首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Entamoeba histolytica, an amitochondriate parasitic protist, was demonstrated to be capable of reducing the oxidized form of α-lipoic acid, a non permeable electron acceptor outside the plasma membrane. This transmembrane reduction of non permeable electron acceptors with redox potentials ranging from −290 mV to +360 mV takes place at neutral pH. The transmembrane reduction of non permeable electron acceptors was not inhibited by mitochondrial electron transport inhibitors such as antimycin A, rotenone, cyanide and azide. However, a clear inhibition with complex III inhibitor, 2-(n-heptyl)-4-hydroxyquinoline-N-oxide; modifiers of sulphydryl groups and inhibitors of glycolysis was revealed. The iron-sulphur centre inhibitor thenoyltrifluoroacetone failed to inhibit the reduction of non permeable electron acceptors whereas capsaicin, an inhibitor of energy coupling NADH oxidase, showed substantial inhibition. p-trifluromethoxychlorophenylhydrazone, a protonophore uncoupler, resulted in the stimulation of α-lipoic acid reduction but inhibition in oxygen uptake. Mitochondrial electron transport inhibitors substantially inhibited the oxygen uptake in E. histolytica. Transmembrane reduction of α-lipoic acid was strongly stimulated by anaerobiosis and anaerobic stimulation was inhibited by 2-(n-heptyl)-4-hydroxyquinoline-N-oxide. Transmembrane redox system of E. histolytica was also found to be sensitive to UV irradiation. All these findings clearly demonstrate the existence of transplasma membrane electron transport system in E. histolytica and possible involvment of a naphthoquinone coenzyme in transmembrane redox of E. histolytica which is different from that of mammalian host and therefore can provide a novel target for future rational chemotherapeutic drug designing.  相似文献   

2.
Leishmania donovani promastigotes are capable of reducing certain electron acceptors with redox potential at pH 7 down to -125 mV; outside the plasma membrane promastigotes can reduce ferricyanide. Ferricyanide has been used as an artificial electron acceptor probe for studying the mechanism of transplasma membrane electron transport. Transmembrane ferricyanide reduction by L. donovani promastigotes was not inhibited by such mitochondrial inhibitors as antimycin A or cyanide, but it responded to inhibitors of glycolysis. Transmembrane ferricyanide reduction by Leishmania appears to involve a plasma membrane electron transport chain dissimilar to that of hepatocyte cells. As with other cells, transmembrane electron transport is associated with proton release, which may be involved in internal pH regulation. The Leishmania transmembrane redox system differs from that of mammalian cells in being 4-fold less sensitive to chloroquine and 12-fold more sensitive to niclosamide. Sensitivities to these drugs suggest that transplasma membrane electron transport and associated proton pumping may be targets for the drugs used against leishmaniasis.  相似文献   

3.
The respiratory quinone composition of the parasitic protozoa Leishmania donovani promastigote was investigated. 1′-oxomenaquinone-7, a chlorobiumquinone was found to be the major isoprenoid quinone. Substantial level of ubiquinone-9 was also present. Isolation and identification of the quinone from the purified plasma membrane yielded mainly 1′-oxomenaquinone-7 and ubiquinone-9; menaquinone was not detected. Membrane bound 1′-oxomenaquinone-7 could be destroyed by near-ultraviolet irradiation, with a concomitant loss or stimulation of plasma membrane electron transport activities. The abilities of different quinones to restore α-lipoic acid and ferricyanide reductase activity in near UV-irradiated cell preparations were compared. The order was; conjugate of chlorobiumquinone and sphingosine base ? conjugate of 2-methyl-3-(1′-oxooctadecyl)-1,4-napthoquinone and octadecylamine >> chlorobiumquinone ? 2-methyl-3-(1′-oxooctadecyl)-1,4-napthoquinone > menaquinone-4 ? ubiquinone-10. After irradiation with near-UV light, transmembrane α-lipoic acid reduction was inhibited, while transmembrane ferricyanide reduction was stimulated. The result obtained indicates that chlorobiumquinone mediates the plasma membrane electron transport between cytosolic reductant and oxygen as well as α-lipoic acid. UV-inactivation of chlorobiumquinone shuts down the plasma membrane oxygen uptake and diverts the electron flux towards ferricyanide reduction via ubiquinone-9. Chlorobiumquinone is the only example of a polyisoprenoid quinone containing a side chain carbonyl group from photosynthetic green-sulphur bacteria. Recent work has revealed numerous genes of trypanosomatid sharing common ancestry with plants and/or bacteria. These observations pose some fascinating questions about the evolutionary biology of this important group of parasitic protozoa.  相似文献   

