首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MAP kinase phosphatase-3 (MKP3), also known as DUSP6 or Pyst1, is a dual specificity phosphatase considered to selectively dephosphorylate extracellular-signal-regulated kinase 1/2 (Erk1/2). Here, we report that in NIH3T3 cells, MKP3 is induced in response to platelet-derived growth factor (PDGF)-BB treatment in an Erk1/2- and phosphatidylinositol 3-kinase (PI3K)-dependent manner, but independently of Erk5 expression. Silencing of MKP3 expression did not affect PDGF-BB-induced Erk1/2 or p38 phosphorylation; however, their basal level of phosphorylation was elevated. Furthermore, we found that PDGF-BB-mediated activation of Erk5 and Akt was enhanced when the MKP3 expression was reduced. Interfering with Mek1/2 or PI3K using the inhibitors CI-1040 and LY-294002, respectively, inhibited PDGF-BB-induced MKP3 expression. Functionally, we found that MKP3 silencing did not affect cell proliferation, but enhanced the chemotactic response toward PDGF-BB. Although both Akt and Erk5 have been linked to increased cell survival, downregulation of MKP3 did not alter the ability of PDGF-BB to protect NIH3T3 cells from starvation-induced apoptosis. However, we observed an increased apoptosis in untreated cells with reduced MKP3 expression. In summary, our data indicate that there is negative cross-talk between Erk1/2 and Erk5 that involves regulation of MKP3 expression, and that PI3K in addition to promoting Akt phosphorylation also negatively modulates Akt, through MKP3 expression.  相似文献   

2.
Activation of platelet-derived growth factor (PDGF) receptors occurs through ligand-induced dimerization and autophosphorylation. In this study, we investigated the effects of mutation of tyrosine residue 857 (Y857) in the activation loop of the PDGF β-receptor (PDGFRβ) to phenylalanine (Y857F). In agreement with previous observations, we found that PDGFRβY857F had a severely diminished in vitro kinase activity. However, in vivo the overall amount of tyrosine phosphorylation of PDGFRβY857F was similar to that of the wild-type receptor, except for the tyrosine residue 771 (Y771) which displayed a stronger phosphorylation in the mutant receptor. Analysis of the ability to induce signal transduction revealed that the PDGFRβY857F mutant had an attenuated activation of Akt and Erk1/2 MAP kinase. In contrast, the mutant receptor efficiently mediated phosphorylation of the ubiquitin-ligase c-Cbl that participates in receptor internalization and degradation, and PLCγ which has previously been shown to be connected with various cellular responses, including migration. However, the protein tyrosine phosphatase SHP-2, implicated in the PDGF-induced mitogenic response, together with the adaptor proteins Alix and Stam, involved in intracellular sorting of receptor, was not phosphorylated in cells expressing PDGFRβY857F. We found that both receptor variants were internalized from the cell surface and degraded at a comparable rate. Interestingly, PDGFRβY857F was unable to mediate PDGF-BB-induced mitogenic signaling, whereas it could elicit a chemotactic response.  相似文献   

3.
4.
Understanding the mechanisms that direct mesenchymal stem cell (MSC) self‐renewal fate decisions is a key to most tissue regenerative approaches. The aim of this study here was to investigate the mechanisms of action of platelet‐derived growth factor receptor β (PDGFRβ) signalling on MSC proliferation and differentiation. MSC were cultured and stimulated with PDGF‐BB together with inhibitors of second messenger pathways. Cell proliferation was assessed using ethynyl‐2′‐deoxyuridine and phosphorylation status of signalling molecules assessed by Western Blots. To assess differentiation potentials, cells were transferred to adipogenic or osteogenic media, and differentiation assessed by expression of differentiation association genes by qRT‐PCR, and by long‐term culture assays. Our results showed that distinct pathways with opposing actions were activated by PDGF. PI3K/Akt signalling was the main contributor to MSC proliferation in response to activation of PDGFRβ. We also demonstrate a negative feedback mechanism between PI3K/Akt and PDGFR‐β expression. In addition, PI3K/Akt downstream signal cascades, mTOR and its associated proteins p70S6K and 4E‐BP1 were involved. These pathways induced the expression of cyclin D1, cyclin D3 and CDK6 to promote cell cycle progression and MSC proliferation. In contrast, activation of Erk by PDGFRβ signalling potently inhibited the adipocytic differentiation of MSCs by blocking PPARγ and CEBPα expression. The data suggest that PDGFRβ‐induced Akt and Erk pathways regulate opposing fate decisions of proliferation and differentiation to promote MSC self‐renewal. Thus, activation of multiple intracellular cascades is required for successful and sustainable MSC self‐renewal strategies.  相似文献   

