首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A cross between two different races (race 7xrace 25) of the soybean root and stem rot pathogen Phytophthora sojae was analyzed to characterize the genomic region flanking two cosegregating avirulence genes, Avr4 and Avr6. Both genes cosegregated in the ratio of 82:17 (avirulent:virulent) in an F(2) population, suggestive of a single locus controlling both phenotypes. A chromosome walk was commenced from RAPD marker OPE7.1C, 2.0cM distant from the Avr4/6 locus. Three overlapping cosmids were isolated which included genetic markers that flank the Avr4/6 locus. The chromosome walk spanned a physical distance of 67kb which represented a genetic map distance of 22.3cM, an average recombination frequency of 3.0kb/cM and 11.7-fold greater than the predicted average recombination frequency of 35.3kb/cM for the entire P. sojae genome. Six genes (cDNA clones) expressed from the Avr4/6 genomic region encompassed by the cosmid contig were identified. Single nucleotide polymorphisms and restriction fragment length polymorphisms showed these six genes were closely linked to the Avr4/6 locus. Physical mapping of the cDNA clones within the cosmid contig made it possible to deduce the precise linkage order of the cDNAs. None of the six cDNA clones appear to be candidates for Avr4/6. We conclude that two of these cDNA clones flank a physical region of approximately 24kb and 4.3cM that appears to include the Avr4/6 locus.  相似文献   

2.
Inheritance and mapping of 11 avirulence genes in Phytophthora sojae   总被引:2,自引:0,他引:2  
Two new crosses involving four races (races 7, 16, 17, and 25) of the soybean root and stem rot pathogen Phytophthora sojae were established (7/16 cross; 17/25 cross). An F2 population derived from each cross was used to determine the genetic basis of avirulence towards 11 different resistance genes in soybean. Avirulence was found to be dominant and determined by a single locus for Avr1b, 1d, 1k, 3b, 4, and 6, as expected for a simple gene-for-gene model. We also observed several cases of segregation, inconsistent with a single dominant gene being solely responsible for avirulence, which suggests that the genetic background of the different crosses can affect avirulence. Avr4 and 6 cosegregated in both the 7/16 and 17/25 crosses and, in the 7/16 cross, Avr1b and 1k were closely linked. Information from segregating RAPD, RFLP, and AFLP markers screened on F2 progeny from the two new crosses and two crosses described previously (a total of 212 F2 individuals, 53 from each cross) were used to construct an integrated genetic linkage map of P. sojae. This revised genetic linkage map consists of 386 markers comprising 35 RFLP, 236 RAPD, and 105 AFLP markers, as well as 10 avirulence genes. The map is composed of 21 major linkage groups and seven minor linkage groups covering a total map distance of 1640.4cM.  相似文献   

3.
A genetic linkage map of the soybean cyst nematode (SCN) Heterodera glycines was constructed using a population of F2 individuals obtained from matings between two highly inbred SCN lines, TN16 and TN20. The AFLP fingerprinting technique was used to genotype 63 F2 progeny with two restriction enzyme combinations (EcoRI/MseI and PstI/TaqI) and 38 primer combinations. The same F2 population was also genotyped for Hg-cm-1 (H. glycines chorismate mutase-1), a putative virulence gene, using real-time quantitative PCR. Some of the markers were found to be distributed non-randomly. Even so, of the 230 markers analyzed, 131 could be mapped onto ten linkage groups at a minimum LOD of 3.0, for a total map distance of 539 cM. The Hg-cm-1 locus mapped to linkage group III together with 16 other markers. The size of the H. glycines genome was estimated to be in the range of 630-743 cM, indicating that the current map represents 73-86% of the genome, with a marker density of one per 4.5 cM, and a physical/genetic distance ratio of between 124 kb/cM and 147 kb/cM. This genetic map will be of great assistance in mapping H. glycines markers to genes of interest, such as nematode virulence genes and genes that control aspects of nematode parasitism.  相似文献   

