首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ATP binding cassette transporters are integral membrane proteins that use the energy released from ATP hydrolysis at the two nucleotide binding domains (NBDs) to translocate a wide variety of substrates through a channel at the two transmembrane domains (TMDs) across the cell membranes. MsbA from Gram-negative bacteria is a lipid and multidrug resistance ATP binding cassette exporter that can undergo large scale conformational changes between the outward-facing and the inward-facing conformations revealed by crystal structures in different states. Here, we use targeted molecular dynamics simulation methods to explore the atomic details of the conformational transition from the outward-facing to the inward-facing states of MsbA. The molecular dynamics trajectories revealed a clear spatiotemporal order of the conformational movements. The disruption of the nucleotide binding sites at the NBD dimer interface is the very first event that initiates the following conformational changes, verifying the assumption that the conformational conversion is triggered by ATP hydrolysis. The conserved x-loops of the NBDs were identified to participate in the interaction network that stabilizes the cytoplasmic tetrahelix bundle of the TMDs and play an important role in mediating the cross-talk between the NBD and TMD. The movement of the NBD dimer is transmitted through x-loops to break the tetrahelix bundle, inducing the packing rearrangements of the transmembrane helices at the cytoplasmic side and the periplasmic side sequentially. The packing rearrangement within each periplasmic wing of TMD that results in exposure of the substrate binding sites occurred at the end stage of the trajectory, preventing the wrong timing of the binding site accessibility.  相似文献   

2.
3.
4.
P-glycoprotein (P-gp) is an ABC (ATP-binding cassette) transporter, which hydrolyses ATP and extrudes cytotoxic drugs from mammalian cells. P-gp consists of two transmembrane domains (TMDs) that span the membrane multiple times, and two cytoplasmic nucleotide-binding domains (NBDs). We have determined projection structures of P-gp trapped at different steps of the transport cycle and correlated these structures with function. In the absence of nucleotide, an approximately 10 A resolution structure was determined by electron cryo-microscopy of two-dimensional crystals. The TMDs form a chamber within the membrane that appears to be open to the extracellular milieu, and may also be accessible from the lipid phase at the interfaces between the two TMDs. Nucleotide binding causes a repacking of the TMDs and reduction in drug binding affinity. Thus, ATP binding, not hydrolysis, drives the major conformational change associated with solute translocation. A third distinct conformation of the protein was observed in the post-hydrolytic transition state prior to release of ADP/P(i). Biochemical data suggest that these rearrangements may involve rotation of transmembrane alpha-helices. A mechanism for transport is suggested.  相似文献   

5.
Basic architecture of ABC transporters includes two transmembrane domains (TMDs) and two nucleotide-binding domains (NBDs). Although the transport process takes place in the TMDs, which provide the substrate translocation pathway across the cell membrane and control its accessibility between the two sides of the membrane, the energy required for the process is provided by conformational changes induced in the NBDs by binding and hydrolysis of ATP. Nucleotide-dependent conformational changes in the NBDs, therefore, need to be coupled to structural changes in the TMDs. Using molecular dynamics simulations, we have investigated the structural elements involved in the conformational coupling between the NBDs and the TMDs in the Escherichia coli maltose transporter, an ABC importer for which an intact structure is available both in inward-facing and outward-facing conformations. The prevailing model of coupling is primarily based on a single structural motif, known as the coupling helices, as the main structural element for the NBD-TMD coupling. Surprisingly, we find that in the absence of the NBDs the coupling helices can be conformationally decoupled from the rest of the TMDs, despite their covalent connection. That is, the structural integrity of the coupling helices and their tight coupling to the core of the TMDs rely on the contacts provided by the NBDs. Based on the conformational and dynamical analysis of the simulation trajectories, we propose that the core coupling elements in the maltose transporter involve contributions from several structural motifs located at the NBD-TMD interface, namely, the EAA loops from the TMDs, and the Q-loop and the ENI motifs from the NBDs. These three structural motifs in small ABC importers show a high degree of correlation in motion and mediate the necessary conformational coupling between the core of TMDs and the helical subdomains of NBDs. A comprehensive analysis of the structurally known ABC transporters shows a high degree of conservation of the identified 3-motif coupling elements only in the subfamily of small ABC importers, suggesting a distinct mode of NBD-TMD coupling from the other two major ABC transporter folds, namely large ABC importers and ABC exporters.  相似文献   

