首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Summary Six fast growing ligninolytic white-rot fungi were compared with Phanerochaete chrysosporium. The results showed that the fungi have similar ligninolytic systems, although minor differences exist. Like in P. chrysosporium the ligninolytic system could be induced by veratryl alcohol in Coriolus versicolor and Chrysosporium pruinosum. These three lignin peroxidase producing fungi were the fastest lignin degraders in stationary cultures, whereas in agitated cultures Bjerkandera adusta showed highest lignin degradation rates. Metabolites accumulating during the degradation of veratryl alcohol were analyzed and compared. Peroxidase production seems to be a common feature of all the tested fungi. Polyclonal antibodies against the lignin peroxidase with pl of 4.65 from P. chrysosporium reacted with the extracellular peroxidases of C. pruinosum, C. versicolor and B. adusta, but not with those of Pleurotus ostreatus.Dedicated to Professor Dr. Hans-Jürgen Rehm on the occasion of his 60th birthday  相似文献   

2.
Summary Two important lignin-degrading fungi with existing or potential applications in the production of food, feed and/or fiber products from wood are Lentinus edodes (Berk.; Sing.=Lentinula edodes [Pegler]) and Phanerochaete chrysosporium (Burds). This study discusses their relative ability to degrade lignin and the factors controlling their ligninolytic activity (synthetic 14C-lignin14CO2). Ligninolytic activity in P. chrysosporium is known to develop after the fungus ceases vegetative growth, and to require both O2 and an exogenous carbon source such as glucose. It has an extracellular ligninase in high titer which is assayed by the oxidation of veratryl alcohol to veratraldehyde. Here, P. chrysosporium was found to have a high capacity for lignin degradation (it was not easily saturated with lignin). Certain inorganic elements, including Fe2+, Ca2+ and Mo6+, were found to stimulate its ligninolytic activity. Calcium addition was required, with 40 ppm Ca2+ giving the highest activity. As in P. chrysosporium, ligninolytic activity in L. edodes was found to require both O2 and an exogenous carbon source. However, in contrast to P. chrysosporium, L. edodes was only moderately ligninolytic, had a lower capacity for lignin degradation (was more easily saturated with lignin), and showed maximal activity only during the vegetative growth period. Also in contrast to P. chrysosporium, ligninolytic activity in L. edodes was not stimulated by Ca2+. Instead, manganese was required, with 10 ppm Mn2+ giving optimal activity. An extracellular ligninase capable of oxidizing veratryl alcohol to veratraldehyde was not detected in L. edodes.  相似文献   

3.
The lignin-degrading basidiomycete Phanerochaete chrysosporium synthesizes veratryl alcohol (3,4-dimethoxybenzyl alcohol) via phenylalanine, 3,4-dimethoxycinnamyl alcohol and veratrylglycerol. Study of the conversion of 3,4-dimethoxycinnamyl alcohol to veratrylglycerol and veratryl alcohol showed is to be (a) catalyzed by a secondary metabolic system, (b) markedly suppressed by culture agitation, and (c) strongly inhibited by l-glutamate. The amount of veratryl alcohol synthesized de novo was positively correlated with the O2 concentration after primary growth. Other work has shown that the cinnamyl alcohol terminal residue in a lignin substructure model compound is degraded via arylglycerol and benzyl alcohol structures in ligninolytic cultures of P. chrysosporium, and that the ligninolytic system exhibits traits (a)-(c) above. Ligninolytic activity is also strongly and positively correlated with O2 concentration. The results here suggest, therefore, that the actual biosynthetic secondary metabolic product is 3,4-dimethoxycinnamyl alcohol, but that this is degraded by the ligninolytic system to veratryl alcohol via veratrylglycerol. Veratryl alcohol is only slowly metabolized by the fungus, and accumulates.Non-standard abbreviation tlc thin layer chromatography  相似文献   

4.
Biodegradation of 2,4,6-trinitrotoluene (TNT) by the wood-rotting BasidiomycetePhanerochaete chrysosporium was studied in a fixed-film silicone membrane bioreactor and in agitated pellected cultures. The initial intermediate products of TNT biodegradation were shown to be 2-amino-4,6-dinitrotoluene (2amDNT) and 4-amino-2,6-dinitrotoluene (4amDNT). These intermediates were also degraded byP. chrysosporium. However, their rates of degradation were slow and appeared to represent rate-limiting steps in TNT degradation. The fact that 2amDNT and 4amDNT were further degraded is of importance. In most other microbial systems these compounds are typically not further degraded or are dimerized to even more persistent azo and azoxydimers. Similar to previous studies performed in stationary cultures, it was shown that substantial amounts of [14C]-TNT were degrade to [14C]-carbon dioxide in agitated pelleted cultures. Lignin peroxidase activity (assayed by veratryl alcohol oxidation) virtually disappeared upon addition of TNT to ligninolytic cultures ofP. chrysosporium. However, TNT, 2amDNT, and 4amDNT did not inhibit lignin peroxidase activity, nor were they substrates for this enzyme. Subsequent studies revealed that 4-hydroxylamino-2,6-dinitrotoluene, an intermediate in TNT reduction, was a potent lignin peroxidase inhibitor. Further studies revealed that this compound was also a substrate for lignin peroxidase H8.  相似文献   

