首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
多氯联苯微生物脱氯研究进展   总被引:1,自引:0,他引:1  
多氯联苯(polychlorinated biphenyls,PCBs)是环境中典型的氯代持久性有机污染物.微生物脱氯是一种氯代有机物自然降解模式,对全球PCBs特别是高氯代同系物消减起到至关重要的作用.厌氧条件下高氯代PCBs能够发生脱氯反应,使其毒性大大降低,脱氯后形成的低氯代化合物可以进一步好氧降解,直至完全矿化.本文综述了PCBs生物脱氯的研究进展,介绍了微生物脱氯反应的机理和特征、参与微生物脱氯过程的专性脱氯菌等,探讨了该微生物过程的影响因素及厌氧脱氯与好氧降解耦合的意义,并对脱氯微生物群落的复杂代谢网络研究、专性脱氯新菌种筛选及其污染地实际修复应用等未来研究方向进行了展望.  相似文献   

2.
微生物代谢环境难降解性有机物的酶学研究进展   总被引:3,自引:0,他引:3  
吴克  潘仁瑞  蔡敬民  刘斌 《生物工程学报》2009,25(12):1871-1831
随着人类社会的快速发展,工业化水平不断提高,产生大量的污染物并排放到环境中,给人类的生活和身体健康造成了严重的影响。这些污染物中包含种类繁多的难降解有机物,如多芳香烃(PAHs)、环硝胺类物质(RDX、HMX和CL-20)、多氯联苯(PCBs)及烷烃类化合物等,对自然界的污染危害大。微生物可以消除它们对污染的影响,研究结果表明微生物的代谢或共代谢活动是降解这些物质的有效途径,降解起始阶段需要一些关键酶的参与活动,以氧化还原酶为主。这些氧化还原酶一般与细胞膜上其他的活性组分在一起,形成一个氧化还原系统氧化底物。被氧化的中间物质再通过一系列酶催化继续氧化成三羧酸中间代谢产物被微生物所利用。以下综述了与这些物质降解相关的代谢途径和关键的酶,展望今后在开展这类研究工作时要加强降解微生物的筛选和相关酶学的研究,进一步研究这些污染物的代谢或共代谢途径和机理,为工程化治理环境污染提供依据。  相似文献   

3.
Burkholderia xenovorans LB400是一株多氯联苯(polychlorinated biphenyls,PCBs)降解菌,可以氧化含有1?6个氯取代基的多氯联苯。近年来,由于其广泛的底物谱和优异的降解性能,菌株LB400已成为研究原核生物降解多氯联苯的生物化学和分子生物学方面的模式生物。目前关于PCBs的微生物降解研究已不再局限于对微生物资源的挖掘,而是更多地聚焦在LB400等降解菌的PCBs降解基因、降解酶的酶学特性以及酶的人工分子进化等方面。同时,LB400作为早期发现的降解菌,其对多氯联苯的降解途径、底物范围及相关机制也被广泛探讨;但是对于PCBs降解相关基因的调控研究较少。因此,本文以Burkholderia xenovorans LB400对多氯联苯降解为核心,通过综述其代谢途径、代谢相关基因和酶系以及降解应用等方面的研究进展,以期为深入探讨Burkholderia xenovorans LB400的应用以及进一步在遗传、分子和生化水平研究其他多氯联苯降解菌株提供借鉴。  相似文献   

4.
多氯联苯类(PCBs)物质是毒性很强的环境污染物。PCBs由于它的广泛存在、在被污染的食物链高层次上的富集以及在普通环境条件下的抗降解性而受到特别重视。已经证明,在植物-水-土壤系统中,PCBs可以被降解,但还不清楚PCBs在这类系统中的降解作用是由植物还是土壤微生物或两者共同代谢掉的。美国俄克拉何马大学的J.Fletcher及其同事和美国环境保护署已经证明:无菌条件下  相似文献   

