other cardiovascular risk factors.  相似文献   

8.
We examined the relationship between peripheral/hepatic insulin sensitivity and abdominal superficial/deep subcutaneous fat (SSF/DSF) and intra-abdominal visceral fat (VF) in patients with type 2 diabetes mellitus (T2DM). Sixty-two T2DM patients (36 males and 26 females, age = 55 +/- 3 yr, body mass index = 30 +/- 1 kg/m2) underwent a two-step euglycemic insulin clamp (40 and 160 mU. m(-2). min(-1)) with [3-3H]glucose. SSF, DSF, and VF areas were quantitated with magnetic resonance imaging at the L(4-5) level. Basal endogenous glucose production (EGP), hepatic insulin resistance index (basal EGP x FPI), and total glucose disposal (TGD) during the first and second insulin clamp steps were similar in male and female subjects. VF (159 +/- 9 vs. 143 +/- 9 cm2) and DSF (199 +/- 14 vs. 200 +/- 15 cm(2)) were not different in male and female subjects. SSF (104 +/- 8 vs. 223 +/- 15 cm2) was greater (P < 0.0001) in female vs. male subjects despite similar body mass index (31 +/- 1 vs. 30 +/- 1 kg/m2) and total body fat mass (31 +/- 2 vs. 33 +/- 2 kg). In male T2DM, TGD during the first insulin clamp step (1st TGD) correlated inversely with VF (r = -0.45, P < 0.01), DSF (r = -0.46, P < 0.01), and SSF (r = -0.39, P < 0.05). In males, VF (r = 0.37, P < 0.05), DSF (r = 0.49, P < 0.01), and SSF (r = 0.33, P < 0.05) were correlated positively with hepatic insulin resistance. In females, the first TGD (r = -0.45, P < 0.05) and hepatic insulin resistance (r = 0.49, P < 0.05) correlated with VF but not with DSF, SSF, or total subcutaneous fat area. We conclude that visceral adiposity is associated with both peripheral and hepatic insulin resistance, independent of gender, in T2DM. In male but not female T2DM, deep subcutaneous adipose tissue also is associated with peripheral and hepatic insulin resistance.  相似文献   

9.
Adiponectin is an adipocyte-derived hormone associated with insulin sensitivity and atherosclerotic risk. As central rather than gluteofemoral fat is known to increase the risk of type 2 diabetes and cardiovascular disease, we investigated the mRNA and protein expression of adiponectin in human adipose tissue depots. RNA was extracted from 46 human adipose tissue samples from non-diabetic subjects aged 44.33 +/- 12.4 with a BMI of 28.3 +/- 6.0 (mean +/- SD). The samples were as follows: 21 abdominal subcutaneous, 13 omentum, 6 thigh; samples were also taken from diabetic subjects aged 66.6 +/- 7.5 with BMI 28.9 +/- 3.17; samples were: 6 abdominal subcutaneous; 3 thigh. Quantitative PCR and Western analysis was used to determine adiponectin content. Protein content studies determined that when compared with non-diabetic abdominal subcutaneous adipose tissue (Abd Sc AT) (values expressed as percentage relative to Abd Sc AT -100 %). Adiponectin protein content was significantly lower in non-diabetic omental AT (25 +/- 1.6 %; p < 0.0001, n = 6) and in Abd Sc AT from diabetic subjects (36 +/- 1.5 %; p < 0.0001, n = 4). In contrast, gluteal fat maintained high adiponectin protein content from non-diabetic patients compared with diabetic patients. An increase in BMI was associated with lower adiponectin protein content in obese ND Abd Sc AT (25 +/- 0.4 %; p < 0.0001). These findings were in agreement with the mRNA expression data. In summary, this study indicates that adiponectin protein content in non-diabetic subjects remains high in abdominal subcutaneous fat, including gluteal fat, explaining the high serum adiponectin levels in these subjects. Omental fat, however, expresses little adiponectin. Furthermore, abdominal and gluteal subcutaneous fat appears to express significantly less adiponectin once diabetic status is reached. In conclusion, the adipose tissue depot-specific expression of adiponectin may influence the pattern of serum adiponectin concentrations and subsequent disease risk.  相似文献   