6.
Weng J  Fan K  Wang W 《PloS one》2012,7(1):e30465
BtuCD is a member of the ATP-binding cassette transporters in Escherichia coli that imports vitamin B(12) into the cell by utilizing the energy of ATP hydrolysis. Crystal structures of BtuCD and its homologous protein HI1470/1 in various conformational states support the "alternating access" mechanism which proposes the conformational transitions of the substrate translocation pathway at transmembrane domain (TMD) between the outward-facing and inward-facing states. The conformational transition at TMD is assumed to couple with the movement of the cytoplasmic nucleotide-binding domains (NBDs) driven by ATP hydrolysis/binding. In this study, we performed targeted molecular dynamics (MD) simulations to explore the atomic details of the conformational transitions of BtuCD importer. The outward-facing to inward-facing (O→I) transition was found to be initiated by the conformational movement of NBDs. The subsequent reorientation of the substrate translocation pathway at TMD began with the closing of the periplasmic gate, followed by the opening of the cytoplamic gate in the last stage of the conformational transition due to the extensive hydrophobic interactions at this region, consistent with the functional requirement of unidirectional transport of the substrates. The reverse inward-facing to outward-facing (I→O) transition was found to exhibit intrinsic diversity of the conformational transition pathways and significant structural asymmetry, suggesting that the asymmetric crystal structure of BtuCD-F is an intermediate state in this process.  相似文献   

7.
5'-Fluorosulfonylbenzonyl 5'-adenosine (FSBA) is an ATP analogue that covalently modifies several residues in the nucleotide-binding domains (NBDs) of several ATPases, kinases, and other proteins. P-glycoprotein (P-gp, ABCB1) is a member of the ATP-binding cassette (ABC) transporter superfamily that utilizes energy from ATP hydrolysis for the efflux of amphipathic anticancer agents from cancer cells. We investigated the interactions of FSBA with P-gp to study the catalytic cycle of ATP hydrolysis. Incubation of P-gp with FSBA inhibited ATP hydrolysis (IC(50 )= 0.21 mM) and the binding of 8-azido[α-(32)P]ATP (IC(50) = 0.68 mM). In addition, (14)C-FSBA cross-links to P-gp, suggesting that FSBA-mediated inhibition of ATP hydrolysis is irreversible due to covalent modification of P-gp. However, when the NBDs were occupied with a saturating concentration of ATP prior to treatment, FSBA stimulated ATP hydrolysis by P-gp. Furthermore, FSBA inhibited the photo-cross-linking of P-gp with [(125)I]iodoarylazidoprazosin (IAAP; IC(50) = 0.17 mM). As IAAP is a transport substrate for P-gp, this suggests that FSBA affects not only the NBDs but also the transport-substrate site in the transmembrane domains. Consistent with these results, FSBA blocked efflux of rhodamine 123 from P-gp-expressing cells. Additionally, mass spectrometric analysis identified FSBA cross-links to residues within or nearby the NBDs but not in the transmembrane domains, and docking of FSBA in a homology model of human P-gp NBDs supports the biochemical studies. Thus, FSBA is an ATP analogue that interacts with both the drug-binding and ATP-binding sites of P-gp, but fluorosulfonyl-mediated cross-linking is observed only at the NBDs.  相似文献   

8.
Multidrug resistance of cancer cells is, at least in part, conferred by overexpression of P-glycoprotein (P-gp), a member of the ATP-binding cassette (ABC) superfamily of active transporters. P-gp actively extrudes chemotherapeutic drugs from cells, thus reducing their efficacy. As a typical ABC transporter, P-gp has four domains: two transmembrane domains, which form a pathway through the membrane through which substrates are transported, and two hydrophilic nucleotide-binding domains (NBDs), located on the cytoplasmic side of the membrane, which couple the energy of ATP hydrolysis to substrate translocation. It has been proposed that the NBDs of ABC transporters, including the histidine permease of Salmonella typhimurium and the cystic fibrosis transmembrane conductance regulator, are accessible from the extracellular surface of the cell, spanning the membrane directly or potentially contributing to the transmembrane pore. Such organization would have significant implications for the transport mechanism. We determined to establish whether the NBDs of P-gp are exposed extracellularly and which amino acids are accessible, using cysteine-scanning mutagenesis and limited proteolysis. In contrast to other transporters, the data provided no evidence that the P-gp NBDs are exposed to the cell surface. The implications for the structure and mechanism of P-gp and other ABC transporters are discussed.  相似文献   