4.
The role of plasma membrane redox activity in light effects in plants   总被引:1,自引:0,他引:1  
Stimulations by light of electron transport at the plasma membrane make it possible that redox activity is involved in light-induced signal transduction chains. This is especially true in cases where component(s) of the chain are also located at the plasma membrane. Photosynthetic reactions stimulate transplasma membrane redox activity of mesophyll cells. Activity is measured as a reduction of the nonpermeating redox probe, ferricyanide. The stimulation is due to production of a cytosolic electron donor from a substance(s) transported from the chloroplast. It is unknown whether the stimulation of redox activity is a requirement for other photosynthetically stimulated processes at the plasma membrane, but a reduced intermediate may regulate proton excretion by guard cells. Blue light induces an absorbance change (LIAC) at the plasma membrane whose difference spectrum resembles certainb-type cytochromes. This transport of electrons may be due to absorption of light by a flavoprotein. The LIAC has been implicated as an early step in certain blue light-mediated morphogenic events. Unrelated to photosynthesis, blue light also stimulates electron transport at the plasma membrane to ferricyanide. The relationship between LIAC and transmembrane electron flow has not yet been determined, but blue light-regulated proton excretion and/or growth may depend on this electron flow. No conclusions can be drawn regarding any role for phytochrome because of a paucity of information concerning the effects of red light on redox activity at the plasma membrane.  相似文献   

5.
The respiratory quinone composition of the parasitic protozoa Leishmania donovani promastigote was investigated. 1'-oxomenaquinone-7, a chlorobiumquinone was found to be the major isoprenoid quinone. Substantial level of ubiquinone-9 was also present. Isolation and identification of the quinone from the purified plasma membrane yielded mainly 1'-oxomenaquinone-7 and ubiquinone-9; menaquinone was not detected. Membrane bound 1'-oxomenaquinone-7 could be destroyed by near-ultraviolet irradiation, with a concomitant loss or stimulation of plasma membrane electron transport activities. The abilities of different quinones to restore alpha-lipoic acid and ferricyanide reductase activity in near UV-irradiated cell preparations were compared. The order was; conjugate of chlorobiumquinone and sphingosine base approximately conjugate of 2-methyl-3-(1'-oxooctadecyl)-1,4-napthoquinone and octadecylamine > chlorobiumquinone approximately 2-methyl-3-(1'-oxooctadecyl)-1,4-napthoquinone > menaquinone-4 approximately ubiquinone-10. After irradiation with near-UV light, transmembrane alpha-lipoic acid reduction was inhibited, while transmembrane ferricyanide reduction was stimulated. The result obtained indicates that chlorobiumquinone mediates the plasma membrane electron transport between cytosolic reductant and oxygen as well as alpha-lipoic acid. UV-inactivation of chlorobiumquinone shuts down the plasma membrane oxygen uptake and diverts the electron flux towards ferricyanide reduction via ubiquinone-9. Chlorobiumquinone is the only example of a polyisoprenoid quinone containing a side chain carbonyl group from photosynthetic green-sulphur bacteria. Recent work has revealed numerous genes of trypanosomatid sharing common ancestry with plants and/or bacteria. These observations pose some fascinating questions about the evolutionary biology of this important group of parasitic protozoa.  相似文献   