5.
多氯联苯的生物修复   总被引:1,自引:0,他引:1  
Shuai JJ  Xiong F  Peng RH  Yao QH  Xiong AS 《遗传》2011,33(3):219-227
多氯联苯(Polychlorinated biphenyls,PCBs)是一种持久性有机污染物,对人类和自然环境具有很大的威胁,降解PCBs一直是研究的热点。在目前的研究方法中生物降解最具潜力,生物降解主要分为微生物降解、植物修复和微生物-植物共同修复3个方面。文章着重介绍了微生物降解PCBs菌株的分离,降解相关基因的克隆和改造;同时对植物修复,植物与微生物共同修复以及植物转基因修复进行了讨论。  相似文献   

6.
PCBs对红树林沉积物中微生物及酶活性的影响   总被引:1,自引:0,他引:1  
孙红斌  刘亚云  陈桂珠 《生态学报》2007,27(12):5398-5407
研究了多氯联苯(PCBs)对沉积物及红树植物秋茄根区沉积物微生物及酶活性的影响。结果表明,种植秋茄可提高沉积物中细菌和放线菌的数量,但不能提高真菌的数量。PCBs处理可显著提高沉积物中细菌和放线菌的数量。土壤呼吸与微生物量具有相似的变化趋势。由于细菌在沉积物微生物中占有绝对的优势,因此细菌的数量是微生物多样性指数的决定性因素。与未种植红树植物的相比,种植沉积物微生物多样性指数相对较低,PCBs处理与对照相比,微生物多样性指数差异不显著。在试验过程中,未种植的PCBs处理组多酚氧化酶和过氧化物酶活性均高于对照组,表明这两种酶是沉积物PCBs污染的敏感指标,而这两种酶被报道在植物修复中与PCBs的降解有关。  相似文献   

7.
遵照美国环境保护署和马萨诸塞州政府的命令,General Electric(GE)公司正在探索一种以细菌为基础的技术,它将使新英格兰胡萨托尼克河中有毒的多氯联苯(PCBs)得到清除。GE 公司正在考虑可否通过它的两打专有细菌的一种能降解 PCBs 的分离菌来清除 PCBs,而不用排除沉积物的方法(该方法过于昂贵,需花几十亿美元)。在康涅狄格州费尔菲尔德的 GE 公司负责环境流出物的 Bryce I.MacDonald 也这样表示。他于今年秋季在本地举行的美国化学工程师协会会议上发表了他的论点。  相似文献   

8.
聚乙烯塑料的微生物降解   总被引:1,自引:0,他引:1  
王佳蕾  霍毅欣  杨宇 《微生物学通报》2020,47(10):3329-3341
聚乙烯(polyethylene,PE)是产量最大的通用塑料之一,通常被加工成一次性包装材料(包括塑料袋及容器)和农用薄膜等。PE塑料的广泛应用导致大量PE废弃物的累积,对生态环境造成严重的威胁。自20世纪70年代以来,一些研究陆续报道了PE塑料被微生物降解的现象,并从土壤、海洋、垃圾堆置点及昆虫肠道等生境中分离筛选到了若干种具有一定PE塑料降解能力的菌株,而且发现一些单加氧酶、过氧化物酶和漆酶等氧化还原酶对PE塑料具有氧化降解能力。这些研究为发展PE塑料废弃物生物降解处理技术提供了一定的依据。本文总结和分析了PE塑料降解微生物的分离和筛选方法,以及已报道的PE塑料降解微生物和降解酶的研究进展,以期为进一步研究PE塑料的微生物降解机理和处理技术提供参考。  相似文献   

9.
Sterling organies和John Brown两公司打算研究一种用于提取一些生物大分子(如来自发酵液中的酶)的大规模的色谱分离技术(金斌)861197用多聚物截留微生物降解酚〔英〕/B  相似文献   

10.
苯甲酸-1,2-双加氧酶(ECl.13.99.2)催化苯甲酸转化成邻苯二酚。该酶是微生物降解芳香烃的一个关键酶,它催化氧化开环的第一步反应,在研究微生物的芳香烃代谢中占有重要位置。近年来,发现该酶可以用来在工业上合成邻苯二酚以及消除芳环化合物的污  相似文献   