9.
ATP-binding cassette (ABC) transporters are integral membrane proteins that utilised energy from ATP hydrolysis to translocate substrates across the membrane. In addition to the common nucleotide-binding domains (NBDs) and transmembrane domains (TMDs), the methionine ABC transporter has C-terminal regulatory domains (C2 domains) that belong to ACT protein family. When the amount of methionine in the cell is high, the transport stops. This phenomenon is called trans-inhibition. To understand how a trans-inhibited protein returns to an uninhibited, resting state, we performed steered molecular dynamic simulations with and without the substrates. From the simulations, we observed some important conformational changes in the whole ABC transporter, including the constriction in the translocation pathway in the TMDs and approach of the NBDs. However, the C2 domains behaved differently in two types of the simulations. These findings might help to explain the relationship of the conformational changes of the C2 domains with the rearrangements of the NBDs or TMDs, and provide a way to understand the trans-inhibition from an opposite direction.  相似文献   

10.
The Escherichia coli maltose transporter MalFGK2‐E belongs to the protein superfamily of ATP‐binding cassette (ABC) transporters. This protein is composed of heterodimeric transmembrane domains (TMDs) MalF and MalG, and the homodimeric nucleotide‐binding domains (NBDs) MalK2. In addition to the TMDs and NBDs, the periplasmic maltose binding protein MalE captures maltose and shuttle it to the transporter. In this study, we performed all‐atom molecular dynamics (MD) simulations on the maltose transporter and found that both the binding of MalE to the periplasmic side of the TMDs and binding of ATP to the MalK2 are necessary to facilitate the conformational change from the inward‐facing state to the occluded state, in which MalK2 is completely dimerized. MalE binding suppressed the fluctuation of the TMDs and MalF periplasmic region (MalF‐P2), and thus prevented the incorrect arrangement of the MalF C‐terminal (TM8) helix. Without MalE binding, the MalF TM8 helix showed a tendency to intrude into the substrate translocation pathway, hindering the closure of the MalK2. This observation is consistent with previous mutagenesis experimental results on MalF and provides a new point of view regarding the understanding of the substrate translocation mechanism of the maltose transporter.  相似文献   

11.
The ATP binding cassette (ABC) family of transporters moves small molecules (lipids, sugars, peptides, drugs, nutrients) across membranes in nearly all organisms. Transport activity requires conformational switching between inward-facing and outward-facing states driven by ATP-dependent dimerization of two nucleotide binding domains (NBDs). The mechanism that connects ATP binding and hydrolysis in the NBDs to conformational changes in a substrate binding site in the transmembrane domains (TMDs) is currently an outstanding question. Here we use sequence coevolution analyses together with biochemical characterization to investigate the role of a highly conserved region in intracellular loop 1 we define as the GRD motif in coordinating domain rearrangements in the heterodimeric peptide exporter from Thermus thermophilus, TmrAB. Mutations in the GRD motif alter ATPase activity as well as transport. Disulfide crosslinking, evolutionary trace, and evolutionary coupling analysis reveal that these effects are likely due to the destabilization of a network in which the GRD motif in TmrA bridges residues of the Q-loop, X-loop, and ABC motif in the NBDs to residues in the TmrAB peptide substrate binding site, thus providing an avenue for conformational coupling. We further find that disruption of this network in TmrA versus TmrB has different functional consequences, hinting at an intrinsic asymmetry in heterodimeric ABC transporters extending beyond that of the NBDs. These results support a mechanism in which the GRD motifs help coordinate a transition to an outward open conformation, and each half of the transporter likely plays a different role in the conformational cycle of TmrAB.  相似文献   

12.
The ATP-binding-cassette (ABC) transporter associated with antigen processing (TAP) delivers peptides into the ER. TAP consists of two polypeptides (TAP1 and TAP2) each with an N-terminal transmembrane (TMD) and a C-terminal nucleotide binding domain (NBD). The two highly homologous NBDs of TAP show different nucleotide binding specificites, and identical mutations in the domains can have different effects on peptide transport. We asked whether this functional asymmetry of the NBDs is an intrinsic property or is imposed by the TMDs to which they are linked. To investigate the functional interdependence of the TAP domains, we created various TAP variants in which TMDs and/or NBDs were exchanged. All TAP variants except those with two TMDs of TAP1 could assemble. The TMDs did not affect the different nucleotide binding properties of the NBDs. The TAP variant with switched NBDs showed active peptide transport while the variants with pairs of identical NBDs or TMDs were inactive. Although both types of TMDs and NBDs have to be present for peptide transport they do not have to be assorted as in wild-type TAP. Thus, TAP domains seem to preserve functional autonomy despite their fusion into single polypeptide chains. We propose that the two NBDs act as nonequivalent 'modules' that directly determine the functional asymmetry of the included ATP-binding-cassettes. This provides a new insight into the function of NBDs and opens up new possibilities to investigate the molecular mechanism of the 'NBD engine' in ABC transporters.  相似文献   

