首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The emergence of X4 human immunodeficiency virus type 1 (HIV-1) strains in HIV-1-infected individuals has been associated with CD4(+) T-cell depletion, HIV-mediated CD8(+) cell apoptosis, and an impaired humoral response. The bicyclam AMD3100, a selective antagonist of CXCR4, selected for the outgrowth of R5 virus after cultivation of mixtures of the laboratory-adapted R5 (BaL) and X4 (NL4-3) HIV strains in the presence of the compound. The addition of AMD3100 to peripheral blood mononuclear cells infected with X4 or R5X4 clinical HIV isolates displaying the syncytium-inducing phenotype resulted in a complete suppression of X4 variants and a concomitant genotypic change in the V2 and V3 loops of the envelope gp120 glycoprotein. The recovered viruses corresponded genotypically and phenotypically to R5 variants in that they could no longer use CXCR4 as coreceptor or induce syncytium formation in MT-2 cells. Furthermore, the phenotype and genotype of a cloned R5 HIV-1 virus converted to those of the R5X4 virus after prolonged culture in lymphoid cells. However, these changes did not occur when the infected cells were cultured in the presence of AMD3100, despite low levels of virus replication. Our findings indicate that selective blockade of the CXCR4 receptor prevents the switch from the less pathogenic R5 HIV to the more pathogenic X4 HIV strains, a process that heralds the onset of AIDS. In this article, we show that it could be possible to redirect the evolution of HIV so as to impede the emergence of X4 strains or to change the phenotype of already-existing X4 isolates to R5.  相似文献   

2.
The HIV-1 genome is highly heterogeneous. This variation affords the virus a wide range of molecular properties, including the ability to infect cell types, such as macrophages and lymphocytes, expressing different chemokine receptors on the cell surface. In particular, R5 HIV-1 viruses use CCR5 as co-receptor for viral entry, X4 viruses use CXCR4, whereas some viral strains, known as R5X4 or D-tropic, have the ability to utilize both co-receptors. X4 and R5X4 viruses are associated with rapid disease progression to AIDS. R5X4 viruses differ in that they have yet to be characterized by the examination of the genetic sequence of HIV-1 alone. In this study, a series of experiments was performed to evaluate different strategies of feature selection and neural network optimization. We demonstrate the use of artificial neural networks trained via evolutionary computation to predict viral co-receptor usage. The results indicate identification of R5X4 viruses with predictive accuracy of 75.5%.  相似文献   

3.
In this report, we present evidence that R5 human immunodeficiency virus type 1 (HIV-1) replicates more efficiently in primary CD4+ T cells than X4 HIV-1. By comparing CD3/CD28-costimulated CD4+ T-cell cultures infected by several X4 and R5 HIV-1 strains, we determined that R5-infected CD4+ T cells produce more virus over time than X4-infected CD4+ T cells. In the first comparison, we found that more cells were infected by the X4-tropic strain LAI than by the R5-tropic strain JR-CSF and yet that higher levels of viral production were detected in the R5-infected cultures. The differential viral production was partially due to the severe cytopathic effects of the X4 virus. We also compared cultures infected with the isogenic HIV-1 strains NL4-3 (X4) and 49.5 (R5). We found that fewer cells were infected by the R5 strain, and yet similar levels of viral production were detected in both infected cultures. Cell death played less of a role in the differential viral production of these strains, as the cell viability remained comparable in both X4- and R5-infected cultures over time. The final comparison involved the primary R5-tropic isolate KP1 and the primary dual-tropic isolate KP2. Although both strains infected similar numbers of cells and induced comparable levels of cytopathicity, viral production was considerably higher in the R5-infected culture. In summary, these data demonstrate that R5 HIV-1 has an increased capacity to replicate in costimulated CD4+ T cells compared to X4 HIV-1.  相似文献   