4.
The genetic map of Bremia lactucae was expanded utilizing 97 F(1) progeny derived from a cross between Finnish and Californian isolates (SF5xC82P24). Genetic maps were constructed for each parent utilizing 7 avirulence genes, 83 RFLP markers, and 347 AFLP markers, and a consensus map was constructed from the complete data set. The framework map for SF5 contained 24 linkage groups distributed over 835cM; the map for C82P24 contained 21 linkage groups distributed over 606cM. The consensus map contained 12 linkage groups with markers from both parents and 24 parent-specific groups. Six avirulence genes mapped to different linkage groups; four were located at the ends of linkage groups. The closest linkages between molecular markers and avirulence genes were 3cM to Avr4 and 1cM to Avr7. Mating type seemed to be determined by a single locus, where the heterozygote determined the B(2) type and the homozygous recessive genotype determined the B(1) type.  相似文献   

5.
Ma H  Moore PH  Liu Z  Kim MS  Yu Q  Fitch MM  Sekioka T  Paterson AH  Ming R 《Genetics》2004,166(1):419-436
A high-density genetic map of papaya (Carica papaya L.) was constructed using 54 F(2) plants derived from cultivars Kapoho and SunUp with 1501 markers, including 1498 amplified fragment length polymorphism (AFLP) markers, the papaya ringspot virus coat protein marker, morphological sex type, and fruit flesh color. These markers were mapped into 12 linkage groups at a LOD score of 5.0 and recombination frequency of 0.25. The 12 major linkage groups covered a total length of 3294.2 cM, with an average distance of 2.2 cM between adjacent markers. This map revealed severe suppression of recombination around the sex determination locus with a total of 225 markers cosegregating with sex types. The cytosine bases were highly methylated in this region on the basis of the distribution of methylation-sensitive and -insensitive markers. This high-density genetic map is essential for cloning of specific genes of interest such as the sex determination gene and for the integration of genetic and physical maps of papaya.  相似文献   

6.
Xiang H  Li M  Yang F  Guo Q  Zhan S  Lin H  Miao X  Huang Y 《Heredity》2008,100(5):533-540
The silkworm homeotic mutant E(kp) has a pair of rudimentary abdominal legs, called prolegs, in its A2 segment. This phenotype is caused by a single dominant mutation at the E(kp)-1 locus, which was previously mapped to chromosome 6. To explore the possible association of Hox genes with proleg development in the silkworm, a map-based cloning strategy was used to isolate the E(kp)-1 locus. Five E(kp)-1-linked simple sequence repeat markers on chromosome 6 were used to generate a low-resolution map with a total genetic distance of 39.5 cM. Four additional cleaved amplified polymorphic sequence markers were developed based on the initial map. The closest marker to E(kp)-1 was at a genetic distance of 2.7 cM. A high-resolution genetic map was constructed using nine BC1 segregating populations consisting of 2396 individuals. Recombination suppression was observed in the vicinity of E(kp)-1. Four molecular markers were tightly linked to E(kp)-1, and three were clustered with it. These markers were used to screen a BAC library. A single bacterial artificial chromosome (BAC) clone spanning the E(kp)-1 locus was identified, and E(kp)-1 was delimited to a region less than 220 kb long that included the Hox gene abdominal-A and a non-coding locus, iab-4. These results provide essential information for the isolation of this locus, which may shed light on the mechanism of proleg development in the silkworm and possibly in Lepidoptera.  相似文献   

7.
A total of 355 simple sequence repeat (SSR) markers were developed, based on expressed sequence tag (EST) and bacterial artificial chromosome (BAC)-end sequence databases, and successfully used to construct an SSR-based genetic linkage map of the apple. The consensus linkage map spanned 1143 cM, with an average density of 2.5 cM per marker. Newly developed SSR markers along with 279 SSR markers previously published by the HiDRAS project were further used to integrate physical and genetic maps of the apple using a PCR-based BAC library screening approach. A total of 470 contigs were unambiguously anchored onto all 17 linkage groups of the apple genome, and 158 contigs contained two or more molecular markers. The genetically mapped contigs spanned ~421 Mb in cumulative physical length, representing 60.0% of the genome. The sizes of anchored contigs ranged from 97 kb to 4.0 Mb, with an average of 995 kb. The average physical length of anchored contigs on each linkage group was ~24.8 Mb, ranging from 17.0 Mb to 37.73 Mb. Using BAC DNA as templates, PCR screening of the BAC library amplified fragments of highly homologous sequences from homoeologous chromosomes. Upon integrating physical and genetic maps of the apple, the presence of not only homoeologous chromosome pairs, but also of multiple locus markers mapped to adjacent sites on the same chromosome was detected. These findings demonstrated the presence of both genome-wide and segmental duplications in the apple genome and provided further insights into the complex polyploid ancestral origin of the apple.  相似文献   