5.
Ovarian cancer typically disseminates widely in the abdomen, a characteristic that limits curative therapy. The mechanisms that promote ovarian cancer cell migration are incompletely understood. We studied model SK-OV-3 ovarian cancer cells and observed robust expression of the alpha chemokine receptors CXCR-1 and CXCR-2. Interleukin-8 (IL-8) treatment caused shape changes in the cells, with membrane ruffling and formation/retraction of thin actin-like projections, as detected by time-lapse microscopy. Stimulation of the CXCR-1/2 receptors by human interleukin 8 (IL-8) rapidly activated the p44/42 mitogen-activated protein (extracellular signal-regulated kinase (Erk1/2)) kinase pathway. Treatment of SK-OV-3 cells with the inhibitors genestein and herbimycin A indicated that tyrosine kinases were involved in the IL-8 activation of Erk1 and Erk2. Of note, IL-8 induced transient phosphorylation of the epidermal growth factor (EGF) receptor and its association with the adaptor molecules Shc and Grb2. This transactivation of the EGF receptor was dependent on intracellular Ca(2+) mobilization. Furthermore AG1478, a specific inhibitor of the EGF receptor kinase, blocked Erk1 and Erk2 activation. c-Src kinase was not involved in the IL-8-mediated phosphorylation of the EGF receptor, but was critical for Shc phosphorylation and downstream Erk1/2 kinase activation. These results suggest important "cross-talk" between chemokine and growth factor pathways that may link signals of cell migration and proliferation in ovarian cancer.  相似文献   

6.
Extracellular regulated kinase (Erk) 5 is a member of the mitogen activated protein (MAP) kinase family that has been implicated in both cell proliferation and survival. In the present study, we found that stimulation with platelet-derived growth factor (PDGF)-BB leads to a transient activation of Erk5, which was shown to be dependent on recruitment of both Src kinases and the tyrosine phosphatase Shp2 to the activated PDGF receptor β (PDGFRβ). We could also demonstrate that Shp2 docking to the receptor is critical for Src kinase activation, suggesting that Shp2 may contribute to Erk5 activation through its involvement in Src kinase activation. Under control conditions, PDGF-BB promoted a sustained Akt phosphorylation. However, reduction of the expression of Erk5 by siRNA resulted in only a transient Akt phosphorylation, and an inability of PDGF-BB to suppress caspase 3 activation and inhibit apoptotic nuclear morphological changes such as condensed or fragmented chromatin under serum-free conditions.  相似文献   

7.
Chiu D  Ma K  Scott A  Duronio V 《The FEBS journal》2005,272(17):4372-4384
We used two inhibitors of the signaling enzyme phosphatidylinositol 3-kinase (PtdIns3K), wortmannin and LY294002, to evaluate the potential involvement of PtdIns3K in the activation of the MAP kinases (MAPK), Erk1 and Erk2. In dose-response studies carried out on six different cell lines and a primary cell culture, we analyzed the ability of the inhibitors to block phosphorylation of protein kinase B/akt (PKB/akt) at Ser473 as a measure of PtdIns3K activity, or the phosphorylation of Erk1/2 at activating Thr/Tyr sites as a measure of the extent of activation of MAPK/Erk kinase (MEK/Erk). In three different hemopoietic cell lines stimulated with cytokines, and in HEK293 cells, stimulated with serum, either wortmannin or LY294002, but never both, could partially block phosphorylation of Erks. The same observations were made in a B-cell line and in primary fibroblasts. In only one cell type, the A20 B cells, was there a closer correlation between the PtdIns3K inhibition by both inhibitors, and their corresponding effects on Erk phosphorylation. However, this stands out as an exception that gives clues to the mechanism by which cross-talk might occur. In all other cells, acute activation of the pathway leading to Erk phosphorylation could proceed independently of PtdIns3K activation. In a biological assay comparing these two pathways, the ability of LY294002 and the MEK inhibitor, U0126, to induce apoptosis were tested. Whereas LY294002 caused death of cytokine-dependent hemopoietic cells, U0126 had little effect, but both inhibitors together had a synergistic effect. The data show that these two pathways are regulating very different downstream events involved in cell survival.  相似文献   