4.
In a previous study, we had found that the extent of T-cell dysfunctions induced by a T-tropic strain of human immunodeficiency virus type 1 (HIV-1) in SCID mice reconstituted with human peripheral blood lymphocytes (hu-PBLs) (hu-PBL-SCID mice) was related to the in vivo state of activation of the human lymphocytes. In this article, we compared the effect of infection of hu-PBL-SCID mice with either T-tropic (X4) or M-tropic (R5) strains of HIV-1 by performing virus inoculation at either 2 h or 2 weeks after the hu-PBL transfer, when the human T cells exhibited a marked activation state or a predominant memory phenotype, respectively. A comparable level of infection was found when hu-PBL-SCID mice were challenged with either the SF162 R5 or the IIIB X4 strain of HIV at 2 h postreconstitution, while at 2 weeks, the R5 virus infection resulted in a higher level of HIV replication than the X4 virus. The R5 strain induced a marked human CD4(+) T-cell depletion along with a drop in levels of human immunoglobulin M in serum and release of soluble factors at both infection times, while the X4 virus induced severe immune dysfunctions only at 2 h. Of interest, injection of hu-PBLs into SCID mice resulted in a marked up-regulation of CCR5 on human CD4(+) T cells. The percentage of CXCR4(+) cells did not change after transplantation, even though a significant decrease in antigen expression was observed. Comparative experiments with two molecular clones of HIV-1 (X4 SF2 and R5 SF162) and two envelope recombinant viruses generated from these viruses showed that R5 viruses (SF162 and the chimeric env-SF162-SF2) caused an extensive depletion of human CD4(+) T cells in SCID mice at both 2 h and 2 weeks after reconstitution, while the X4 viruses (SF2 and the chimeric env-SF2-SF162) induced CD4 T-cell depletion only when infection was performed at the 2-h reconstitution time. These results emphasize the importance of the state of activation/differentiation of human CD4(+) T cells and gp120-coreceptor interactions at the time of primary infection in determining HIV-1 pathogenicity in the hu-PBL-SCID mouse model.  相似文献   

5.
CCR5-utilizing (R5) and CXCR4-utilizing (X4) strains of human immunodeficiency virus type 1 (HIV-1) have been studied intensively in vitro, but the pathologic correlates of such differential tropism in vivo remain incompletely defined. In this study, X4 and R5 strains of HIV-1 were compared for tropism and pathogenesis in SCID-hu Thy/Liv mice, an in vivo model of human thymopoiesis. The X4 strain NL4-3 replicates quickly and extensively in thymocytes in the cortex and medulla, causing significant depletion. In contrast, the R5 strain Ba-L initially infects stromal cells including macrophages in the thymic medulla, without any obvious pathologic consequence. After a period of 3 to 4 weeks, Ba-L infection slowly spreads through the thymocyte populations, occasionally culminating in thymocyte depletion after week 6 of infection. During the entire time of infection, Ba-L did not mutate into variants capable of utilizing CXCR4. Therefore, X4 strains are highly cytopathic after infection of the human thymus. In contrast, infection with R5 strains of HIV-1 can result in a two-phase process in vivo, involving apparently nonpathogenic replication in medullary stromal cells followed by cytopathic replication in thymocytes.  相似文献   

6.
Coreceptor specificity of human immunodeficiency virus type 1 (HIV-1) strains is generally defined in vitro in cell lines expressing CCR5 or CXCR4, but lymphocytes and macrophages are the principal targets in vivo. CCR5-using (R5) variants dominate early in infection, but strains that use CXCR4 emerge later in a substantial minority of subjects. Many or most CXCR4-using variants can use both CXCR4 and CCR5 (R5X4), but the pathways that are actually used to cause infection in primary cells and in vivo are unknown. We examined several R5X4 prototype and primary isolates and found that they all were largely or completely restricted to CXCR4-mediated entry in primary lymphocytes, even though lymphocytes are permissive for CCR5-mediated entry by R5 strains. In contrast, in primary macrophages R5X4 isolates used both CCR5 and CXCR4. The R5X4 strains were also more sensitive than R5 strains to CCR5 blocking, suggesting that interactions between the R5X4 strains and CCR5 are less efficient. These results indicate that coreceptor phenotyping in transformed cells does not necessarily predict utilization in primary cells, that variability exists among HIV-1 isolates in the ability to use CCR5 expressed on lymphocytes, and that many or most strains characterized as R5X4 are functionally X4 in primary lymphocytes. Less efficient interactions between R5X4 strains and CCR5 may be responsible for the inability to use CCR5 on lymphocytes, which express relatively low CCR5 levels. Since isolates that acquire CXCR4 utilization retain the capacity to use CCR5 on macrophages despite their inability to use it on lymphocytes, these results also raise the possibility that a CCR5-mediated macrophage reservoir is required for sustained infection in vivo.  相似文献   