10.
BACKGROUND: Adiponectin is a recently discovered plasma protein with many associations to glucose and lipid metabolism. Due to its central role in cardiovascular diseases and insulin resistance, we studied the relationship between serum adiponectin and factors reflecting glucose and lipid metabolism. METHODS AND RESULTS: Thirty healthy participants (20M/10F, age 32.0 +/- 2.1 years, BMI 25.8 +/- 0.9 kg/m (2) and HbA (1c) 5.2 +/- 0.1 %) were studied four times at approximately one week intervals. The effects of a 4-hour euglycemic hyperinsulinemia (40 mU/m (2)/min), saline infusion (control), oral glucose, and oral fat load on serum adiponectin were studied. No significant correlation was found between serum adiponectin and insulin sensitivity before (r = 0.25) or after adjustment for age, BMI and gender (r = 0.04). Adiponectin concentration correlated inversely with HbA (1c) (r = - 0.43, p < 0.05), insulin concentration (r = - 0.38, p < 0.05) and triglyceride concentration (r = - 0.42, p < 0.05) but positively with HDL cholesterol (r = 0.38, p < 0.05). Metabolic procedures had no effect on serum adiponectin. CONCLUSIONS: Our findings favor the interpretation that adiponectin is not causally related to insulin sensitivity in healthy participants. The strongest associations of adiponectin in healthy participants are to be found to lipid metabolism. Serum levels of adiponectin are very stable and not acutely affected by hyperinsulinemia, oral glucose or fat load.  相似文献   

11.
12.
Adiponectin is suggested to be an important mediator of insulin resistance. Therefore, we investigated the association between adiponectin and insulin sensitivity in 22 healthy first-degree relatives (FDR) to type 2 diabetic patients and 13 matched control subjects. Subcutaneous adipose tissue biopsies were taken before and after a hyperinsulinemic euglycemic clamp. FDR subjects were insulin resistant, as indicated by a reduced M value (4.44 vs. 6.09 mg x kg(-1) x min(-1), P < 0.05). Adiponectin mRNA expression was 45% lower in adipose tissue from FDR compared with controls (P < 0.01), whereas serum adiponectin was similar in the two groups (6.4 vs. 6.6 microg/ml, not significant). Insulin infusion reduced circulating levels of adiponectin moderately (11-13%) but significantly in both groups (P < 0.05). In the control group, adiponectin mRNA levels were negatively correlated with fasting insulin (P < 0.05) and positively correlated with insulin sensitivity (P < 0.05). In contrast, these associations were not found in the FDR group. In conclusion, FDR have reduced adiponectin mRNA in subcutaneous adipose tissue but normal levels of circulating adiponectin. Adiponectin mRNA levels are positively correlated with insulin sensitivity in control subjects but not in FDR. These findings indicate dysregulation of adiponectin gene expression in FDR.  相似文献   

13.
We examined expression and activity of steroid aldoketoreductase (AKR) 1C enzymes in adipose tissue in women. AKR1C1 (20alpha-hydroxysteroid dehydrogenase; 20alpha-HSD), AKR1C2 (3alpha-HSD-3), and AKR1C3 (17beta-HSD-5) are involved mainly in conversion of progesterone to 20alpha-hydroxyprogesterone and inactivation of dihydrotestosterone to 5alpha-androstane-3alpha,17beta-diol. Abdominal subcutaneous and omental adipose tissue biopsies were obtained during abdominal hysterectomies in seven women with low visceral adipose tissue (VAT) area and seven age- and total body fat mass-matched women with visceral obesity. Women with elevated VAT areas were characterized by significantly higher omental adipose tissue 20alpha-HSD and 3alpha-HSD-3 mRNA abundance compared with women with low VAT accumulations (1.4- and 1.6-fold differences, respectively; P < 0.05). Omental and subcutaneous adipose tissue 3alpha-HSD activities were significantly higher in women with high vs. low VAT areas (P < 0.05 for both comparisons). Total and visceral adiposities were positively associated with omental 20alpha-HSD mRNA level (r = 0.75, P < 0.003 for fat mass; r = 0.57, P < 0.04 for VAT area) and omental 3alpha-HSD-3 mRNA level (r = 0.68, P < 0.01 for fat mass; r = 0.74, P < 0.003 for VAT area). Enzyme activities in both depots were also positively correlated with adiposity measures. Omental adipose tissue enzyme expression and activity were positively associated with omental adipocyte size and LPL activity. In conclusion, mRNA abundance and activity of AKR1C enzymes in abdominal adipose tissue compartments are positive correlates of adiposity in women. Increased progesterone and/or dihydrotestosterone reduction in abdominal adipose tissue may impact locally on fat cell metabolism.  相似文献   

