首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inflorescence and floral ontogeny are described in the mimosoid Acacia baileyana F. Muell., using scanning electron microscopy and light microscopy. The panicle includes first-order and second-order inflorescences. The first-order inflorescence meristem produces first-order bracts in acropetal order; these bracts each subtend a second-order inflorescence meristem, commonly called a head. Each second-order inflorescence meristem initiates an acropetally sequential series of second-order bracts. After all bracts are formed, their subtended floral meristems are initiated synchronously. The sepals and petals of the radially symmetrical flowers are arranged in alternating pentamerous whorls. There are 30–40 stamens and a unicarpellate gynoecium. In most flowers, the sepals are initiated helically, with the first-formed sepal varying in position. Petal primordia are initiated simultaneously, alternate to the sepals. Three to five individual stamen primordia are initiated in each of five altemipetalous sectorial clusters. Additional stamen primordia are initiated between adjacent clusters, followed by other stamens initiated basipetally as well as centripetally. The apical configuration shifts from a tunica-corpus cellular arrangement before organogenesis to a mantle-core arrangement at sepal initiation. All floral organs are initiated by periclinal divisions of the subsurface mantle cells. The receptacle expands radially by numerous anticlinal divisions in the mantle at the summit, concurrently with proliferation of stamen primordia. The carpel primordium develops in terminal position by conversion of the floral apex.  相似文献   

2.
在扫描电镜下首次观察了桦木科鹅耳枥属千金榆花序和花的形态发生过程。千金榆雌花序由多个小聚伞花序螺旋状排列组成;每个小花序原基分化出1枚初级苞片和一团小花序原基分生组织,由小花序原基分生组织分化形成2个花原基和2个次级苞片;每个花原基分化出2个心皮原基,形成1个二心皮雌蕊;次级苞片远轴面发育快于近轴面,呈不均等的联合状;雌蕊基部有1层环状花被原基。雄花序为柔荑状,由多个小聚伞花序螺旋状排列组成;每个小花序原基分化出1枚初级苞片和一团小花序原基分生组织,由小花序原基分生组织分化出3个花原基分区,并分化形成3朵小花,小花无花被,位于两侧的小花分别有2枚雄蕊,位于中央的小花有4枚雄蕊,雄蕊共8枚,稀为10枚,该3朵小花为二歧聚伞状排列,其花基数应为2基数。  相似文献   

3.
The inflorescence and floral development of Caldesia grandis Samuel is reported for the first time in this paper. The basic units of the large cymo‐thyrsus inflorescence are short panicles that are arranged in a pseudowhorl. Each panicle gives rise spirally to three bract primordia also arranged in a pseudowhorl. The branch primordia arise at the axils of the bracts. Each panicle produces spirally three bract primordia with triradiate symmetry (or in a pseudowhorl) and three floral primordia in the axils of the bract primordia. The apex of the panicle becomes a terminal floral primordium after the initiations of lateral bract primordia and floral primordia. Three sepal primordia are initiated approximately in a single whorl from the floral primordium. Three petal primordia are initiated alternate to the sepal primordia, but their subsequent development is much delayed. The first six stamen primordia are initiated as three pairs in a single whorl and each pair appears to be antipetalous as in other genera of the Alismataceae. The stamen primordia of the second whorl are initiated trimerously and opposite to the petals. Usually, 9–12 stamens are initiated in a flower. There is successive transition between the initiation of stamen and carpel primordia. The six first‐initiated carpel primordia rise simultaneously in a whorl and alternate with the trimerous stamens, but the succeeding ones are initiated in irregular spirals, and there are 15–21 carpels developed in a flower. Petals begin to enlarge and expand when anthers of stamens have differentiated microsporangia. Such features do not occur in C. parnassifolia. In the latter, six stamen primordia are initiated in two whorls of three, carpel primordia are initiated in 1–3 whorls, and there is no delay in the development of petals. C. grandis is thus considered more primitive and C. parnassifolia more derived. C. grandis shares more similarities in features of floral development with Alsma, Echinodorus, Luronium and Sagittaria. © 2002 The Linnean Society of London, Botanical Journal of the Linnean Society, 2002, 140 , 39–47.  相似文献   