5.
Ligninolytic activity in the white-rot fungus Phanerochaete chrysosporium was previously found not to be induced by lignin, but to develop in cultures in response to nitrogen starvation. Added NH 4 + suppressed existing activity. The present study examined amino acid profiles and protein concentrations during onset of ligninolytic activity (synthetic 14C-lignin14CO2) in nitrogen-limited cultures, and defined some characteristics of subsequent suppression by added nutrient nitrogen. During the transition between depletion of medium nitrogen and the onset of ligninolytic activity, total free intracellular amino acids increased, then rapidly decreased; changes in glutamate concentration played a major role. Intracellular protein concentration fluctuated in a manner roughly converse to that of the concentration of free amino acids. Protein turnover was rapid (5–7%/h) during the transition period. Glutamate, glutamine, and histidine were the most effective of 14 nitrogenous compounds in suppressing ligninolytic activity after its onset. The suppressive effect was not mediated through carbon (glucose)-catabolite repression or by alterations in culture pH. Activities responsible for oxidation of lignin and the ligninrelated phenol, 4-hydroxy-3-methoxyacetophenone, responded similarly to added nitrogen. Synthesis of a secondary metabolite, veratryl alcohol, like lignin oxidation, was suppressed quite sharply by glutamate and significantly by NH 4 + . Results indicate that nitrogen metabolism affects ligninolytic activity as a part of secondary metabolism, and suggest a role for glutamate metabolism in regulating this phase of culture development.Non-Standard Abbreviations DMS 2,2-dimethylsuccinate - GLC gas-liquid chromatography - TCA trichloroacetic acid  相似文献   

6.
In this paper, the in vivo decolourization of the polymeric dye Poly R‐478 by semi‐solid‐state cultures of Phanerochaete chrysosporium BKM‐F‐1767 (ATCC 24725) was investigated, employing corncob as a support. In order to stimulate the ligninolytic system of the fungus, the cultures were supplemented with veratryl alcohol (2 mM) or manganese (IV) oxide (1 g/l). Maximum manganese‐dependent peroxidase (MnP) and lignin peroxidase (LiP) activities of around 2,000 U/l and 400 U/l were attained by the former, whereas the activities reached by the latter were of about 1,500 U/l and 200 U/l, respectively. Furthermore, laccase activity (around 150 U/l) was only detected in manganese (IV) oxide supplemented cultures. The polymeric dye Poly R‐478 (0.02 w/v) was added to three‐day‐old cultures. A percentage of biological decolourization of about 85% was achieved using cultures supplemented with veratryl alcohol, whereas MnO2 cultures showed a rather lower percentage of around 58% after nine days of dye incubation. Moreover, a correlation between MnP activity and Poly R‐478 decolourization could be observed, indicating that this enzyme is mainly responsible for dye degradation. In the present work, the in vivo decolourizing capability of the ligninolytic complex secreted by P. chrysosporium was investigated under the above‐mentioned cultivation conditions, employing a model compound, such as the polymeric dye Poly R‐478.  相似文献   

7.
Ligninase activity in Phanerochaete chrysosporium is stimulated by incubating cultures with various substrates for the enzyme, including veratryl (3,4-dimethoxybenzyl) alcohol, which is a secondary metabolite of this fungus. This study was designed to provide insight into the mechanism involved in this stimulation. Ligninase activity increased 2 to 4 h after the addition of exogenous veratryl alcohol to ligninolytic cultures. This increase was prevented by inhibitors of protein synthesis. Analysis of the extracellular proteins by high-performance anion-exchange liquid chromatography revealed increases in the amounts of some, but not all, ligninase species. The normal rapid decrease in ligninase activity in aging cultures was not prevented or retarded by veratryl alcohol, indicating that veratryl alcohol does not increase ligninase activity by protecting extant enzyme. We conclude that veratryl alcohol probably functions via an induction type of mechanism, affecting only certain ligninase species. Results with an isolated lignin indicate that lignin (or its biodegradation products) functions in the same way that veratryl alcohol does.  相似文献   