6.
Transplasma membrane electron transport activity by fetal rat liver cells (RLA209-15) infected with a temperature-sensitive strain of SV40 has been measured with cells grown at the restrictive temperature (40°C) and permissive temperature (33°C). The transformed cells grown at 33°C had only one-half the rate of external ferricyanide reduction as the nontransformed cells held at 40°C. Both theK m andV max for ferricyanide reduction were changed in the transformed state. The change inV max can be based on a decrease of NADH in the transformed cells. The change in rate with ferricyanide does not depend on change in surface charge. Reduction of external ferricyanide was accompanied by release of protons from the cells. The ratio of protons released to ferricyanide reduced was higher in the transformed cells than in the non-transformed cells. Since the transplasma membrane electron transport has been shown to stimulate cell growth under limiting serum, the changes in the plasma membrane electron transport and proton release in transformed cells may relate to modification of growth control.  相似文献   

7.
Ammineruthenium(III) complexes have been found to act as electron acceptors for the transplasmalemma electron transport system of animal cells. The active complexes hexaammineruthenium(III), pyridine pentaammineruthenium(III), and chloropentaammineruthenium(III) range in redox potential (E 0) from 305 to –42 mV. These compounds also act as electron acceptors for the NADH dehydrogenase of isolated plasma membranes. Stimulation of HeLa cell growth, in the absence of calf serum, by these compounds provides evidence that growth stimulation by the transplasma membrane electron transport system is not entirely based on reduction and uptake of iron.  相似文献   

8.
Summary Intact plants can reduce external oxidants by an appearingly trans-membrane electron transport. In vivo an increase in net medium acidification accompanies the reduction of the apoplastic substrate. Up to now, several NAD(P)H dehydrogenases,b-type cytochromes, and a phylloquinone have been identified and partially purified from plant plasma membranes. The occurrence of a quinone in the plasma membrane of maize roots supports the hypothetical model of a proton-transferring redox system, i.e., an electron transport chain with a quinone as mobile electron and proton carrier. In the present study the trans-membrane electron transport system of intact maize (Zea mays L.) roots was investigated. Flow-through and ionostat systems have been used to estimate the electron and proton transport activity of this material. Application of 4,4,4-trifluoro-1-(2-thienyl)-butane-1,3-dione (thenoyltrifluoroacetone) inhibited the reduction of ferricyanide in the incubation solution of intact maize roots up to 70%. This inhibition could not be washed off by rinsing the roots with fresh incubation medium. The acidification of the medium induced after ferricyanide application was inhibited to about 62%. The effects of thenoyltrifluoroacetone on proton fluxes in the absence of ferricyanide have been characterized in a pH-stat system. The net medium acidification by maize roots was inhibited up to 75% by thenoyltrifluoroacetone in the absence of ferricyanide, while dicumarol inhibited net acidification completely. The inhibition of H+-ATPase activity was estimated with plasma membrane vesicles isolated by phase partitioning and treated with 0.05% (w/v) Brij 58. ATP-dependent proton gradients and Pi release were measured after preincubation with the effectors. The proton pumping activity by those plasma membrane vesicles was inhibited by dicumarol (53.6%) and thenoyltrifluoroacetone (77.8%), while the release of Pi was unaffected by both inhibitors.Abbreviations Brij 58 polyoxyethylene 20-cetyl ether - duroquinone tetramethyl-p-benzoquinone - HCF III hexacyanoferrate III - TTFA thenoyltrifluoroacetone - vitamin K1 2-methyl-3-phytyl-1,4-naphthoquinone - vitamin K3 2-methyl-1,4-naphthoquinone  相似文献   