4.
Myristica fragrans and M. malabarica are dioecious. Both staminate and pistillate plants produce axillary flowering structures. Each pistillate flower is solitary, borne terminally on a short, second-order shoot that bears a pair of ephemeral bracts. Each staminate inflorescence similarly produces a terminal flower and, usually, a third-order, racemose axis in the axil of each pair of bracts. Each flower on these indeterminate axes is in the axil of a bract. On the abaxial side immediately below the perianth, each flower has a bracteole, which is produced by the floral apex. Three tepal primordia are initiated on the margins of the floral apex in an acyclic pattern. Subsequent intercalary growth produces a perianth tube. Alternate with the tepals, three anther primordia arise on the margins of a broadened floral apex in an acyclic or helical pattern. Usually two more anther primordia arise adjacent to each of the first three primordia, producing a total of nine primordia. At this stage the floral apex begins to lose its meristematic appearance, but the residuum persists. Intercalary growth below the floral apex produces a columnar receptacle. The anther primordia remain adnate to the receptacle and grow longitudinally as the receptacle elongates. Each primordium develops into an anther with two pairs of septate, elongate microsporangia. In pistillate flowers, a carpel primordium encircles the floral apex eventually producing an ascidiate carpel with a cleft on the oblique apex and upper adaxial wall. The floral ontogeny supports the morphological interpretation of myristicaceous flowers as trimerous with either four-sporangiate anthers or monocarpellate pistils.  相似文献   

5.
All flowers of Anemopsis californica, the most specialized taxon of the family Saururaceae, are initiated as individual primordia subtended by previously initiated bracts, in contrast to the common-primordium initiation of all flowers of Saururus cernuus and of most flowers of Houttuynia cordata. Floral symmetry is bilateral and zygomorphic, and the sequence of initiation among floral parts is paired or whorled. In A. californica, the six stamens arise as three common primordia, each of which later bifurcates to form a pair. The three common primordia occupy sites corresponding to the positions of the three stamens in H. cordata flowers. In Anemopsis, the filaments of each pair are connate. Each stamen pair is vascularized by a single bifurcating vascular bundle. The three carpels per flower are usually initiated simultaneously although there may be some variation. Adnation between stamens and carpels results from zonal growth. Downward extension of the locule, and proliferation and expansion of receptacular tissue and inflorescence cortical tissue around the locule below the bases of the carpels produce the inferior ovary. The inflorescence terminates its activity as a flattened apical residuum, surrounded by bracts subtending reduced flowers most of which have stamens only.  相似文献   

6.
The development of the inflorescence and flowers are described for Gymnotheca chinensis Decaisne (Saururaceae), which is native only to southeast China. The inflorescence is a short terminal spike of about 50–70 flowers, each subtended by a small bract. There are no showy involucral bracts. The bracts are initiated before the flowers, in acropetal order. Flowers tend to be initiated in whorls of three which alternate with the previous whorl members. No perianth is present. The flower contains six stamens, and four carpels fused in an inferior ovary containing 40–60 ovules on four parietal placentae. Floral symmetry is dorsiventral from inception and throughout organ initiation. Floral organs are initiated in the following order: 1) median adaxial stamen, 2) a pair of lateral common primordia which bifurcate radially to produce two stamen primordia each, 3) median abaxial stamen, 4) a pair of lateral carpel primordia, 5) median adaxial carpel, 6) median abaxial carpel. This order of initiation differs from that of any other Saururaceae previously investigated. The inferior ovary results from intercalary growth below the level of stamen attachment; the style elongates by intercalary growth, and the four stigmas remain free. The floral structure of Gymnotheca is relatively advanced compared to Saururus, but its assemblage of specializations differs from that of either Anemopsis or Houttuynia, the other derived genera in the Saururaceae.  相似文献   

7.
The inflorescence development of three species of Piper (P. aduncum, P. amalago, and P. marginatum), representing Sections Artanthe and Ottonia, was studied. The spicate inflorescences contain hundreds or even thousands of flowers, depending on the species. Each flower has a tricarpellate syncarpous gynoecium and 4 to 6 free stamens, in the species studied. No sepals or petals are present. In P. marginatum the apical meristem of the inflorescence is zonate in configuration and is unusually elongate: up to 1,170 μm high and up to 480 μm wide during the most active period of organogenesis. Toward the time of apical cessation both height and diameter gradually diminish, leaving an apical residuum which may become an attenuate spine or may be cut off by an abscission zone just below the meristem. The active apex produces bract primordia; when each is 40–55 μm high, a floral apex is initiated in its axil. Both bract and floral apex are initiated by periclinal divisions in cells of the subsurface layer. The bracts undergo differentiation rather early, while the floral apices are still developing. The last-produced bracts near the tip of the inflorescence tend to be sterile.  相似文献   