8.
The oomycete plant pathogen Phytophthora infestans is the causal agent of late blight, one of the most devastating diseases of potato worldwide. As part of efforts to clone avirulence (Avr) genes and pathogenicity factors from P. infestans, we have constructed a bacterial artificial chromosome (BAC) library from an isolate containing six Avr genes. The BAC library comprises clones with an average insert size of 98 kb and represents an estimated 10 genome equivalents. A three-dimensional pooling strategy was developed to screen the BAC library for amplified fragment length polymorphism (AFLP) markers, as this type of marker has been extensively used in construction of a P. infestans genetic map. Multiple positive clones were identified for each AFLP marker tested. The pools were used to construct a contig of 11 BAC clones in a region of the P. infestans genome containing a cluster of three avirulence genes. The BAC contig is predicted to encompass the Avr11 locus but mapping of the BAC ends will be required to determine if the Avr3 and Avr10 loci are also present in the BAC contig. These results are an important step towards the positional cloning of avirulence genes from P. infestans, and the BAC library represents a valuable resource for largescale studies of oomycete genome organisation and gene content.  相似文献   

9.
Photoperiod-sensitive genic male-sterile rice has a number of desirable characteristics for hybrid rice production. Previous studies identified pms1, located on chromosome 7, as a major locus for photoperiod-sensitive genic male sterility. The objective of this study was to localize the pms1 locus to a specific DNA fragment by genetic and physical mapping. Using 240 highly sterile individuals and a random sample of 599 individuals from an F2 population of over 5000 individuals from a cross between Minghui 63 and 32001S, we localized the pms1 locus by molecular marker analysis to a genetic interval of about 4 cM, 0.25 cM from RG477 on one side and 3.8 cM from R1807 on the other side. A contig map composed of seven BAC clones spanning approximate 500 kb in length was constructed for the pms1 region by screening a BAC library of Minghui 63 DNA using RFLP markers and chromosomal walking. Analysis of recombination events in the pms1 region among the highly sterile individuals reduced the length of the contig map to three BAC clones. Sequencing of one BAC clone, 2109, identified two SSR markers located 85 kb apart in the clone that flanked the pms1 locus on both sides, as indicated by the distribution of recombination events. We thus concluded that the pms1 locus was located on the fragment bounded by the two SSR markers.  相似文献   

10.
Linkage Map of the Honey Bee, Apis Mellifera, Based on Rapd Markers   总被引:15,自引:1,他引:14       下载免费PDF全文
G. J. Hunt  R. E. Page-Jr 《Genetics》1995,139(3):1371-1382
A linkage map was constructed for the honey bee based on the segregation of 365 random amplified polymorphic DNA (RAPD) markers in haploid male progeny of a single female bee. The X locus for sex determination and genes for black body color and malate dehydrogenase were mapped to separate linkage groups. RAPD markers were very efficient for mapping, with an average of about 2.8 loci mapped for each 10-nucleotide primer that was used in polymerase chain reactions. The mean interval size between markers on the map was 9.1 cM. The map covered 3110 cM of linked markers on 26 linkage groups. We estimate the total genome size to be ~3450 cM. The size of the map indicated a very high recombination rate for the honey bee. The relationship of physical to genetic distance was estimated at 52 kb/cM, suggesting that map-based cloning of genes will be feasible for this species.  相似文献   