8.
Cdk5, a cyclin-dependent kinase, is critical for neuronal development, neuronal migration, cortical lamination, and survival. Its survival role is based, in part, on "cross-talk" interactions with apoptotic and survival signaling pathways. Previously, we showed that Cdk5 phosphorylation of mitogen-activated protein kinase kinase (MEK)1 inhibits transient activation induced by nerve growth factor (NGF) in PC12 cells. To further explore the nature of this inhibition, we studied the kinetics of NGF activation of extracellular signal-regulated kinase (Erk)1/2 in cortical neurons with or without roscovitine, an inhibitor of Cdk5. NGF alone induced an Erk1/2-transient activation that peaked in 15 min and declined rapidly to baseline. Roscovitine, alone or with NGF, reached peak Erk1/2 activation in 30 min that was sustained for 48 h. Moreover, the sustained Erk1/2 activation induced apoptosis in cortical neurons. Significantly, pharmacological application of the MEK1 inhibitor PD98095 to roscovitine-treated cortical neurons prevented apoptosis. These results were also confirmed by knocking down Cdk5 activity in cortical neurons with Cdk5 small interference RNA. Apoptosis was correlated with a significant shift of phosphorylated tau and neurofilaments from axons to neuronal cell bodies. These results suggest that survival of cortical neurons is also dependent on tight Cdk5 modulation of the mitogen-activated protein kinase signaling pathway.  相似文献   

9.
10.
Hepatocyte growth factor (HGF) is a multifunctional growth factor affecting cell proliferation and differentiation. Due to its mitogenic potential, HGF plays an important role in tubular repair and regeneration after acute renal injury. However, recent reports have shown that HGF also acts as an anti-inflammatory and anti-fibrotic factor, affecting various cell types such as renal fibroblasts and triggering tubulointerstitial fibrosis of the kidney.The present study provides evidence that HGF stimulation of renal fibroblasts results in the activation of both the Erk1/2 and the Akt pathways. As previously shown, Erk1/2 phosphorylation results in Smad-linker phosphorylation, thereby antagonizing cellular signals induced by TGFβ. By siRNA mediated silencing of the Erk1/2-Smad linkage, however, we now demonstrate that Akt signaling acts as an auxiliary pathway responsible for the anti-fibrotic effects of HGF. In order to define the anti-fibrotic function of HGF we performed comprehensive expression profiling of HGF-stimulated renal fibroblasts by microarray hybridization. Functional cluster analyses and quantitative PCR assays indicate that the HGF-stimulated pathways transfer the anti-fibrotic effects in renal interstitial fibroblasts by reducing expression of extracellular matrix proteins, various chemokines, and members of the CCN family.  相似文献   

11.
Growth factors, hormones, and matrix proteins regulate osteoblast proliferation and differentiation, acting through cognate receptors. Since each of the receptors are coupled to a variety of distinct signal transduction pathways, in this report we evaluated whether there is a common convergent intermediate step that allows cross-talk among the various pathways. Since extracellular signal-regulated kinases 1 and 2 (Erk1/2) play a role in mitogenesis and differentiation processes, we evaluated the effects of various osteotrophic factors on Erk1/2 phosphorylation in osteoblasts. Osteoblasts isolated from the metaphyseal marrow (MM) and diaphyseal marrow (DM) of 4-6 week old male rat longitudinal bones were grown to confluency and Erk1/2-phosphorylation was evaluated using antibodies that recognized either the total or the phosphorylated form of the kinase. There was very little Erk1/2 phosphorylation in cells kept in suspension. Both MM and DM cells attached to fibronectin (FN), demonstrated Erk1/2 phosphorylation that persisted for at least up to 8h. Platelet-derived growth factor AB (PDGF-AB) induced a transient and robust Erk1/2 phosphorylation that was attenuated by 2h. Studies with specific inhibitors indicated that the effects of these factors were mediated by protein kinase C, by receptor tyrosine kinase, as well as by protein phosphatases. Parathyroid hormone (PTH 1-34), a bone anabolic agent however, caused a down-regulation of FN stimulated Erk1/2 phosphorylation in MM derived cells. The inhibitory effect of PTH was mediated through cAMP-dependent protein kinase A (PKA) activation. The data collectively suggest that a combination of diverse extracellular stimuli regulates Erk1/2 phosphorylation that may ultimately influence osteoblast proliferation and/or differentiation.  相似文献   