13.
P-糖蛋白结构及作用机制   总被引:4,自引:0,他引:4  
ABC (ATP-binding cassette) 转运蛋白广泛存在于各种生物体细胞中,例如细菌的内层细胞浆膜和真核生物的细胞膜和细胞器膜.其利用与ATP的结合和水解供能进行底物的跨膜转运,其中一部分ABC转运蛋白能转运多种疏水性分子.P-糖蛋白隶属于ABC转运蛋白超家族,是研究最为透彻的一员,主要功能是防止机体对外来有害物质的摄入.P-糖蛋白(P-glycoprotein)由4 个基本结构域组成,2 个跨膜区和2 个位于细胞浆内的核苷酸结合区.核苷酸结合区参与ATP的结合和水解,而各由6 个α 跨膜螺旋组成的2个跨膜区联合构成了底物跨膜转运的通道.P 糖蛋白能转运多种不同结构的底物,包括脂类、胆汁酸、多肽和外源性化学物质,这对机体的生存至关重要,但同时也存在不利的一面,包括干扰了药物的运输,从而导致了多药耐药现象的产生.本文就P-糖蛋白的分子结构和作用机制的最新研究进展进行综述.  相似文献   

14.
We present an overview of the architecture of ATP-binding cassette (ABC) transporters and dissect the systems in core and accessory domains. The ABC transporter core is formed by the transmembrane domains (TMDs) and the nucleotide binding domains (NBDs) that constitute the actual translocator. The accessory domains include the substrate-binding proteins, that function as high affinity receptors in ABC type uptake systems, and regulatory or catalytic domains that can be fused to either the TMDs or NBDs. The regulatory domains add unique functions to the transporters allowing the systems to act as channel conductance regulators, osmosensors/regulators, and assemble into macromolecular complexes with specific properties.  相似文献   

15.
Wise JG 《Biochemistry》2012,51(25):5125-5141
Multidrug resistance proteins that belong to the ATP-binding cassette family like the human P-glycoprotein (ABCB1 or Pgp) are responsible for many failed cancer and antiviral chemotherapies because these membrane transporters remove the chemotherapeutics from the targeted cells. Understanding the details of the catalytic mechanism of Pgp is therefore critical to the development of inhibitors that might overcome these resistances. In this work, targeted molecular dynamics techniques were used to elucidate catalytically relevant structures of Pgp. Crystal structures of homologues in four different conformations were used as intermediate targets in the dynamics simulations. Transitions from conformations that were wide open to the cytoplasm to transition state conformations that were wide open to the extracellular space were studied. Twenty-six nonredundant transitional protein structures were identified from these targeted molecular dynamics simulations using evolutionary structure analyses. Coupled movement of nucleotide binding domains (NBDs) and transmembrane domains (TMDs) that form the drug binding cavities were observed. Pronounced twisting of the NBDs as they approached each other as well as the quantification of a dramatic opening of the TMDs to the extracellular space as the ATP hydrolysis transition state was reached were observed. Docking interactions of 21 known transport ligands or inhibitors were analyzed with each of the 26 transitional structures. Many of the docking results obtained here were validated by previously published biochemical determinations. As the ATP hydrolysis transition state was approached, drug docking in the extracellular half of the transmembrane domains seemed to be destabilized as transport ligand exit gates opened to the extracellular space.  相似文献   

16.
Although human MDR1 and MDR3 share 86% similarity in their amino acid sequences and are predicted to share conserved domains for drug recognition, their physiological transport substrates are quite different: MDR1 transports xenobiotics and confers multidrug resistance, while MDR3 exports phosphatidylcholine into bile. Although MDR1 shows high ATPase activity, attempts to demonstrate the ATPase activity of human MDR3 have not succeeded. Therefore, it is possible that the difference in the functions of these proteins is caused by their different ATPase activities. To test this hypothesis, a chimera protein containing the transmembrane domains (TMDs) of MDR1 and the nucleotide binding domains (NBDs) of MDR3 was constructed and analyzed. The chimera protein was expressed on the plasma membrane and conferred resistance against vinblastine and paclitaxel, indicating that MDR3 NBDs can support drug transport. Vanadate-induced ADP trapping of MDR3 NBDs in the chimera protein was stimulated by verapamil as was MDR1 NBDs. The purified chimera protein showed drug-stimulated ATPase activity like MDR1, while its Vmax was more than 10-times lower than MDR1. These results demonstrate that the low ATPase activity of human MDR3 cannot account for the difference in the functions of these proteins, and furthermore, that TMDs determine the features of NBDs. To our knowledge, this is the first study analyzing the features of human MDR3 NBDs.  相似文献   