11.
Kilian  A.  Chen  J.  Han  F.  Steffenson  B.  Kleinhofs  A. 《Plant molecular biology》1997,35(1-2):187-195
The barley stem rust resistance genes Rpg1 and rpg4 were mapped in barley on chromosomes 1P and 7M, respectively and the syntenous rice chromosomes identified as 6P and 3P by mapping common probes in barley and rice. Rice yeast artificial chromosome (YAC), bacterial artificial chromosome (BAC) and cosmid clones were used to isolate probes mapping to the barley Rpg1 region. The rice BAC isolated with the pM13 probe was a particularly excellent source of probes. A high-resolution map of the Rpg1 region was established with 1400 gametes yielding a map density of 3.6 markers per 0.1 cM. A detailed physical map was established for the rice BAC fragment containing the Rpg1-flanking markers pM13 and B24. This fragment covers a barley genetic distance of 0.6 cM and a rice DNA physical distance of ca. 70 kb. The distribution of barley cross-overs in relation to the rice DNA physical distances was extremely uneven. The barley genetic distance between the pM13 marker and Rpg1 was 0.1 cM per ca. 55 kb, while on the proximal side it was 0.5 cm per ca. 15 kb. Three probes from the distal end of the pM13 BAC mapped 3.0 cm proximal of Rpg1 and out of synteny with rice. These experiments confirm the validity of using large insert rice clones as probe sources to saturate small barley (and other large genome cereals) genome regions with markers. They also establish a note of caution that even in regions of high microsynteny, there may be small DNA fragments that have transposed and are no longer in syntenous positions.  相似文献   

12.
Melon necrotic spot virus (MNSV) is a member of the genus Carmovirus, which produces severe yield losses in melon and cucumber crops. The nsv gene is the only known natural source of resistance against MNSV in melon, and confers protection against all widespread strains of this virus. nsv has been previously mapped in melon linkage group 11, in a region spanning 5.9 cM, saturated with RAPD and AFLP markers. To identify the nsv gene by positional cloning, we started construction of a high-resolution map for this locus. On the basis of the two mapping populations, F2 and BC1, which share the same resistant parent PI 161375 (nsv/nsv), and using more than 3,000 offspring, a high-resolution genetic map has been constructed in the region around the nsv locus, spanning 3.2 cM between CAPS markers M29 and M132. The availability of two melon BAC libraries allowed for screening and the identification of new markers closer to the resistance gene, by means of BAC-end sequencing and mapping. We constructed a BAC contig in this region and identified the marker 52K20sp6, which co-segregates with nsv in 408 F2 and 2.727 BC1 individuals in both mapping populations. We also identified a single 100 kb BAC that physically contains the resistance gene and covers a genetic distance of 0.73 cM between both BAC ends. These are the basis for the isolation of the nsv recessive-resistance gene.  相似文献   

13.
A refined genetic map of chromosome 14, which contains the Pierce's disease (PD) resistance locus, was created from three grape mapping populations. The source of PD resistance in these populations was b43-17, a male form of Vitis arizonica Engelm. that is homozygous resistant. The resistance locus segregated as a single dominant gene and mapped as PdR1a in the F1 selection F8909-17 (9621 population) and as PdR1b in a sibling F1 selection F8909-08 (04190 population). These two full sibs inherited either allele of the Pierce's disease resistance locus from the b43-17 parent, which is homozygous at that locus. The 9621 population consisted of 425 progeny and PdR1a mapped between markers VvCh14-56/VvCh14-02 and UDV095 within a 0.6 cM genetic distance. The 04190 population consisted of 361 progeny and PdR1b mapped between markers VvCh14-02 and UDV095/VvCh14-10 within a 0.4 cM distance. Many of the markers present on chromosome 14 were distorted with an excess of female alleles in the 04190 and 04373 population (developed from a cross of V. vinifera L. F2-35 x b43-17) indicating that potential gametophytic factors are present in this region. Common markers from this region within the 9621 population were not distorted except Scu15. When these markers were compared to V. vinifera-based maps of chromosome 14 they were also distorted suggesting the involvement of gametophytic factors, and prompting the identification of this region as Vitis-segregation distortion region 1 (V-SDR1). The refined genetic maps developed from this study can be used to identify and clone genes that confer resistance to Pierce's disease.  相似文献   

14.
A genetic map of the powdery mildew fungus, Blumeria graminis f. sp. hordei, an obligate biotrophic pathogen of barley, is presented. The linkage analysis was conducted on 81 segregating haploid progeny isolates from a cross between 2 isolates differing in seven avirulence genes. A total of 359 loci were mapped, comprising 182 amplified fragment length polymorphism markers, 168 restriction fragment length polymorphism markers including 42 LTR-retrotransposon loci and 99 expressed sequence tags (ESTs), all the seven avirulence genes, and a marker closely linked to the mating type gene. The markers are distributed over 34 linkage groups covering a total of 2114 cM. Five avirulence genes were found to be linked and mapped in clusters of three and two, and two were unlinked. The Avr(a6) gene was found to be closely linked to markers suitable for a map-based cloning approach. A linkage between ESTs allowed us to demonstrate examples of synteny between genes in B. graminis and Neurospora crassa.  相似文献   