11.
植物修复多氯联苯研究进展   总被引:11,自引:1,他引:10  
综述了植物修复持久性有机污染物多氯联苯(PCBs)的研究进展,重点阐述了植物对PCBs的去除作用和机理,植物在从环境中去除PCBs的过程中,不仅仅是作为微生物降解的支持者,而且还作为积极的参与者对PCBs进行代谢:一方面植物通过根系从环境中吸收和积累PCBs,并将吸收的PCBs转化为非毒性的代谢产物累积于植物组织中;另一方面植物释放促进PCBs降解的酶直接降解PCBs,或释放根系分泌物,增加根际微生物的数量,提高其活性间接降解PCBs.文中对植物修复PCBs的影响因素如植物组织培养的类型、生物量、PCBs的初始浓度以及PCBs的类型、理化性质等进行了讨论.  相似文献   

12.
<正> 美国密执安大学的微生物学家正在集中研究分解木质素的一些微生物。这些细菌和霉菌降解木材主要产生二氧化碳和水,另外还有一些能用于树脂、塑料、胶粘剂和各种其它产品的有用化合物。目前,这些化学品是从日益减少的石油资源中获得的。该大学分子遗传中心已从密执安生物技术研究所得到一笔赠款,用来进行转变木质素微生物的基本研究。全世界大约有30个不同实验室也在研究木质素的转变。在过去十年里,已经研究出几种方法,能测定出长在腐朽木材上的许多微生物中,哪些  相似文献   

13.
美国宾夕法尼亚州的 Ming Tien 和 David Tu 对编码一种能降解木质素的酶的 DNA,成功地进行了克隆及核苷酸顺序分析,为从环境中排除许多常见污染物质闯出了一条路子。木质素是木材和其它植物中的一种聚合物,对降解作用有很强的抗性。木质素降解作用的第一步是来自白腐真菌 Phanerochaete chrysosporium 的木质素酶所起的解聚作用。该酶也能降解许多其它化合物如 DDT、苯并芘和其它常见有机污染物。目前,在学术性单位的和政府的实验室里正在对这种酶进行研究。美国的 Repligen 公司(坎布布里奇,马萨诸塞州)一直在尝试生产商业性的重组体方法,目的是能制造出降解木质素和改变纸浆和造纸业所需要的酶。对木材的木质素有强大破坏力的木质素酶,总有一天会取代现在用于制造纸浆的要求苛刻的化学物质。  相似文献   

14.
<正> 造纸中用微生物降解木质素还未达到商业阶段的原因主要是这一过程太慢。然而,通过遗传工程成功地生产出的木质素降解酶可以改变这一状况。美国路易斯安娜州立大学V.R.Srinivasan领导的一个研究小组成功地克隆了一种酶,并在大肠杆菌中得到表达。它能够切开在木质素中大量存在的芳基-烷基(aryl-alkyl)和芳基-烷基酯键。木质素是树木  相似文献   

15.
<正> 发现一种叫做缺陷假单胞菌(PD)的常见土壤细菌能够把有机磷农药对硫磷和地亚农降解成毒性较小的产物,并还能把致癌化合物苯并蒽降解成二氧化碳和水溶性产物。美国得克萨斯大学的研究人员在美国微生物学会于3月3日~7日在内华达拉斯维加斯召开的年会上介绍了这些研究结果。  相似文献   

16.
真菌毒素是真菌在其生长代谢中产生的一种次级代谢物,已成为食品和饲料行业中广泛存在的污染源。降解真菌毒素是食品工业和农业中的一个重要课题。随着生物技术的发展,生物脱毒逐渐取代传统的物理、化学脱毒成为了真菌毒素降解的主流方法。目前,已经有很多的微生物被证实能够降解一些真菌毒素。本文中,笔者将针对一些常见的真菌毒素进行总结归纳,对其特征进行概述,并列举其相应的生物降解方法。另外,总结了一些与真菌毒素相关的新的酶或微生物,并对一些新的技术(如蛋白质工程等)在真菌毒素降解中的应用进行讨论。  相似文献   