12.
We have shown previously that cytoskeletal reorganization (CSR) induced by pharmacological reagents such as colchicine or cytochalasins can up-regulate the urokinase-type plasminogen activator (uPA) gene via the Ras/Erk signaling pathway. In this present study using the small interfering RNA technique, we have found that ShcA adapter proteins play a rather active role in CSR-induced Erk activation, contrary to their mostly redundant role in other signaling pathways, e.g. growth factor-induced Erk activation, where Grb2 can bind directly to the receptor tyrosine kinase and activate Erk in the absence of ShcA. ShcA knockdown abolished CSR-induced activation of both Erk and the uPA promoter. Expression of small interfering RNA-escaping silent mutants of p52 or p46 but not p66 ShcA isoform efficiently rescued CSR-induced Erk activation. Moreover, we have shown that phosphorylation of either Tyr-239/Tyr-240 or Tyr-313 in p52(ShcA) can mediate CSR-induced Erk activation equally well. In a quest for molecules upstream of ShcA in this signaling, we found that CSR-induced ShcA tyrosine phosphorylation, its association with Grb2, Erk activation, and uPA gene expression were all dependent on Rho kinase, p38 mitogen-activated protein kinase, and Src. In summary, we have found a novel, non-redundant role for ShcA in contrast to its redundant role in many other signaling pathways.  相似文献   

13.
14.
Integrin-mediated cell adhesion transduces signals to regulate actin cytoskeleton and cell proliferation. While understanding how integrin signals cross-talk with the TGF-β1 pathways, we observed lamellipodia formation and cyclin regulation in Hep3B cells, following TGF-β1 treatment. To answer if integrin signaling via actin organization might regulate cell cycle progression after TGF-β1 treatment, we analyzed cross-talk between the two receptor-mediated pathways in hepatoma cells on specific ECMs. We found that basal and TGF-β1-mediated activation of c-Src and Rac1, expression of cyclins E and A, and suppression of p27Kip1 were significant in cells replated on fibronectin, but not in cells on collagen I, indicating a different integrin-mediated cellular response to TGF-β1 treatment. Levels of tyrosine phosphorylation and actin-enriched lamellipodia on fibronectin were also more prominent than in cells on collagen I. Studies using pharmacological inhibitors or transient transfections revealed that the preferential TGF-β1 effects in cells on fibronectin required c-Src family kinase activity. These observations suggest that a specific cross-talk between TGF-β1 and fibronectin-binding integrin signal pathways leads to the activation of c-Src/Rac1/actin-organization, leading to changes in cell cycle regulator levels in hepatoma cells. Therefore, this study represents another mechanism to regulate cell cycle regulators when integrin signaling is collaborative with TGF-β1 pathways.  相似文献   

15.
The platelet-derived growth factor β receptor (βPDGFR) is a receptor tyrosine kinase involved in multiple aspects of cell growth and differentiation. Upon activation, βPDGFR is phosphorylated at up to nine different tyrosine residues. Phosphorylation of the receptor results in at least two different outcomes: recruitment of signaling molecules and activation of intrinsic receptor kinase activity. In order to evaluate the phosphorylation state of the receptor, phosphospecific antibodies were generated against peptides encompassing βPDGFR phospho-Y751, phospho-Y771, or phospho-Y857. When phosphorylated, these sites enable the receptor to recruit signaling molecules PI3K or RasGAP, or enhance the receptor's kinase activity, respectively. We found that receptors phosphorylated at Y751, Y771, and Y857 display distinct temporal and spatial distribution by immunofluorescence. Subsequent biochemical studies revealed that receptor function corresponding to each of the phosphorylated sites was regulated as a function of time. Within the first 10 min, PDGF enhanced the receptor's kinase activity and initiated recruitment of PI3K and RasGAP. After prolonged exposure to PDGF, PI3K binding persisted to approximately 85% of the amount bound at 10 min, whereas binding of RasGAP and the exogenous kinase activity of the receptor diminished to less than 15% of the levels displayed at 10 min. We conclude that the phosphorylation state of the receptor, as well as its signaling capacity, is dynamic and changes as cells are continuously exposed to PDGF.  相似文献   

16.
The signaling mechanisms responsible for bone morphogenetic protein (BMP) induced osteoblast differentiation remains poorly understood. Previous research demonstrated that Smad proteins are the substrates and the mediators of BMP bound serine/threonine receptor kinase. In the present study, we examined the possible involvement of extracellular signal-regulated kinase (Erk) in the BMP induced osteoblast differentiation of mesenchymal progenitor cell C3H10T1/2. Our results indicate that BMP-2 inducement increased MAP kinase activity in mesenchymal progenitor cell line C3H10T1/2. Contrary to previous reports, this increased MAP kinase activity showed a latent but sustained pattern. Elevation of Erk1 and Erk2 protein levels was observed simultaneously. RT-PCR results demonstrated that the elevation of Erk protein level in BMP-2 induced cells was from the upregulation of mRNA expression. Furthermore, upregulated Erk proteins present enhanced phosphorylation. By using a dominant-negative Erk2 cell line, we demonstrated that nonfunctional Erk2 partially eliminated BMP-2 induced cell proliferation and ALP activity in the C3H10T1/2 cell. These results indicate that Erk is involved in BMP-2 induced osteoblast differentiation. The results also demonstrate that a latent and sustained signaling pattern exists in BMP induced signaling cascade.  相似文献   