15.
A contig of clones from BAC rice genomic library encompassing blast resistance gene Pi-b was constructed. On an average eight clones (8 ± 2.6) were picked up by each marker, which was expected basing on the BAC library size (Nakamura et al. 1997). The 2.4 cM distance between flanking RFLP markers G 1234 and RZ 213 (Miyamoto et al. 1996) was spanned with 4 steps of contig including 25 clones. The physical distance of 370 kb between flanking markers corresponds to a small ratio of physical and genetical distances (155 kb/cM) due to a probable structure of the gene locus near the telomeric end of the chromosome. Markers cosegregating with blast resistance against Magnoporthe grisea were localized in a 2 kb restriction fragment. A new border marker was found on the telomeric side of the Pi-b gene, less than 10 kb from cosegregating markers. No clear marker for the centromeric side of the gene was found but the position of Pi-b rice blast resistant gene was narrowed to within at least 50 kb, which is to our knowledge the most precised estimation of the position of this gene.  相似文献   

16.
Genetic studies have previously assigned a quantitative trait locus (QTL) for hemoglobin F and F cells to a region of approximately 4 Mb between the markers D6S408 and D6S292 on chromosome 6q23. An initial yeast artificial chromosome contig of 13 clones spanning this region was generated. Further linkage analysis of an extended kindred refined the candidate interval to 1-2 cM, and key recombination events now place the QTL within a region of <800 kb. We describe a high-resolution bacterial clone contig spanning 3 Mb covering this critical region. The map consists of 223 bacterial artificial chromosome (BAC) and 100 P1 artificial chromosome (PAC) clones ordered by sequence-tagged site (STS) content and restriction fragment fingerprinting with a minimum tiling path of 22 BACs and 1 PAC. A total of 194 STSs map to this interval of 3 Mb, giving an average marker resolution of approximately one per 15 kb. About half of the markers were novel and were isolated in the present study, including three CA repeats and 13 single nucleotide polymorphisms. Altogether 24 expressed sequence tags, 6 of which are unique genes, have been mapped to the contig.  相似文献   

17.
AFLP-based genetic linkage map for the red flour beetle (Tribolium castaneum)   总被引:11,自引:0,他引:11  
The red flour beetle (Tribolium castaneum) is a major pest of stored grain and grain products and a popular model species for a variety of ecological, evolutionary, and developmental biology studies. Development of a linkage map based on reproducible and highly polymorphic molecular markers would greatly facilitate research in these disciplines. We have developed a genetic linkage map using 269 amplified fragment length polymorphism (AFLP) markers. Ten previously known random amplified polymorphic DNA (RAPD) markers were used as anchor markers for linkage group assignment. The linkage map was constructed through genotyping two independent F(2) segregating populations with 48 AFLP primer combinations. Each primer combination generated an average of 4.6 AFLP markers eligible for linkage mapping. The length of the integrated map is 573 cM, giving an average marker resolution of 2.0 cM and an average physical distance per genetic distance of 350 kb/cM. A cluster of loci on linkage group 3 exhibited significant segregation distortion. We have also identified six X-linked and two Y-linked markers. Five mapped AFLP fragments were sequenced and converted to sequence-tagged site (STS) markers.  相似文献   