17.
持久性有机污染物γ-六六六生物降解研究进展   总被引:1,自引:0,他引:1  
γ-六六六(γ-Hexachlorocyclohexane,γ-HCH)是一种有机氯杀虫剂,由于它具有持久性和很高的毒性,成为顽固性的世界性污染物。目前从世界上不同的受HCH污染的地区中已经分离出许多能够降解HCH的微生物,其中一些微生物对γ-HCH的降解途径得到了阐明,降解基因/酶也得到了鉴定。综述了γ-HCH降解菌的多样性、降解途径、降解基因和酶,为γ-HCH的生物修复提供了参考。  相似文献   

18.
草酸脱羧酶及其应用   总被引:2,自引:0,他引:2  
草酸脱羧酶是一种含锰的酶,在白腐菌中广泛存在,少数低等真菌和细菌中也能产生。目前,至少10多种草酸脱羧酶得到了分离和纯化。该酶是一种氨基酸残基在379个左右的单体酶,一般都为酸性糖蛋白,含有2个锰离子,形成2个活性区域;表面一些氨基酸被不同程度地糖基化。晶体结构和其它一些波谱学研究解释了其空间结构和可能的电子传递机制。运用PCR技术和cDNA文库技术,越来越多的草酸脱羧酶基因被克隆。已研究的该酶基因中都含有17个左右的内含子,这些内含子在活性域位置上有比较高的保守性。一些特殊氨基酸序列的存在决定了该酶的表达形式为诱导型,菌株的基因调控序列中含有一段受草酸化合物作用的序列。该酶在一些酵母和植物等异源表达系统中有成功表达的报道。该酶的应用主要集中在以下几方面:造纸废水中的草酸盐降解;食品中的草酸降解;草酸生物检测(如,临床诊断)等。  相似文献   

19.
石油基塑料种类繁多、数量巨大、应用广泛,常见的有聚乙烯(PE)、聚丙烯(PP)、聚苯乙烯(PS)、聚氯乙烯(PVC)、聚对苯二甲酸乙二醇酯(PET)、聚氨酯(PUR)等。这些合成塑料因其高分子量、高疏水性及高化学键能的特点难以被微生物降解,从而在环境中长期存在和累积,"白色污染"已经成为一个全球性问题。因此安全经济的微生物降解合成塑料是人类面临的一个选择和难题。文中从微生物资源及相关酶学研究方面综述了聚苯乙烯、聚乙烯、聚丙烯、聚氨酯、聚对苯二甲酸乙二醇酯和聚氯乙烯这6种石油基塑料的生物降解的研究现状。目前关于上述6种石油基塑料的微生物降解研究依然大多停留在微生物资源的寻找中,已发现的具备相关能力的菌株种类较少,并且微生物降解效率均非常缓慢;对于其降解机理及关键基因和酶的研究比较少。文中为进一步开展塑料生物降解研究,寻找高效的塑料降解菌株资源以及进一步在遗传、分子和生化水平研究塑料生物降解机理研究,从而最终实现合成塑料的彻底降解和高值化利用提供了借鉴。  相似文献   

20.
李秀  杨海涛  王泽方 《微生物学报》2019,59(12):2251-2262
聚对苯二甲酸乙二醇酯(Polyethylene terephthalate,PET)因其良好的耐用性和可塑性,已在世界范围内的工业领域和日常生活中得到广泛应用。目前自然环境中大量PET使用废弃物的积累和迁移给全球生态系统带来了严重负担,因此PET的降解问题已成为全球性的热点问题。微生物酶降解法目前被认为是一种理想绿色PET降解方法,有希望应用于大规模降解PET废弃物降解处理。传统的PET降解酶主要包括脂肪酶、酯酶和角质酶等,但这些酶的PET降解活性相对不高。近期科学家从Ideonella sakaiensis细菌中分离了一种新型水解酶PETase,能够特异性高效降解PET。本文从结构生物学角度对多种PET降解酶进行梳理,重点总结了新近发现的PETase催化机制,为发展改造更有效的PET降解酶提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号