17.
We report a novel mechanism for dopamine D(1) receptor (D(1) R)-mediated extracellular signal-regulated kinases (Erk) activation in rat striatum. Erk signaling depends on phosphorylation and dephosphorylation events mediated by specific kinases and phosphatases. The tyrosine phosphatase Shp-2, that is required for Erk activation by tyrosine kinase receptors, has been recently shown to regulate signaling downstream of few G protein-coupled receptors. We show that the D(1) R interacts with Shp-2, that D(1) R stimulation results in Shp-2 tyrosine phosphorylation and activation in primary striatal neuronal cultures and that D(1) R/Shp-2 interaction is required for transmitting D(1) R-dependent signaling to Erk1/2 activation. D(1) R-mediated Erk1/2 phosphorylation in cultured striatal neurons is in fact abolished by over-expression of the inactive Shp-2(C/S) mutant and by small interfering RNA-induced Shp-2 silencing. Moreover, by using selective inhibitors we show that both D(1) R-induced Shp-2 activation and Erk1/2 phosphorylation are dependent on the cyclic AMP/protein kinase A pathway and require Src. These results, which were substantiated also in transfected human embryonic kidney 293 cells, provide a novel mechanism by which to converge D(1) R signaling to the Erk pathway and suggest that Shp-2 or the D(1) R/Shp-2 interface could represent a potential drug target for disorders of dopamine transmission involving malfunctioning of D(1) R signaling.  相似文献   

18.
The effects of VEGF on endothelial cells are mediated by different intracellular signaling cascades (e.g., Erk1/2, Akt, Src). VEGF plays a recently recognized role in ulcerative colitis (UC) pathogenesis, mostly by increasing vascular permeability and promoting the infiltration of inflammatory cells. We hypothesized that the excessive activation of signal transduction pathways, which is responsible for VEGF/VEGFR-2-mediated endothelial permeability (Src, Akt), is a new element in the pathogenesis of chronic UC. We demonstrated increased expression of pro-angiogenic growth factor VEGF and its receptor VEGFR-2 in colonic tissue during acute 6% iodoacetamide-induced UC in rats and chronic spontaneously developed UC in IL-10 knockout mice (IL-10 KO). Development of acute 6% iodoacetamide-induced UC in rats was accompanied by activation of Erk1/2 and Src kinase, while expression of total proteins Erk1/2 and Src was unchanged. During chronic colitis phosphorylation (i.e., activation) of Erk1/2 was significantly decreased in IL-10 KO mice vs. wild-type mice. Levels of total Erk1/2 proteins were unchanged, but the expression of total Src protein as well as its phosphorylated form was significantly increased in IL-10 KO vs. wild-type mice. There were no changes in total Akt proteins, while levels of activated Akt (pAkt) were slightly increased in IL-10 KO vs. wild-type mice. We conclude that VEGF/VEGFR-2-associated signal transduction pathways, that mediate increased vascular permeability (Src, Akt), might play a central role in perpetuation of chronic experimental UC.  相似文献   

19.
The receptor tyrosine phosphatase (RPTP) LAR negatively regulates the activity of several receptor tyrosine kinases. To investigate if LAR affects the platelet-derived growth factor (PDGF) receptor signaling, mouse embryonic fibroblasts (MEFs) from mice where the LAR phosphatase domains were deleted (LARΔP), and wt littermates, were stimulated with 20 ng/ml PDGF-BB. In LAR phosphatase deficient MEFs, the phosphorylation of the PDGF β-receptor was surprisingly reduced, an event that was rescued by re-expression of wt LAR. The decreased phosphorylation of the PDGF β-receptor was observed independent of ligand concentration and occurred on all tyrosine residues, as determined by immunoblotting analysis using site-selective phosphotyrosine antibodies. This suggests that LAR is required for full PDGF β-receptor kinase activation. Downstream of receptor activation, phosphorylation of Akt and PLCγ were decreased in LARΔP MEFs, whereas Src and Erk MAP kinase pathways were less affected. The proliferation of LARΔP MEFs in response to PDGF-BB was also reduced. The inhibitory effect on the PDGF β-receptor in LARΔP cells was exerted via increased basal activity of c-Abl, since inhibition of c-Abl, by AG957 or siRNA, restored PDGF β-receptor phosphorylation. These observations suggest that LAR reduces the basal c-Abl activity thereby allowing for PDGF β-receptor kinase activation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号