9.
以谷胱甘肽为电子供体的细胞膜氧化还原系统   总被引:1,自引:0,他引:1  
内载谷胱甘肽(GSH)的大豆(Glycine max L.)下胚轴正向型质膜囊泡具有以GSH为电子供体的跨膜电子传递活性,能还原膜外电子受体FeCN和细胞色素(Cyt)C,其还原速率分别为(21.6±0.6)nmolFeCN·min~(-1)·mg~(-1)蛋白和(6.6±1.0)nmol Cyt C·min~(-1)·mg~(-1)蛋白。这种跨膜电子传递能引起膜上Cyt P-450吸收光谱标志带(Soret带)的变化,表明Cyt P-450参与了这一氧化还原过程。在跨质膜电子传递的同时伴随着H~ 运输和膜电位的改变。  相似文献   

10.
Sugar beet (Beta vulgaris L.) leaf plasma membrane vesicles were loaded with an NADH-generating system (or with ascorbate) and were tested spectrophotometrically for their ability to reduce external, membrane-impermeable electron acceptors. Either alcohol dehydrogenase plus NAD+ or 100 millimolar ascorbate was included in the homogenization medium, and right-side-out (apoplastic side-out) plasma membrane vesicles were subsequently prepared using two-phase partitioning. Addition of ethanol to plasma membrane vesicles loaded with the NADH-generating system led to a production of NADH inside the vesicles which could be recorded at 340 nanometers. This system was able to reduce 2,6-dichlorophenolindophenol-3′-sulfonate (DCIP-sulfonate), a strongly hydrophilic electron acceptor. The reduction of DCIP-sulfonate was stimulated severalfold by the K+ ionophore valinomycin, included to abolish membrane potential (outside negative) generated by electrogenic transmembrane electron flow. Fe3+-chelates, such as ferricyanide and ferric citrate, as well as cytochrome c, were not reduced by vesicles loaded with the NADH-generating system. In contrast, right-side-out plasma membrane vesicles loaded with ascorbate supported the reduction of both ferric citrate and DCIP-sulfonate, suggesting that ascorbate also may serve as electron donor for transplasma membrane electron transport. Differences in substrate specificity and inhibitor sensitivity indicate that the electrons from ascorbate and NADH were channelled to external acceptors via different electron transport chains. Transplasma membrane electron transport constituted only about 10% of total plasma membrane electron transport activity, but should still be sufficient to be of physiological significance in, e.g. reduction of Fe3+ to Fe2+ for uptake.  相似文献   

11.
Evidence for coenzyme Q function in transplasma membrane electron transport   总被引:2,自引:0,他引:2  
Transplasma membrane electron transport activity has been associated with stimulation of cell growth. Coenzyme Q is present in plasma membranes and because of its lipid solubility would be a logical carrier to transport electrons across the plasma membrane. Extraction of coenzyme Q from isolated rat liver plasma membranes decreases the NADH ferricyanide reductase and added coenzyme Q10 restores the activity. Piericidin and other analogs of coenzyme Q inhibit transplasma membrane electron transport as measured by ferricyanide reduction by intact cells and NADH ferricyanide reduction by isolated plasma membranes. The inhibition by the analogs is reversed by added coenzyme Q10. Thus, coenzyme Q in plasma membrane may act as a transmembrane electron carrier for the redox system which has been shown to control cell growth.  相似文献   

12.
Ruth A. Crowe  F. L. Crane 《Protoplasma》1995,184(1-4):209-213
Summary Bothras and the transplasma membrane electron transport system have been implicated in the control of cell growth. Since the loss of growth regulation is at the heart of the cancerous phenotype, we have investigated the effect of factors like antitumor drugs, which inhibit cell growth, and growth factors which either cause or prepare the cells for growth. We have found that growth factors increase the plasma membrane electron transport of the normal cells but not that of the cells which have been transfected with oncogenicras (which have a 2–5-fold faster basal rate). In the presence of adriamycin the activity of the electron transport system is and cell numbers are decreased more in normal cells than in the cells which have been transfected with the oncogenic version of the Harveyras gene. Cisplatin inhibits cell growth but does not inhibit ferricyanide reduction. Ferricyanide alone or in conjunction with EGF or TPA does not stimulate cell proliferation with either cell line in the absence of fetal calf serum, so simple activation of plasma membrane electron transport is not sufficient to activate a complete growth response.Abbreviations EGF epidermal growth factor - TPA phorbol myristate acetate - PDGF platelet derived growth factor - MTT 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromides - SDS sodium dodecyl sulfate  相似文献   