8.
Transition to flowering in the North-temperate bog plant Scheuchzeria palustris occurs in early May and results in the formation of a simple raceme with six flowers. Five of the flowers are subtended by large foliar bracts, while the sixth and last-formed flower on the inflorescence remains ebracteate. The individual flowers develop along a clearly trimerous pattern. The three outer tepals develop first, arising almost simultaneously at the periphery of the triangular floral apex. They are followed closely by the development of the three anti-tepalous outer stamens. The three inner tepals are next in the developmental sequence, alternating with the outer whorl of tepal-stamen pairs but arising at a slightly higher level on the floral meristem. Three inner stamens are initiated opposite the inner tepal primordia. Finally, three gynoecial primordia are initiated on the remaining central portion of the floral apex and alternating with the inner whorl of tepal-stamen pairs. Each carpel develops at first as a horseshoe-shaped structure. Two ovules form in each carpel, initiating on the adaxial margin of the carpel wall. Histogenesis of all floral appendages involves initially periclinal divisions in the second tunica layer followed by corresponding anticlinal divisions in the first tunica layer and concurrent activity in the underlying corpus. Separate procambial strands differentiate acropetally from the inflorescence axis to each tepal-stamen pair and then bifurcate. The vascular connection to the gynoecium develops directly from the strands in the tepal-stamen pairs. The results of this developmental study of the flower of S. palustris have a significant bearing on the positioning of this and related taxa within the Alismatidae and on the speculation of the phylogeny of the monocotyledon flower.  相似文献   

9.
The spicate inflorescence of Saururus cernuus L. (Saururaceae) results from the activity of an inflorescence apical meristem which produces 200–300 primordia in acropetal succession. The inflorescence apex arises by conversion of the terminal vegetative apex. During transition the apical meristem increases greatly in height and width and changes its cellular configuration from one of tunica-corpus to one of mantle (with two tunica layers) and core. Primordia are initiated by periclinal divisions in the subsurface layer. These are “common” primordia, each of which subsequently divides to produce a floral apex above and a bract primordium below. The bract later elongates so that the flower appears borne on the bract. All common primordia are formed by the time the inflorescence is about 4.4 mm long; the apical meristem ceases activity at this stage. As cessation approaches, cell divisions become rare in the apical meristem, and height and width of the meristem above the primordia diminish, as primordia continue to be initiated on the flanks. Cell differentiation proceeds acropetally into the apical meristem and reaches the summital tunica layers last of all. Solitary bracts are initiated just before apical cessation, but no imperfect or ebracteate flowers are produced in Saururus. The final event of meristem activity is hair formation by individual cells of the tunica at the summit, a feature not previously reported for apical meristems.  相似文献   

10.
Floral onset in soybean (Glycine max cv. Ransom) is characterized by precocious initiation of axillary meristems in the axils of the most recently initiated leaf primordium. During floral transition, leaf morphology changes from trifoliolate leaf with stipules, to a three-lobed bract, to an unlobed bract. Soybean flowers initiated at 26/22 C day/night temperatures are normal, papilionaceous, and pentamerous. Sepal, petal, and stamen whorls are initiated unidirectionally from the abaxial to adaxial side of the floral apex. The median sepal is located abaxially and the median petal adaxially on the meristem. The organogeny of ‘Ransom’ flowers was found to be: sepals, petals, outer stamens plus carpel, inner stamens; or, sepals, petals, carpel, outer stamens, inner stamens. The outer stamen whorl and the carpel show possible overlap in time of initiation. Equalization of organ size occurs only within the stamen whorls. The sepals retain distinction in size, and the petals exhibit an inverse size to age relationship. The keel petals postgenitally fuse along part of their abaxial margins; their bases, however, remain free. Soybean flowers initiated at cool day/night temperatures of 18/14 C exhibited abnormalities and intermediate organs in all whorls. The gynoecium consisted of one to ten carpels (usually three or four), and carpel connation varied. Fusion of keel petals was often lacking, and stamen filaments fused erratically. Multiple carpellate flowers developed into multiple pods that were separate or variously connate. Intermediate type organs had characteristics only of organs in adjacent whorls. These aberrant flowers demonstrate that the floral meristem of soybean is not fixed or limited in its developmental capabilities and that it has the potential to produce alternate morphological patterns.  相似文献   