18.
We have identified, genetically mapped and physically delineated the chromosomal location of a new rice blast resistance locus, designated Pi-CO39(t). This locus confers resistance to Magnaporthe grisea isolates carrying the AVR1-CO39 avirulence locus. The AVR1-CO39 locus is conserved in non-rice (cereals and grasses)-infecting isolates of M. grisea, making Pi-CO39(t) useful for engineering M. grisea resistance in rice and other cereals. The resistance in the rice line CO39 was inherited as a single dominant locus in segregating populations derived from F(2) and F(3) crosses between disease-resistant (CO39) and susceptible (51583) rice genotypes. Microsatellite, RFLP and resistance gene analog (RGA) markers were used to map the Pi-CO39(t) locus to a 1.2-cM interval between the probenazole-responsive ( RPR1) gene (0.2 cM) and RFLP marker S2712 (1.0 cM) on the short arm of rice chromosome 11. RFLP markers G320 and F5003, and resistance gene analogs RGA8, RGA38 and RGACO39 were tightly linked to the Pi-CO39(t) locus (no recombination detected in a sample of ~2400 gametes). A large-insert genomic library of CO39 was constructed in the binary plant transformation vector pCLD04541. A library screen using RGA8, RGA38 and probes derived from the ends of CO39 clones, as well as BAC end probes from the corresponding locus in the rice cv. Nipponbare, resulted in the assembly of three CO39 contigs of 180 kb, 110 kb and 145 kb linked to the Pi-CO39(t) locus. A 650-kb contig was also constructed representing the susceptible locus, pi-CO39(t), in the Nipponbare genome. The two genomes are highly divergent with respect to additions, deletions and translocations at the Pi-CO39(t) locus, as revealed by the presence or absence of mapping markers.  相似文献   

19.
The wheat Tsn1 gene confers sensitivity to the host-selective toxin Ptr ToxA produced by the tan spot fungus (Pyrenophora tritici-repentis). The long-term goal of this research is to isolate Tsn1 using a positional cloning approach. Here, we evaluated 54 ESTs (expressed sequence tags) physically mapped to deletion bin 5BL 0.75–0.76, which is a gene-rich region containing Tsn1. Twenty-three EST loci were mapped as either PCR-based single-stranded conformational polymorphism or RFLP markers in a low-resolution wheat population. The genetic map corresponding to the 5BL 0.75–0.76 deletion bin spans 18.5 cM and contains 37 markers for a density of 2 markers/cM. The EST-based genetic map will be useful for tagging other genes, establishing colinearity with rice, and anchoring sequence ready BAC contigs of the 5BL 0.75–0.76 deletion bin. High-resolution mapping showed that EST-derived markers together with previously developed AFLP-derived markers delineated Tsn1 to a 0.8 cM interval. Flanking markers were used to screen the Langdon durum BAC library and contigs of 205 and 228 kb flanking Tsn1 were assembled, sequenced, and anchored to the genetic map. Recombination frequency averaged 760 kb/cM across the 228 kb contig, but no recombination was observed across the 205 kb contig resulting in an expected recombination frequency of more than 10 Mb/cM. Therefore, chromosome walking within the Tsn1 region may be difficult. However, the sequenced BACs allowed the identification of one microsatellite in each contig for which markers were developed and shown to be highly suitable for marker-assisted selection of Tsn1.  相似文献   

20.
We have used map-based approaches to clone a locus containing two genes, Avr1b-1 and Avr1b-2, required for avirulence of the oomycete pathogen Phytophthora sojae (Kaufmann & Gerdemann) on soybean plants carrying resistance gene Rps1b. Avr1b-1 was localized to a single 60-kb bacterial artificial chromosome (BAC) clone by fine-structure genetic mapping. Avr1b-1 was localized within the 60-kb region by identification of an mRNA that is expressed in a race-specific and infection-specific manner and that encodes a small secreted protein. When the Avr1b-1 protein was synthesized in the yeast Pichia pastoris and the secreted protein infiltrated into soybean leaves, it triggered a hypersensitive response specifically in host plants carrying the Rps1b resistance gene. This response eventually spread to the entire inoculated plant. In some isolates of P. sojae virulent on Rps1b-containing cultivars, such as P7081 (race 25) and P7076 (race 19), the Avr1b-1 gene had numerous substitution mutations indicative of strong divergent selection. In other isolates, such as P6497 (race 2) and P9073 (race 25), there were no substitutions in Avr1b-1, but Avr1b-1 mRNA did not accumulate. Genetic complementation experiments with P6497 revealed the presence of a second gene, Avr1b-2, required for the accumulation of Avr1b-1 mRNA. Avr1b-2 was genetically mapped to the same BAC contig as Avr1b-1, using a cross between P7064 (race 7) and P6497. The Avr1k gene, required for avirulence on soybean cultivars containing Rps1k, was mapped to the same interval as Avr1b-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号