14.
Glucocorticoids hypersensitivity may be involved in the development of abdominal obesity and insulin resistance. Eight normal weight and eight obese women received on two occasions a 3-h intravenous infusion of saline or hydrocortisone (HC) (1.5 microg x kg(-1) x min(-1)). Plasma cortisol, insulin, and glucose levels were measured every 30 min from time(-30) (min) (time(-30)) to time(240). Free fatty acids, adiponectin, and plasminogen activator inhibitor-1 (PAI-1) levels were measured at time(-30), time(180), and time(240). At time(240), subjects underwent an insulin tolerance test to obtain an index of insulin sensitivity (K(ITT)). Mean(30-240) cortisol level was similar in control and obese women after saline (74 +/- 16 vs. 75 +/- 20 microg/l) and HC (235 +/- 17 vs. 245 +/- 47 microg/l). The effect of HC on mean(180-240) insulin, mean(180-240) insulin resistance obtained by homeostasis model assessment (HOMA-IR), and K(ITT) was significant in obese (11.4 +/- 2.0 vs. 8.2 +/- 1.3 mU/l, P < 0.05; 2.37 +/- 0.5 vs. 1.64 +/- 0.3, P < 0.05; 2.81 +/- 0.9 vs. 3.32 +/- 1.02%/min, P < 0.05) but not in control women (3.9 +/- 0.6 vs. 2.8 +/- 0.5 mU/l; 0.78 +/- 0.1 vs. 0.49 +/- 0.1; 4.36 +/- 1.1 vs. 4.37 +/- 1.2%/min). In the whole population, the quantity of visceral fat, estimated by computerized tomography scan, was correlated with the increment of plasma insulin and HOMA-IR during HC infusion [Delta mean(30-240) insulin (r = 0.61, P < 0.05), Delta mean(30-240) HOMA-IR (r = 0.66, P < 0.01)]. The increase of PAI-1 between time(180) and time(240) after HC was higher in obese women (+25%) than in controls (+12%) (P < 0.05), whereas no differential effect between groups was observed for free fatty acids or adiponectin. A moderate hypercortisolism, equivalent to that induced by a mild stress, has more pronounced consequences on insulin sensitivity in abdominally obese women than in controls. These deleterious effects are correlated with the amount of visceral fat.  相似文献   

15.
The pattern of adipose tissue (AT) distribution is an important predictor of metabolic risk. The aim of this study was to analyze the association of peripheral (insulin-mediated glucose disposal--M) and hepatic (suppression of endogenous glucose production--EGP) insulin action with abdominal (subcutaneous abdominal AT-SAAT intraabdominal AT-IAAT) and thigh AT depots in obese individuals. Fifty-seven Pima Indians with normal glucose tolerance underwent magnetic resonance imaging (MRI) and euglycemic-hyperinsulinemic clamp. M was negatively related to intraperitoneal IAAT (P = 0.02) and deep SAAT (P = 0.03). Suppression of EGP was negatively related to total (P < 0.05) or deep SAAT (P < 0.05 and P = 0.01, respectively), and total or intraperitoneal IAAT (P = 0.009 and P = 0.002, respectively). A significant interaction with sex was found in the association between superficial SAAT and M, so that in women, but not men, M negatively correlated with superficial SAAT (P = 0.02). In stepwise regression analysis, both M (r2 = 0.09) and EGP suppression (r2 = 0.17) were associated only with intraperitoneal IAAT in the whole group. In the sex-specific analysis (because of the significant interaction), lower M was associated with higher deep SAAT (r2 = 0.15) in combination with lower superficial SAAT (r2 = 0.09) in men, and with higher superficial SAAT (r2 = 0.29) in combination with lower thigh subcutaneous AT (r2 = 0.16) in women. Although intraperitoneal IAAT and deep SAAT were major predictors of peripheral and hepatic insulin action in obese Pima Indians, the largest variance in M rate was explained in a sex-specific manner by relative size of subcutaneous AT depots.  相似文献   