11.
Flowers of Potamogeton normally have a completely tetramerous plan. Deviations from this norm occur quite commonly in the uppermost flowers of the inflorescence; these variations have been reported before and usually involve a reduction in number of parts. Cases have now been found where the gynoecium of all or many flowers differs from the normal tetracarpellate arrangement; some species regularly have fewer and others more than four carpels. The developmental bases of meristic variation have been explored and quantitative studies of gynoecia and developing gynoecia have been undertaken. The data are used to evaluate the control and correlation of floral development in Potamogeton in general, and in particular the relationship between the gynoecium and the rest of the flower. The developing flower passes through two successive phases of organ initiation: one in which the perianth and stamen primordia arise, and one in which the gynoecial primordia arise. There seems to be little developmental relationship between the two phases except phyllotactic continuity. During the perianth/stamen phase each stamen primordium arises directly above a perianth member, and the presence of a perianth member seems to be a prerequisite for initiation of the stamen. The perianth/stamen phase seems to be rather stable so that normally four perianth/stamen associations are initiated, except in flowers at the tip of the inflorescence. In the gynoecial phase the number of carpel primordia initiated seems to depend on the relative size of carpel primordia and floral apex, and on whether or not the floral apex continues to grow while initiating carpel primordia.  相似文献   

12.
Zippelia begoniaefolia Bl., a monotypic species having characteristics of both Piperaceae and Saururaceae, has racemes of about 20 small flowers lacking a perianth, each with six free stamens and a four-carpellate syncarpous gynoecium. The inflorescence apical meristem initiates bracts acropetally and helically, each of which subtends a later initiated single floral apex; there are no “common” primordia. The six stamens are initiated as two lateral pairs and two solitary successive primordia, the latter two opposite in median sagittal positions. Four carpel primordia are initiated as a lateral pair and two successively initiated in the median sagittal plane. This order of organ inception is unique among Piperaceae and Saururaceae. Intercalary growth below carpellary attachment raises them up on a common cylindrical base that becomes the syncarpous ovary, covered with unique glochidiate hairs and containing a single basal ovule. The free portions of the carpels become the reflexed papillate stigmas. The floral vascular system has a single bundle at base that branches to supply the bract and flower traces. The floral vasculature is similar but not identical to that of Saururus (Saururaceae) and some Piper species (Piperaceae). Plesiomorphic character states of Zippelia that are shared with Saururus include hypogyny, free stamens, cleft stigma, and a similar floral groundplan. Synapomorphies, derived shared character states that unite Zippelia with Piperaceae, include syncarpy, solitary ovule, basal placentation, fused ventral carpellary bundles, and a double vascular cylinder in the stem. Cladistic analysis aligns Zippelia with Piperaceae because they share apomorphies, and because Zippelia shares only plesiomorphies with Saururus.  相似文献   

13.
The initiation of the floral parts (mainly stamens and carpels) is described for the four dioecious species of Piper: Piper polysyphorum C. DC, P. bavinum C. DC., P. pedicellatum C. DC., P. pubicatulum C. DC. The initiation order resembles that in the perfect flowers of some species, such as P. amalago. The carpels are initiated simultaneously, in most cases, as three primordia. In P. polysyphorum , carpel tips split into two lobes, so that finally a four- or five-lobed stigma will be formed when the ovary is fully developed. The staminodes (exactly, staminodial primordia) in the female flowers are initiated in the same order as the stamens in the male flowers and remain until the ovaries are enclosed. The unisexual flowers have stamens reduced to three or two. The reduction of stamen or staminode (staminodial primordium) number is accompanied by the change of their positions from opposite the carpels to alternate. After the initiation of the staminodes, or, exactly staminodial primordia, in the female flowers, the central part of the floral apex forms a ring meristem which is triangular. The carpel primordia (often three) are initiated on the three points of the ring meristem. The evolutionary trends of the flowers of Piper sensu lato are discussed.  相似文献   