13.
Transplasma membrane electron transport in both plant and animal cells activates proton release. The nature and components of the electron transport system and the mechanism by which proton release is activated remains to be discovered. Reduced pyridine nucleotides are substrates for the plasma membrane dehydrogenases. Both plant and animal membranes have unusual cyanide-insensitive oxidases so oxygen can be the natural electron acceptor. Natural ferric chelates or ferric transferrin can also act as electron acceptors. Artificial, impermeable oxidants such as ferricyanide are used to probe the activity. Since plasma membranes containb cytochromes, flavin, iron, and quinones, components for electron transport are present but their participation, except for quinone, has not been demonstrated. Stimulation of electron transport with impermeable oxidants and hormones activates proton release from cells. In plants the electron transport and proton release is stimulated by red or blue light. Inhibitors of electron transport, such as certain antitumor drugs, inhibit proton release. With animal cells the high ratio of protons released to electrons transferred, stimulation of proton release by sodium ions, and inhibition by amilorides indicates that electron transport activates the Na+/H+ antiport. In plants part of the proton release can be achieved by activation of the H+ ATPase. A contribution to proton transfer by protonated electron carriers in the membrane has not been eliminated. In some cells transmembrane electron transport has been shown to cause cytoplasmic pH changes or to stimulate protein kinases which may be the basis for activation of proton channels in the membrane. The redox-induced proton release causes internal and external pH changes which can be related to stimulation of animal and plant cell growth by external, impermeable oxidants or by oxygen.  相似文献   

14.
Leishmania donovani cells, capable of reducing certain electron acceptors with redox potentials at pH 7.0 down to -290 mV, outside the plasma membrane, can reduce the oxidised form of alpha-lipoic acid. alpha-Lipoic acid has been used as natural electron acceptor probe for studying the mechanism of transplasma membrane electron transport. Transmembrane alpha-lipoic acid reduction by Leishmania was not inhibited by mitochondrial inhibitors as azide, cyanide, rotenone or antimycin A, but responded to hemin, modifiers of sulphhydryl groups and inhibitor of glycolysis. The protonophores carbonyl cyanide chlorophenylhydrazone and 2,4-dinitrophenol showed inhibition of alpha-lipoic acid reduction. This transmembrane redox system differs from that of mammalian cells in respect to its sensitivity of UV irradiation and stimulation by diphenylamine. Thus a naphthoquinone coenzyme appears to be involved in alpha-lipoic acid reduction by Leishmania cells.  相似文献   

15.
16.
Mouse duodenum possesses mucosal surface ferricyanide reductase activity. The reducing activity, determined in vitro by measuring ferrocyanide production from ferricyanide, was found to be greater in duodenal fragments when compared with ileal fragments. Experiments with right-side out tied-off duodenal sacs show that reduction occurs mainly on the mucosal side and indicates that the reducing activity is associated with the brush border membrane. Experiments using mice with increased levels of iron absorption (hypoxic, iron-deficient) showed corresponding increases in reducing activity. The increase was present in duodenal but not ileal fragments. Inhibitor studies showed no effect of several compounds which inhibit other, more characterized, transplasma membrane reductases. In particular, doxorubicin (10 m) and quinacrine (1 mm) were without effect on duodenal mucosal transplasma membrane reducing activity. Depolarization of the membrane potential with high medium K + inhibited reducing activity. N-ethyl malemide (1 mm) was a potent inhibitor, but iodoacetate was found to be less inhibitory. Comparision with inhibitory effects on glyceraldehyde-3-phosphate dehydrogenase (GAPDH) demonstrated that the effect of N-ethyl malemide on reducing activity was not secondary to GAPDH. Collectively these results indicate that mouse duodenum possesses mucosal surface transplasma membrane ferricyanide reductase activity and that the activity is correlated with the process of intestinal iron absorption. Furthermore, the reducing activity appears to be distinct from other reported transplasma membrane reductases.  相似文献   