17.
ABC (ATP-binding cassette) transporters are primary active membrane proteins that translocate solutes (allocrites) across lipid bilayers. The prototypical ABC transporter consists of four domains: two cytoplasmic NBDs (nucleotide-binding domains) and two TMDs (transmembrane domains). The NBDs, whose primary sequence is highly conserved throughout the superfamily, bind and hydrolyse ATP to power the transport cycle. The TMDs, whose primary sequence and protein fold can be quite disparate, form the translocation pathway across the membrane and generally (but not always) determine allocrite specificity. Structure determination of ABC proteins initially took advantage of the relative ease of expression and crystallization of the hydrophilic bacterial NBDs in isolation from the transporter complex, and revealed detailed information on the structural fold of these domains, the amino acids involved in the binding and hydrolysis of nucleotide, and the head-to-tail arrangement of the NBD-NBD dimer interface. More recently, several intact transporters have been crystallized and three types have, so far, been characterized: type I and II ABC importers, and ABC exporters. All three are present in prokaryotes, but only the ABC exporters appear to be present in eukaryotes. Their structural determination has provided insight into the mechanisms of energy and signal transduction between the NBDs and TMDs (i.e. between the ATP- and allocrite-binding sites) and, for some, the nature of the allocrite-binding site(s) within the TMDs. In this chapter, we focus primarily on the ABC exporters and describe the structural, biochemical and biophysical evidence for and against the controversial bellows-like mechanism proposed for allocrite efflux.  相似文献   

18.
The ATP switch model for ABC transporters   总被引:1,自引:0,他引:1  
ABC transporters mediate active translocation of a diverse range of molecules across all cell membranes. They comprise two nucleotide-binding domains (NBDs) and two transmembrane domains (TMDs). Recent biochemical, structural and genetic studies have led to the ATP-switch model in which ATP binding and ATP hydrolysis, respectively, induce formation and dissociation of an NBD dimer. This provides an exquisitely regulated switch that induces conformational changes in the TMDs to mediate membrane transport.  相似文献   

19.
The most common cause of cystic fibrosis is misfolding of the cystic fibrosis transmembrane conductance regulator (CFTR) protein because of deletion of residue Phe-508 (DeltaF508). P-glycoprotein (P-gp) is an ideal model protein for studying how mutations disrupt folding of ATP-binding cassette proteins such as CFTR because specific chemical chaperones can be used to correct folding defects. Interactions between the nucleotide binding domains (NBDs) are critical because ATP binds at the interface between the NBDs. Here, we used disulfide cross-linking between cysteines in the Walker A sites and the LSGGQ signature sequences to test whether processing mutations located throughout P-gp disrupted interactions between the NBDs. We found that mutations present in the cytoplasmic loops, transmembrane segments, and linker regions or deletion of Tyr-490 (equivalent to Phe-508 in CFTR) inhibited cross-linking between the NBDs. Deletion of Phe-508 in the P-gp/CFTR chimera also inhibited cross-linking between the NBDs. Cross-linking was restored, however, when the mutants were expressed in the presence of the chemical chaperone cyclosporin A. The "rescued" mutants exhibited drug-stimulated ATPase activity, and cross-linking between the NBDs was inhibited by vanadate trapping of nucleotide. These results together with our previous findings (Loo, T. W., Bartlett, M. C., and Clarke, D. M. (2002) J. Biol. Chem. 277, 27585-27588) indicate that processing mutations disrupt interactions among all four domains. It appears that cross-talk between the cytoplasmic and the transmembrane domains is required for establishment of proper domain-domain interactions that occur during folding of ATP-binding cassette protein transporters.  相似文献   

20.
ABC转运蛋白结构及在植物病原真菌中的功能研究进展   总被引:1,自引:0,他引:1  
ABC(ATP-binding cassette)转运蛋白是最大的膜转运蛋白超家族之一,其主要功能是利用ATP水解产生的能量将底物进行逆浓度梯度运输.所有生物体都含有大量ABC蛋白.ABC蛋白位于细胞的不同空间,如细胞膜、液泡、线粒体和过氧化物酶体.通常,ABC转运蛋白由跨膜结构域(TMD)和核苷酸结合结构域(NBD)组成,分别与底物和ATP结合.NBD执行与ATP结合和水解,是ABC转运蛋白的动力引擎,TMD识别特异性配体.大多数ABC转运蛋白最初是通过研究生物体耐药性而被发现的,包括多效耐药(PDR)和多药耐药(MDR).本文对ABC转运蛋白的结构及作用机制,以及植物病原真菌中ABC转运蛋白功能的研究进展进行综述.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号