8.
The biodegradation of anthracene-9, 10-diethanol by the ligninolytic fungus Phanerochaete chrysosporium, previously though to involve singlet oxygen, is shown to be catalyzed by lignin peroxidases. Veratryl alcohol stimulated the enzymatic degradation of anthracenediethanol, and anthracenediethanol inhibited enzymatic oxidation of veratryl alcohol. Competition for oxidation by lignin peroxidase is suggested as the mechanism of the inhibition of lignin biodegradation by anthracenediethanol and related anthracene derivatives.Abbreviations ADE anthracene-9,10-diethanol - AES anthracene-9,10-bisethanesulfonic acid - DHP dehydrogenative polymerizate - DMF N,N-dimethylformamide - EPX 9,10-endoperoxide of ADE - PMR proton magnetic resonance  相似文献   

9.
Summary Methanol formation during the degradation of synthetic lignin (DHP), spruce and birch milled wood lignin (MWL) by Phanerochaete chrysosporium Burds. was studied under different culture conditions. When 100-ml flasks with 15–20 ml volumes of culture media containing high glucose and low nitrogen concentrations were used the metabolism of methanol to formaldehyde, formic acid and CO2 was repressed thereby facilitating methanol determination. In standing cultures with oxygen flushing the fungus converted up to 25% of the DHP-methoxyl groups to methanol and 0.5–1.5% to 14CO2 within 22–24 h. Methanol formation from methoxyl-labelled DHP was strongly repressed by high nitrogen in the medium, by addition of glutamic acid and by culture agitation. These results indicate that methanol is formed only under ligninolytic conditions and during secondary metabolism. Methanol is most likely released both from the lignin polymer itself and from lignin degradation products. Methanol was also formed from MWL preparations with higher percentage yields produced from birch as compared to spruce MWL.Small amounts of methanol detected in cultures without lignin probably emanated from demethoxylation of veratryl alcohol synthesized de novo from glucose by the fungus during secondary metabolism. Catalase or superoxide dismutase added to the fungal culture prior to addition of lignin, did not decrease methanol formation. Horseradish peroxidase plus H2O2 in vitro caused 5–7% demethoxylation of O14CH3-DHP in 22 h, while laccase gave smaller amounts of methanol (1.8%). Since addition of H2O2 gave similar results as peroxidase plus H2O2, it seems likely that the main effect of peroxidase demethoxylation emanates from the hydrogen peroxide.  相似文献   

10.
The ligninolytic system of white rot fungi is primarily composed of lignin peroxidase, manganese peroxidase (MnP) and laccase. The present work was carried out to determine the best culture conditions for production of MnP and its activity in the relatively little-explored cultures of Dichomitus squalens, Irpex flavus and Polyporus sanguineus, as compared with conditions for Phanerochaete chrysosporium and Coriolus versicolor. Studies on enzyme production under different nutritional conditions revealed veratryl alcohol, guaiacol, Reax 80 and Polyfon H to be excellent MnP inducers. Electronic Publication  相似文献   

11.
The regulation of an H2O2-dependent ligninolytic activity was examined in the wood decay fungus Phanerochaete chrysosporium. The ligninase appears in cultures upon limitation for nitrogen or carbohydrate and is suppressed by excess nutrients, by cycloheximide, or by culture agitation. Activity is increased by idiophasic exposure of cultures to 100% O2. Elevated levels of ligninase and, in some cases, of extracellular H2O2 production are detected after brief incubation of cultures with lignins or lignin substructure models, with the secondary metabolite veratryl alcohol, or with other related compounds. It is concluded that lignin degradation (lignin → CO2) by this organism is regulated in part at the level of the ligninase, which is apparently inducible by its substrates or their degradation products.  相似文献   

12.
The lignin peroxidase enzyme system of the white-rot fungus, Phanerochaete chrysosporium was assayed for its capacity to degrade two recalcitrant aliphatic ether compounds, high-molecular-mass polyethylene glycol (PEG 20 000) and methyl tert-butyl ether. Ligninolytic cultures of Phanerochaete chrysosporium were spiked with each ether compound and incubated in reaction vessels. Separate incubations were conducted in which the ether compounds were present as sole carbon source. Other parameters, such as varying the methyl tert-butyl ether concentration and veratryl alcohol additions were tested. No significant degradation of either compound was observed under any of the conditions tested. Implications of these results are discussed with respect to the oxidative limitations of the lignin peroxidase enzyme system and structural features of substrate molecules that may be requisite for oxidation by this system.  相似文献   