14.
Flowers of Peperomia species are the simplest structurally of any of the members of the Piperaceae. The spicate inflorescences form terminally and in axillary position; in each, the apex first is zonate in configuration with a two-layered tunica while 3-4 leaves are initiated. Later, when the inflorescence apical meristem begins bract initiation, the biseriate tunica persists, but zonal distinctions diminish and the apex can be described in terms of a simple tunicacorpus configuration. The inflorescence apex aborts after producing 30-40 bracts in acropetal succession an abscission layer forms across the base of the apex, and the meristem dries and drops off. Bracts are produced by periclinal divisions in T2 (and occasionally also in the third layer as well); the later-formed floral apices arise by periclinal divisions in T2 and the third layer. Each floral apex is at first a long transverse ridge in the axil, perpendicular to the long axis of the inflorescence. This establishes bilateral symmetry in the flower, which persists throughout subsequent growth. The floral meristem becomes saddle-shaped, and two stamen primordia are delimited, one at either end and lower than the central floral apex. A solitary carpel is initiated abaxially, and soon forms a circular rim which heightens as a tube with an apical pore. Within the open carpel, a solitary ovule is initiated from the entire remains of the floral apical meristem; it, hence, is terminal in the flower, and its placentation is basal. Carpellary closure in P. metallica results from accelerated growth of the abaxial lip, and the two margins become appressed. Species differ greatly as to whether the abaxial or the adaxial lobe predominates in late stages of carpel development. In P. metallica, the receptive portion of the stigma forms from the shorter lobe which is overtopped. Stigmatoid tissue forms internal to the receptive stigma. The prevailing bilateral floral symmetry, absence of a perianth, and the spicate inflorescence are features which distinguish Peperomia (and Piperaceae) from the magnolialian line of angiosperms.  相似文献   

15.
The ontogeny of the flower and fruit of Illicium floridanum Ellis, the Star Anise, was investigated. Each of 5 or 6 bracts in each mixed terminal bud subtends either a vegetative or floral bud. The solitary flowers occur in terminal or axillary positions. Each flower has 3–6 subtending bracteoles arranged in a clockwise helix. The flowers in our material have 24–28 tepals, 30–39 stamens, and usually 13 (rarely 19) uniovulate carpels. Tepals and stamens are initiated in a low-pitched helix; carpels later appear whorled, but arise successively at different levels on the apical flanks. The floral apex is high-convex in outline with a tunica-corpus configuration; it increases in height and width throughout initiation of the floral appendages. Tepals, stamens, and carpels are initiated by one to several periclinal divisions in the subsurface layers low on the apical flanks, augmented by cell divisions in the outer layers of the corpus. The carpel develops as a conduplicate structure with appressed, connivent margins. Procambium development of floral appendages is acropetal and continuous. Bracteoles, tepals, stamens and carpels are each supplied by 1 trace; the carpellary trace splits into a dorsal and an ascending ventral sympodium. The latter bifurcates to form 2 ventral bundles. The ovular bundle diverges from the ventral sympodium. Ovule initiation occurs in a median axillary position to the carpel, an unusual type of ovule initiation. The fruit vasculature is greatly amplified as the receptacle and follicles enlarge. After carpel initiation an apical residuum persists which is not vascularized; a plate meristem develops over its surface to produce a papillate structure.  相似文献   

16.
In both male and female flowers of H. morsus-ranae the primordia of the floral appendages appear in an acropetal succession consisting of alternating trimerous whorls. In the male flower a whorl of sepals is followed by a whorl of petals, three whorls of stamens, and a whorl of filamentous staminodes. The mature androecial arrangement therefore consists of two antisepalous stamen whorls, an antipetalous whorl of stamens, and antipetalous staminodes. Shortly before anthesis, basal meristematic upgrowth between filaments of adjacent whorls produces paired stamens, joining Whorls 1 and 3, and Whorl 2 with the staminodial whorl. A central domelike structure develops between the closely appressed filaments of the inner stamen and staminodial whorl, giving the structure a lobed appearance. After petal inception in the female flower a whorl of antisepalous staminodes develop, each of which may bifurcate to form a pair of staminodes. During staminode development a girdling primordium arises by upgrowth at the periphery of the floral apex. The girdling primordium rapidly forms six gynoecial primordia, which then go on to produce six free styles with bifid stigmas. Intercalary meristem activity, below the point of floral appendage attachment, leads to the production of a syncarpous inferior ovary with six parietal placentae. The styles and carpels remain open along their ventral sutures. During the final stages of female floral development, several hundred ovules develop along the carpel walls, and three nectaries develop dorsally and basally on the three antipetalous styles.  相似文献   