7.
Dual-tropic human immunodeficiency virus type 1 (HIV-1) strains infect both primary macrophages and transformed T-cell lines. Prototype T-cell line-tropic (T-tropic) strains use CXCR4 as their principal entry coreceptor (X4 strains), while macrophagetropic (M-tropic) strains use CCR5 (R5 strains). Prototype dual tropic strains use both coreceptors (R5X4 strains). Recently, CXCR4 expressed on macrophages was found to support infection by certain HIV-1 isolates, including the dual-tropic R5X4 strain 89.6, but not by T-tropic X4 prototypes like 3B. To better understand the cellular basis for dual tropism, we analyzed the macrophage coreceptors used for Env-mediated cell-cell fusion as well as infection by several dual-tropic HIV-1 isolates. Like 89.6, the R5X4 strain DH12 fused with and infected both wild-type and CCR5-negative macrophages. The CXCR4-specific inhibitor AMD3100 blocked DH12 fusion and infection in macrophages that lacked CCR5 but not in wild-type macrophages. This finding indicates two independent entry pathways in macrophages for DH12, CCR5 and CXCR4. Three primary isolates that use CXCR4 but not CCR5 (tybe, UG021, and UG024) replicated efficiently in macrophages regardless of whether CCR5 was present, and AMD3100 blocking of CXCR4 prevented infection in both CCR5 negative and wild-type macrophages. Fusion mediated by UG021 and UG024 Envs in both wild-type and CCR5-deficient macrophages was also blocked by AMD3100. Therefore, these isolates use CXCR4 exclusively for entry into macrophages. These results confirm that macrophage CXCR4 can be used for fusion and infection by primary HIV-1 isolates and indicate that CXCR4 may be the sole macrophage coreceptor for some strains. Thus, dual tropism can result from two distinct mechanisms: utilization of both CCR5 and CXCR4 on macrophages and T-cell lines, respectively (dual-tropic R5X4), or the ability to efficiently utilize CXCR4 on both macrophages and T-cell lines (dual-tropic X4).  相似文献   

8.
CCR5-tropic (R5) immunodeficiency virus type 1 (HIV-1) strains are highly transmissible during the early stage of infection in humans, whereas CXCR4-tropic (X4) strains are less transmissible. This study aimed to explore the basis for early phase R5 and X4 HIV-1 infection in vivo by using humanized mice dually challenged with R5 HIV-1NLAD8-D harboring DsRed and X4 HIV-1NL-E harboring EGFP. Whereas R5 HIV-1 replicated well, X4 HIV-1 caused only transient viremia with variable kinetics; however, this was distinct from the low level but persistent viremia observed in mice challenged with X4 HIV-1 alone. Flow cytometric analysis of HIV-1-infected cells revealed that X4 HIV-1 infection of CCR5+CD4+ T cells was significantly suppressed in the presence of R5 HIV-1. X4 HIV-1 was more cytopathic than R5 HIV-1; however, this was not the cause of restricted X4 HIV-1 infection because there were no significant differences in the mortality rates of CCR5+ and CCR5 cells within the X4 HIV-1-infected cell populations. Taken together, these results suggest that restricted infection of CCR5+CD4+ T cells by X4 HIV-1 (occurring via a still-to-be-identified mechanism) might contribute to the preferential transmission of R5 HIV-1 during the early phase of infection.  相似文献   

9.
A cyclic chimeric dodecapeptide (cCD) mimicking the conformation-specific domains of CCR5 and CXCR4 was prepared in which Gly-Asp links the amino and carboxyl termini of two combined pentapeptides (S169-G173 of CCR5; E179-R183 of CXCR4) derived from human immunodeficiency virus type-1 (HIV-1) coreceptors. The immunization of Balb/c mice with cCD conjugated with a multiple-antigen peptide (cCD-MAP) induced seven cCD-specific monoclonal antibodies (mAbs, CPMAb-I to -VII) that reacted with native CCR5 and CXCR4. Among the tested mAbs, CPMAb-I and -II potently inhibited the infection of both the R5 and X4 laboratory strains. CPMAb-III and -VI were effective against only R5 laboratory strains, and also against some X4 and R5 primary isolates. CPMAb-IV and -V had potent antiviral activities against the R5 and X4 primary isolates. In particular, CPMAb-VII was protective against not only R5 and X4 laboratory strains, but also most of the R5 and X4 primary isolates. Moreover, cCD-MAP immunization also induced antibodies that were effective against R5 and X4 multiclade HIV-1 isolates in vitro in two of three cynomolgus monkeys. Taken together, the results suggest that cCD-MAP is a candidate multiclade immunogen that can be used to block multiclade R5 and X4 HIV-1 infections.  相似文献   