13.
Manganese and lignin peroxidase (MnP, LiP) activities were measured in straw extracts from cultures of Phanerochaete chrysosporium. Out of six MnP substrates, the MBTH/DMAB (3-methyl-2-benzothiazolinone hydrazone/3-(dimethylamino)benzoic acid), gave the highest MnP activity. Detection of LiP activity as veratryl alcohol oxidation was inhibited by phenols in the straw culture extracts. Appropriate levels of veratryl alcohol and peroxide (4 mM and 0.4 mM, respectively), and a restricted sample volume (not larger than 10%) were necessary to detect activity.  相似文献   

14.
The white rot fungus Bjerkandera sp. strain BOS55 produces veratryl, anisyl, 3-chloroanisyl, and 3,5-dichloroanisyl alcohol and the corresponding aldehydes de novo from glucose. All metabolites are produced simultaneously with the extracellular ligninolytic enzymes and have an important physiological function in the fungal ligninolytic system. Both mono- and dichlorinated anisyl alcohols are distinctly better substrates for the extracellular aryl alcohol oxidases than veratryl alcohol. The aldehydes formed are readily recycled by reduction by washed fungal mycelium, thus creating an extracellular H2O2 production system regulated by intracellular enzymes. Lignin peroxidase does not oxidize the chlorinated anisyl alcohols either in the absence or in the presence of veratryl alcohol. It was therefore concluded that the chlorinated anisyl alcohols are well protected against the fungus's own aggressive ligninolytic enzymes. The relative amounts of veratryl alcohol and the chlorinated anisyl alcohols differ significantly according to the growth conditions, indicating that production of veratryl alcohol and the production of the (chlorinated) anisyl metabolites are independently regulated. We conclude that the chlorinated anisyl metabolites biosynthesized by the white rot fungus Bjerkandera sp. strain BOS55 can be purposefully produced for ecologically significant processes such as lignin degradation.  相似文献   

15.
Previous studies have shown that a lignin-degrading system appears in cultures of the white rot fungus Phanerochaete chrysosporium in response to nitrogen starvation, apparently as part of secondary metabolism. We examined the influence of limiting carbohydrate, sulfur, or phosphorus and the effect of varying the concentrations of four trace metals, Ca, and Mg. Limitation of carbohydrate or sulfur but not limitation of phosphorus triggered ligninolytic activity. When only carbohydrate was limiting, supplementary carbohydrate caused a transient repression of activity. In carbohydrate-limited cultures, ligninolytic activity appeared when the supplied carbohydrate was depleted, and this activity was associated with a decrease in mycelial dry weight. The amount of lignin degraded depended on the amount of carbohydrate provided, which determined the amount of mycelium produced during primary growth. Carbohydrate-limited cultures synthesized only small amounts of the secondary metabolite veratryl alcohol compared with nitrogen-limited cultures. l-Glutamate sharply repressed ligninolytic activity in carbohydrate-starved cultures, but NH(4) did not. Ligninolytic activity was also triggered in cultures supplied with 37 muM sulfur as the only limiting nutrient. The balance of trace metals, Mg, and Ca was important for lignin degradation.  相似文献   

16.
The metabolism of quinones formed in the enzymatic oxidation of veratryl alcohol (3,4-dimethoxybenzyl alcohol) (Ia) and its methyl ether Ib in ligninolytic cultures of Phanerochaete chrysosporium was studied. A metabolite of 2-hydroxymethyl-5-methoxy-2,5-cyclohexadiene-1,4-dione (IIa, formed from Ia by oxidation) was isolated and identified as cis-4-hydroxy-6-hydroxymethyl-3-methoxy-cyclohex-2-en-one (IVa), formally the reduced hydroquinone IIIa. The formation of IVa was also observed when both veratryl alcohol Ia or 2,5-dihydroxy-4-methoxybenzyl alcohol (IIIa), the hydroquinone of IIa, were used as substrates. Analogously, cis-4-hydroxy-3-methoxy-6-methoxymethyl-cyclohex-2-en-one (IVc) was isolated and identified as a metabolite from either 3,4-dimethoxybenzyl methyl ether (Ib) or from its oxidation product 5-methoxy-2-methoxymethyl-2,5-cyclohexadiene-1,4-dione (IIb) as well as from the corresponding hydroquinone 2,5-dihydroxy-4-methoxybenzyl methyl ether (IIIc). The physiological role of these unprecedented conversions is discussed. Correspondence to: H. E. Schoemaker  相似文献   