17.
Transformation of 3T3 cells by SV40 virus changes the properties of the transplasma membrane electron transport activity which can be assayed by reduction of external ferric salts. After 42 h of culture and before the growth rate is maximum, the transformed cells have a much slower rate of ferric reduction. The change in activity is expressed both by change inK m andV max for ferricyanide reduction. The change in activity is not based on surface charge effect or on tight coupling to proton release or on intracellular NADH concentration. With transformation by SV40 virus infection the expression of transferrin receptors increases, which correlates with greater diferric transferrin stimulation of the rate of ferric ammonium citrate reduction in transformed SV40-3T3 cells than in 3T3 cells.  相似文献   

18.
A novel electrochemical technique was developed to enable high‐resolution measurements of trans‐plasma membrane reductase activity in vivo in growing plant tissue and single cells. Carbon fibre microelectrodes (CFMEs) with a tip diameter of 5 µm were used for electrochemical mapping of the reduction of the external impermeant electron acceptor ferricyanide along the root tip surface of 4‐d‐old maize seedlings. Ferricyanide reduction was detected in all locations along the first 12 mm of the growing root apex. However, a distinct peak in activity was detected at the proximal end of the elongation zone (1·5–4·5 mm from the apex), where reductase activity was three times greater than in more apical or distal regions. The inhibition of the ferricyanide reduction at all locations along the growing apex, by the vitamin K antagonists warfarin and dicumarol, supports previous data showing that electron transfer by the constitutive trans‐plasma membrane reductase is achieved via a quinone shuttle. We demonstrate that in addition to their utility in whole‐tissue/‐organ studies, CFMEs are sensitive enough to monitor trans‐plasma membrane electron transport in single cells.  相似文献   

19.
Abstract

Oxidation of low density lipoprotein in the arterial intima has been implicated in atherogenesis. Numerous studies have shown that various cells of the arterial wall, including macrophages, are able to oxidatively modify LDL in vitro. Although the exact mechanism of macrophage-mediated LDL oxidation in vitro remains unclear, it is generally accepted that it occurs via a transition metal-dependent process. Recently, it has been demonstrated that macrophages are able to reduce extracellular copper and iron, and the contribution to this reduction of a transplasma membrane electron transport (TPMET) system of the cells has been suggested.1 In the present paper, we investigate the presence of a TPMET system in monocytes/ macrophages and ways to manipulate its activity. The establishment of ways to change the expression or activity of the TPMET system in these cells could provide convenient tool to further investigate the possible correlation between cellular transmembrane electron transport and the ability of cells to oxidise LDL.  相似文献   

20.
To study the function of soluble NAD(P)H:quinone oxidoreductase of the cyanobacterium Synechocystis sp. PCC 6803 encoded by drgA gene, recombinant DrgA protein carrying 12 histidine residues on the C-terminal end was expressed in Escherichia coli and purified. Recombinant DrgA is a flavoprotein that exhibits quinone reductase and nitroreductase activities with NAD(P)H as the electron donor. Using EPR spectroscopy, it was demonstrated that addition of recombinant DrgA protein and NADPH to DCMU-treated isolated thylakoid membranes of the cyanobacterium increased the dark rereduction rate of the photosystem I reaction center (P700+). Thus, DrgA can participate in electron transfer from NADPH to the electron transport chain of the Synechocystis sp. PCC 6803 thylakoid membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号