10.
HIV-1 entry requires the cell surface expression of CD4 and either the CCR5 or CXCR4 coreceptors on host cells. Individuals homozygous for the ccr5Δ32 polymorphism do not express CCR5 and are protected from infection by CCR5-tropic (R5) virus strains. As an approach to inactivating CCR5, we introduced CCR5-specific zinc-finger nucleases into human CD4+ T cells prior to adoptive transfer, but the need to protect cells from virus strains that use CXCR4 (X4) in place of or in addition to CCR5 (R5X4) remains. Here we describe engineering a pair of zinc finger nucleases that, when introduced into human T cells, efficiently disrupt cxcr4 by cleavage and error-prone non-homologous DNA end-joining. The resulting cells proliferated normally and were resistant to infection by X4-tropic HIV-1 strains. CXCR4 could also be inactivated in ccr5Δ32 CD4+ T cells, and we show that such cells were resistant to all strains of HIV-1 tested. Loss of CXCR4 also provided protection from X4 HIV-1 in a humanized mouse model, though this protection was lost over time due to the emergence of R5-tropic viral mutants. These data suggest that CXCR4-specific ZFNs may prove useful in establishing resistance to CXCR4-tropic HIV for autologous transplant in HIV-infected individuals.  相似文献   

11.
The emergence of X4 human immunodeficiency virus type 1 (HIV-1) variants in infected individuals is associated with poor prognosis. One of the possible causes of this emergence might be the selection of X4 variants in some specific tissue compartment. We demonstrate that the thymic microenvironment favors the replication of X4 variants by positively modulating the expression and signaling of CXCR4 in mature CD4(+) CD8(-) CD3(+) thymocytes. Here, we show that the interaction of thymic epithelial cells (TEC) with these thymocytes in culture induces an upregulation of CXCR4 expression. The cytokine secreted by TEC, interleukin-7 (IL-7), increases cell surface expression of CXCR4 and efficiently overcomes the downregulation induced by SDF-1 alpha, also produced by TEC. IL-7 also potentiates CXCR4 signaling, leading to actin polymerization, a process necessary for virus entry. In contrast, in intermediate CD4(+) CD8(-) CD3(-) thymocytes, the other subpopulation known to allow virus replication, TEC or IL-7 has little or no effect on CXCR4 expression and signaling. CCR5 is expressed at similarly low levels in the two thymocyte subpopulations, and neither its expression nor its signaling was modified by the cytokines tested. This positive regulation of CXCR4 by IL-7 in mature CD4(+) thymocytes correlates with their high capacity to favor X4 virus replication compared with intermediate thymocytes or peripheral blood mononuclear cells. Indeed, we observed an enrichment of X4 viruses after replication in thymocytes initially infected with a mixture of X4 (NL4-3) and R5 (NLAD8) HIV strains and after the emergence of X4 variants from an R5 primary isolate during culture in mature thymocytes.  相似文献   

12.
To examine the pathway of the coreceptor switching of CCR5-using (R5) virus to CXCR4-using (X4) virus in simian-human immunodeficiency virus SHIV(SF162P3N)-infected rhesus macaque BR24, analysis was performed on variants present at 20 weeks postinfection, the time when the signature gp120 V3 loop sequence of the X4 switch variant was first detected by PCR. Unexpectedly, circulating and tissue variants with His/Ile instead of the signature X4 V3 His/Arg insertions predominated at this time point. Phylogenetic analysis of the sequences of the C2 conserved region to the V5 variable loop of the envelope (Env) protein showed that viruses bearing HI insertions represented evolutionary intermediates between the parental SHIV(SF162P3N) and the final X4 HR switch variant. Functional analyses demonstrated that the HI variants were phenotypic intermediates as well, capable of using both CCR5 and CXCR4 for entry. However, the R5X4 intermediate virus entered CCR5-expressing target cells less efficiently than the parental R5 strain and was more sensitive to both CCR5 and CXCR4 inhibitors than either the parental R5 or the final X4 virus. It was also more sensitive than the parental R5 virus to antibody neutralization, especially to agents directed against the CD4 binding site, but not as sensitive as the late X4 virus. Significantly, the V3 loop sequence that determined CXCR4 use also conferred soluble CD4 neutralization sensitivity. Collectively, the data illustrate that, similar to human immunodeficiency virus type 1 (HIV-1) infection in individuals, the evolution from CCR5 to CXCR4 usage in BR24 transitions through an intermediate phase with reduced virus entry and coreceptor usage efficiencies. The data further support a model linking an open envelope gp120 conformation, better CD4 binding, and expansion to CXCR4 usage.  相似文献   