17.
We report the synthesis of veratraldehyde from veratryl alcohol by Phanerochaete chrysosporium lignin peroxidase with in situ electrogeneration of hydrogen peroxide in an electroenzymatic reactor. The effects of operating parameters such as enzyme level, pH, and electrical potential on the efficiency of veratryl alcohol oxidation were investigated. Furthermore, we compared direct addition of hydrogen peroxide with electrogeneration of the material during enzymatic oxidation of veratryl alcohol. The electroenzymatic method using in situ-generated hydrogen peroxide was found to be effective for oxidation of veratryl alcohol by lignin peroxidase. The new method may be easily applied to biodegradation systems.  相似文献   

18.
The white-rot fungus Phanerochaete chrysosporium can degrade macromolecules in low-rank coal, offering the potential for converting coal to specific products. We investigated the influence of temperature, veratryl alcohol and oxygen on transformation of a solubilised fraction of Morwell brown coal (SWC6 coal) and on the activity of lignin peroxidase and manganese (Mn) peroxidase in N-limited cultures of P. chrysosporium. After 20 days, the mass and A 400 of SWC6 coal recovered from cultures containing 0.03% SWC6 coal, incubated at 28 °C under hyperbaric oxygen, were reduced by over 95%. The modal apparent molecular mass of the residuum was reduced by 50%. Addition of 2 mM veratryl alcohol had little effect on the transformation of SWC6 coal. The extent of transformation was reduced in cultures incubated at 37 °C or under air. In cultures under air, coal molecules were transiently polymerised. Decolourisation of SWC6 coal reflects conversion to products that cannot be recovered from the medium, not the destruction of chromophores within recoverable material. The activity of lignin peroxidase, measured in cultures free of SWC6 coal to avoid interference with the assay, correlates directly with the degradation of SWC6 coal as measured by the decline in A 400. The data suggest that lignin peroxidase is more important than Mn peroxidase in converting SWC6 coal to products that are assimilated by cells. Received: 16 July 1997 / Received revision: 14 November 1997 / Accepted: 18 November 1997  相似文献   

19.
The degradation rate of [synthetic-14C]-lignin to 14CO2 by Phanerochaete chrysosporium in cultures buffered with 0.01 M 2,2-dimethylsuccinate (DMS) was twice that in 0.01 M o-phthalate-buffered cultures. This difference could be totally accounted for by o-phthalate inhibition of the activity of the ligninolytic system. 14CO2 production from ring-, sidechain-, and methoxyl-labeled lignins was inhibited, the degree of inhibition being dependent on o-phthalate concentration. Oxidations of 14C-glucose, 14C-acetovanillone, and 14C-apocynol were not inhibited; thus o-phthalate is not a general inhibitor, and might inhibit activities involved in attack of the lignin polymer. DMS is a suitable buffer for the ligninolytic system. Degradation rates of ring-labeled lignin to 14CO2 of 10–15% in 24 h were obtained consistently over the pH range 3.6–4.5, with an optimum near pH 4.0.Non-Standard Abbreviations DMS dimethylsuccinate  相似文献   

20.
Decolorization of molasses wastewater (MWW) from an ethanolic fermentation plant by Phanerochaete chrysosporium was studied. By diluting MWW properly (10%v/v) and incubating it with an appropriate concentration of the spores (2.5 × 106/ml), extensive decolorization occurred (75%) on day 5 of the incubation. The colour removal ability was found to be correlated to the activity of ligninolytic enzyme system: lignin peroxidase (LiP) activity was 185 U/l while manganese peroxidase (MnP) activity equaled 25 U/l. Effects of some selected operating variables were studied: manganese(II), veratryl alcohol (VA), glucose as a carbon source and urea and ammonium nitrate, each as a source of nitrogen. Results showed that the colour reduction and LiP activity were highest (76% and 186 U/l, respectively) either when no Mn(II) was added or added at the lowest level tested (0.16 mg/l to provide 0.3 mg/l). Activity of MnP was highest (25 U/l) when Mn(II) added to the diluted MWW at the highest level (100 ppm) while activity of LiP was lowest (7.1 U/l) at this level of added Mn(II). The colour reduction in the presence of the added VA was shown to be little less than in its absence (70 vs. 75%). When urea as an organic source of nitrogen for the fungus, was added to the MWW, the decolorizing activity of P. chrysosporium decreased significantly (15 vs. 75%) and no activities were detected for LiP and MnP. Use of ammonium nitrate as an inorganic source of nitrogen did not show such a decelerating effects, although no improvements in the metabolic behavior of the fungus (i.e., LiP and MnP activities) deaccelerating was observed. Effects of addition of glucose was also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号