16.
Adipokines are predominantly secretory protein hormones from adipose tissue but may also originate in placenta and other organs. Cross-sectionally, we monitored maternal plasma concentration of adiponectin, resistin, and leptin and their mRNA expression in abdominal subcutaneous adipose tissue and placenta from preeclamptic (PE; n = 15) and healthy pregnant (HP; n = 23) women undergoing caesarean section. The study groups were similar in age and BMI, whereas HOMA-IR tended to be higher in the PE group. In fasting plasma samples, the PE group had higher concentrations of adiponectin (18.3 +/- 2.2 vs. 12.2 +/- 1.1 microg/ml, P = 0.011), resistin (5.68 +/- 0.41 vs. 4.65 +/- 0.32 ng/ml, P = 0.028), and leptin (34.4 +/- 3.2 vs. 22.7 +/- 2.1 ng/ml, P = 0.003) compared with the HP group. Adiponectin and leptin concentrations were still different between PE and HP after controlling for BMI and HOMA-IR, whereas resistin concentrations differed only after controlling for BMI but not HOMA-IR. We found similar mean mRNA levels of adiponectin, resistin, and leptin in abdominal subcutaneous adipose tissue in PE and HP women. When data were pooled from PE and HP women, resistin mRNA levels in adipose tissue also correlated with HOMA-IR (r = 0.470, P = 0.012) after controlling for BMI and pregnancy duration. Resistin mRNA levels in placenta were not significantly different between PE and HP, whereas leptin mRNA levels were higher in PE placenta compared with HP. Thus increased plasma concentrations of adiponectin and resistin in preeclampsia may not relate to altered expression levels in adipose tissue and placenta, whereas both plasma and placenta mRNA levels of leptin are increased in preeclampsia.  相似文献   

17.
Altered fat distribution is associated with insulin resistance in HIV, but little is known about regional glucose metabolism in fat and muscle depots in this patient population. The aim of the present study was to quantify regional fat, muscle, and whole body glucose disposal in HIV-infected men with lipoatrophy. Whole body glucose disposal was determined by hyperinsulinemic clamp technique (80 mU x m(-2) x min(-1)) in 6 HIV-infected men and 5 age/weight-matched healthy volunteers. Regional glucose uptake in muscle and subcutaneous (SAT) and visceral adipose tissue (VAT) was quantified in fasting and insulin-stimulated states using 2-deoxy-[18F]fluoro-D-glucose positron emission tomography. HIV-infected subjects with lipoatrophy had significantly increased glucose uptake into SAT (3.8 +/- 0.4 vs. 2.3 +/- 0.5 micromol x kg tissue(-1) x min(-1), P < 0.05) in the fasted state. Glucose uptake into VAT did not differ between groups. VAT area was inversely related with whole body glucose disposal, insulin sensitivity, and muscle glucose uptake during insulin stimulation. VAT area was highly predictive of whole body glucose disposal (r2 = 0.94, P < 0.0001). This may be mediated by adiponectin, which was significantly associated with VAT area (r = -0.75, P = 0.008), and whole body glucose disposal (r = 0.80, P = 0.003). This is the first study to directly demonstrate increased glucose uptake in subcutaneous fat of lipoatrophic patients, which may partially compensate for loss of SAT. Furthermore, we demonstrate a clear relationship between VAT and glucose metabolism in multiple fat and muscle depots, suggesting the critical importance of this depot in the regulation of glucose and highlighting the significant potential role of adiponectin in this process.  相似文献   