13.
14.
Human immunodeficiency virus type 1 (HIV-1) infection in vivo is dependent upon the interaction of the viral envelope glycoprotein gp120 with CC chemokine receptor 5 (CCR5) or CXC chemokine receptor 4 (CXCR4). To study the determinants of the gp120-coreceptor association, we generated a set of chimeric HIV-1 coreceptors which express all possible combinations of the four extracellular domains of CCR5 and CXCR4. Stable U87 astroglioma cell lines expressing CD4 and individual chimeric coreceptor proteins were tested against a variety of R5, X4, and R5X4 envelope glycoproteins and virus strains for their ability to support HIV-1-mediated cell fusion and infection, respectively. Each of the cell lines promoted fusion with cells expressing an HIV envelope glycoprotein, except for U87.CD4.5455, which presents the first extracellular loop (ECL1) and flanking sequences of CXCR4 in the context of CCR5. However, all of the chimeric coreceptors allowed productive infection by one or more of the viral strains tested. Viral phenotype was a predictive factor for the observed activity of the chimeric molecules; X4 and R5X4 HIV strains utilized a majority of the chimeras, while R5 strains were limited in their ability to infect cells expressing these chimeric molecules. The expression of CCR5 ECL2 within the CXCR4 backbone supported infection by an R5 primary isolate, but no chimeras bearing the N terminus of CCR5 exhibited activity with R5 strains. Remarkably, the introduction of any CXCR4 domain into the CCR5 backbone was sufficient to allow utilization by multiple X4 strains. However, critical determinants within ECL2 and/or ECL3 of CXCR4 were apparent for all X4 viruses upon replacement of these domains in CXCR4 with CCR5 sequences. Unexpectedly, chimeric coreceptor-facilitated entry was blocked in all cases by the presence of the CXCR4-specific inhibitor AMD3100. Our data provide proof that CCR5 contains elements that support usage by X4 viral strains and demonstrate that the gp120 interaction sites of CCR5 and CXCR4 are structurally related.  相似文献   

15.
Yi Y  Singh A  Shaheen F  Louden A  Lee C  Collman RG 《Journal of virology》2003,77(22):12057-12066
Macrophagetropic R5 human immunodeficiency virus type 1 (HIV-1) isolates often evolve into dualtropic R5X4 variants during disease progression. The structural basis for CCR5 coreceptor function has been studied in a limited number of prototype strains and suggests that R5 and R5X4 Envs interact differently with CCR5. However, differences between unrelated viruses may reflect strain-specific factors and do not necessarily represent changes resulting from R5 to R5X4 evolution of a virus in vivo. Here we addressed CCR5 domains involved in fusion for a large set of closely related yet functionally distinct variants within a primary isolate swarm, employing R5 and R5X4 Envs derived from the HIV-1 89.6(PI) quasispecies. R5 variants of 89.6(PI) could fuse using either N-terminal or extracellular loop CCR5 sequences in the context of CCR5/CXCR2 chimeras, similar to the unrelated R5 strain JRFL, but R5X4 variants of 89.6(PI) were highly dependent on the CCR5 N terminus. Similarly, R5 89.6(PI) variants and isolate JRFL tolerated N-terminal CCR5 deletions, but fusion by most R5X4 variants was markedly impaired. R5 89.6(PI) Envs also tolerated multiple extracellular domain substitutions, while R5X4 variants did not. In contrast to CCR5 use, fusion by R5X4 variants of 89.6(PI) was largely independent of the CXCR4 N-terminal region. Thus, R5 and R5X4 species from a single swarm differ in how they interact with CCR5. These results suggest that R5 Envs possess a highly plastic capacity to interact with multiple CCR5 regions and support the concept that viral evolution in vivo results from the emergence of R5X4 variants with the capacity to use the CXCR4 extracellular loops but demonstrate less-flexible interactions with CCR5 that are strongly dependent on the N-terminal region.  相似文献   

16.
17.
CCR5Delta32 is a loss-of-function mutation that abolishes cell surface expression of the human immunodeficiency virus (HIV) coreceptor CCR5 and provides genetic resistance to HIV infection and disease progression. Since CXCR4 and other HIV coreceptors also exist, we hypothesized that CCR5Delta32-mediated resistance may be due not only to the loss of CCR5 function but also to a gain-of-function mechanism, specifically the active inhibition of alternative coreceptors by the mutant CCR5Delta32 protein. Here we demonstrate that efficient expression of the CCR5Delta32 protein in primary CD4(+) cells by use of a recombinant adenovirus (Ad5/Delta32) was able to down-regulate surface expression of both wild-type CCR5 and CXCR4 and to confer broad resistance to R5, R5X4, and X4 HIV type 1 (HIV-1). This may be important clinically, since we found that CD4(+) cells purified from peripheral blood mononuclear cells of individuals who were homozygous for CCR5Delta32, which expressed the mutant protein endogenously, consistently expressed lower levels of CXCR4 and showed less susceptibility to X4 HIV-1 isolates than cells from individuals lacking the mutation. Moreover, CD4(+) cells from individuals who were homozygous for CCR5Delta32 expressed the mutant protein in five of five HIV-exposed, uninfected donors tested but not in either of two HIV-infected donors tested. The mechanism of inhibition may involve direct scavenging, since we were able to observe a direct interaction of CCR5 and CXCR4 with CCR5Delta32, both by genetic criteria using the yeast two-hybrid system and by biochemical criteria using the coimmunoprecipitation of heterodimers. Thus, these results suggest that at least two distinct mechanisms may account for genetic resistance to HIV conferred by CCR5Delta32: the loss of wild-type CCR5 surface expression and the generation of CCR5Delta32 protein, which functions as a scavenger of both CCR5 and CXCR4.  相似文献   

18.
19.

Background

The immune system exerts a diversifying selection pressure on HIV through cellular, humoral and innate mechanisms. This pressure drives viral evolution throughout infection. A better understanding of the natural immune pressure on the virus during infection is warranted, given the clinical interest in eliciting and sustaining an immune response to HIV which can help to control the infection. We undertook to evaluate the potential of the novel HIV-induced, monocyte-derived factor visfatin to modulate viral infection, as part of the innate immune pressure on viral populations.

Results

We show that visfatin is capable of selectively inhibiting infection by R5 HIV strains in macrophages and resting PBMC in vitro, while at the same time remaining indifferent to or even favouring infection by X4 strains. Furthermore, visfatin exerts a direct effect on the relative fitness of R5 versus X4 infections in a viral competition setup. Direct interaction of visfatin with the CCR5 receptor is proposed as a putative mechanism for this differential effect. Possible in vivo relevance of visfatin induction is illustrated by its association with the dominance of CXCR4-using HIV in the plasma.

Conclusions

As an innate factor produced by monocytes, visfatin is capable of inhibiting infections by R5 but not X4 strains, reflecting a potential selective pressure against R5 viruses.  相似文献   

20.
We screened a panel of R5X4 and X4 human immunodeficiency virus type 1 (HIV-1) strains for their sensitivities to AMD3100, a small-molecule CXCR4 antagonist that blocks HIV-1 infection via this coreceptor. While no longer under clinical development, AMD3100 is a useful tool with which to probe interactions between the viral envelope (Env) protein and CXCR4 and to identify pathways by which HIV-1 may become resistant to this class of antiviral agents. While infection by most virus strains was completely blocked by AMD3100, we identified several R5X4 and X4 isolates that exhibited plateau effects: as the AMD3100 concentration was increased, virus infection and membrane fusion diminished to variable degrees. Once saturating concentrations of AMD3100 were achieved, further inhibition was not observed, indicating a noncompetitive mode of viral resistance to the drug. The magnitude of the plateau varied depending on the virus isolate, as well as the cell type used, with considerable variation observed when primary human T cells from different human donors were used. Structure-function studies indicated that the V1/V2 region of the R5X4 HIV-1 isolate DH12 was necessary for AMD3100 resistance and could confer this property on two heterologous Env proteins. We conclude that some R5X4 and X4 HIV-1 isolates can utilize the AMD3100-bound conformation of CXCR4, with the efficiency being influenced by both viral and host factors. Baseline resistance to this CXCR4 antagonist could influence the clinical use of such compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号