18.
Our objective was to examine omental and subcutaneous adipocyte adiponectin release in women. We tested the hypothesis that adiponectin release would be reduced to a greater extent in omental than in subcutaneous adipocytes of women with visceral obesity. Omental and subcutaneous adipose tissue samples were obtained from 52 women undergoing abdominal hysterectomies (age: 47.1 ± 4.8 years; BMI: 26.7 ± 4.7 kg/m2). Adipocytes were isolated and their adiponectin release in the medium was measured over 2 h. Measures of body fat accumulation and distribution were obtained using dual‐energy X‐ray absorptiometry and computed tomography, respectively. Adiponectin release by omental and subcutaneous adipocytes was similar in lean individuals; however, in subsamples of obese or visceral obese women, adiponectin release by omental adipocytes was significantly reduced while that of subcutaneous adipocytes was not affected. Omental adipocyte adiponectin release was significantly and negatively correlated with total body fat mass (r = ?0.47, P < 0.01), visceral adipose tissue area (r = ?0.50, P < 0.01), omental adipocyte diameter (r = ?0.43, P < 0.01), triglyceride levels (r = ?0.32, P ≤ 0.05), cholesterol/high‐density lipoprotein (HDL)‐cholesterol (r = ?0.31, P ≤ 0.05), fasting glucose (r = ?0.39, P ≤ 0.01), fasting insulin (r = ?0.36, P ≤ 0.05), homeostasis model assessment index (r = ?0.39, P ≤ 0.01), and positively associated with HDL‐cholesterol concentrations (r = 0.33, P ≤ 0.05). Adiponectin release from subcutaneous cells was not associated with any measure of adiposity, lipid profile, or glucose homeostasis. In conclusion, compared to subcutaneous adipocyte adiponectin release, omental adipocyte adiponectin release is reduced to a greater extent in visceral obese women and better predicts obesity‐associated metabolic abnormalities.  相似文献   

19.
Diabet. Med. 29, 1153-1158 (2012) ABSTRACT: Objective To examine associations of central adiposity, serum adiponectin and clamp-derived insulin sensitivity in a single longitudinal cohort from early adolescence to young adulthood. Methods The cohort was examined three times at mean ages 15?years (n?=?308), 19?years (n?=?218) and 22?years (n?=?163). Insulin sensitivity was measured with the euglycaemic hyperinsulinaemic clamp. Circulating adiponectin was measured by enzyme-linked immunosorbent assay. Computed tomography scans were used at mean age 22 to compute subcutaneous and visceral abdominal fat volume. Partial Pearson correlations and linear regression were used to examine cross-sectional associations at each examination. Results The moderate negative correlation between waist circumference and adiponectin was significant and essentially unchanged from mean age 15 (-0.32, P?相似文献   

20.
We tested the hypothesis that muscle sympathetic nerve activity (MSNA) would not differ in subcutaneously obese (SUBOB) and nonobese (NO) men with similar levels of abdominal visceral fat despite higher plasma leptin concentrations in the former. We further hypothesized that abdominal visceral fat would be the strongest body composition- or regional fat distribution-related correlate of MSNA among these individuals. To accomplish this, we measured MSNA (via microneurography), body composition (via dual-energy X-ray absorptiometry), and abdominal fat distribution (via computed tomography) in 15 NO (body mass index 0.05, respectively) despite approximately 2.6-fold higher (P < 0.05) plasma leptin concentration in the SUBOB men. Furthermore, abdominal visceral fat was the only body composition- or regional fat distribution-related correlate (r = 0.45; P < 0.05) of MSNA in the pooled sample. In addition, abdominal visceral fat was related to MSNA in NO (r = 0.58; P = 0.0239) but not SUBOB (r = 0.39; P = 0.3027) men. Taken together with our previous observations, our findings suggest that the relation between obesity and MSNA is phenotype dependent. The relation between abdominal visceral fat and MSNA was evident in NO but not in SUBOB men and at levels of abdominal visceral fat below the level typically associated with elevated cardiovascular and metabolic disease risk. Our observations do not support an obvious role for leptin in contributing to sympathetic neural activation in human obesity and, in turn, are inconsistent with the concept of selective leptin resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号