17.
The floral ontogeny of two species of Knema and one of Horsfieldia was examined and described using scanning electron microscopy. The perianth is trimerous with three tepals arising in succession. Pistillate flowers have a rounded floral apex with a convex top. The single carpel primordium is initiated along the margin of the bud and develops a plicate shape with an apical bilobed stigma. In staminate flowers, the floral apex is broadly hemispherical with a somewhat three‐sided shape. Several anther primordia are initiated almost simultaneously around the margin of the floral apex. In Horsfieldia, stamens extend laterally in antetepalous groups, whereas, in Knema, anthers form two whorls. The alternitepalous stamens were found to be different from the antetepalous stamens, which are pressed within a limited space. The anther primordia remain adnate to the receptacle and grow longitudinally, producing a pair of microsporangia. The central area of the floral apex persists as an undifferentiated residuum without any trace of a gynoecium. Myristicaceous anthers are basically homologous, although the number of anthers, pollen sacs and shape of the androecium are variable. The evolution of the androecium is discussed in the family, with opposing possibilities for reductions and increases in anther number in Myristicaceae. © 2010 The Linnean Society of London, Botanical Journal of the Linnean Society, 2010, 164 , 42–52.  相似文献   

18.
In Tetracentron sinense of the basal eudicot family Trochodendraceae, the flower primordium, together with the much retarded floral subtending bract primordium appear to form a common primordium. The four tepals and the four stamens are initiated in four distinct alternating pairs, the first tepal pair is in transverse position. The four carpels arise in a whorl and alternate with the stamens. This developmental pattern supports the interpretation of the flower as dimerous in the perianth and androecium, but tetramerous in the gynoecium. There is a relatively long temporal gap between the initiation of the stamens and the carpels. The carpel primordia are then squeezed into the narrow gaps between the four stamens. In contrast to Trochodendron, the residual floral apex after carpel formation is inconspicuous. In their distinct developmental dimery including four tepals and four stamens, flowers of Tetracentron are reminiscent of other, related basal eudicots, such as Buxaceae and Proteaceae.  相似文献   

19.
榛属(桦木科)花序及花的形态发生   总被引:1,自引:0,他引:1  
在扫描电镜下观察了桦木科榛属榛、毛榛和滇榛的花序和花的形态发生过程。榛属雌花序由多个小聚伞花序螺旋状排列组成;每个小花序原基分化出1枚初级苞片和一团小花序原基分生组织,由小花序原基分生组织分化形成2个花原基;每个花原基分化出2个心皮原基,形成二心皮雌蕊;雌蕊基部有2层花被原基,内层花被原基环状,外层花被发生于花原基近轴面和远轴面,近轴面和远轴面的花被不均等分化,外层花被发生早于内层花被。雄花序为柔荑状,由多个小聚伞花序螺旋状排列组成。每个小花序原基分化出1枚初级苞片和一团小花序原基分生组织,由小花序原基分生组织分化出2枚次级苞片和4。6个雄蕊原基,形成4—6枚雄蕊,每个雄蕊具4个药囊,在雄蕊原基分化形成4药囊雄蕊过程中.出现雄蕊原基纵裂。并且花丝纵裂至基部。为进一步全面探讨桦木科属间系统演化关系提供了证据。  相似文献   

20.
榛属 (桦木科) 花序及花的形态发生   总被引:1,自引:0,他引:1  
在扫描电镜下观察了桦木科榛属榛、毛榛和滇榛的花序和花的形态发生过程。榛属雌花序由多个小聚伞花序螺旋状排列组成;每个小花序原基分化出1枚初级苞片和一团小花序原基分生组织,由小花序原基分生组织分化形成2个花原基;每个花原基分化出2个心皮原基,形成二心皮雌蕊;雌蕊基部有2层花被原基,内层花被原基环状,外层花被发生于花原基近轴面和远轴面,近轴面和远轴面的花被不均等分化,外层花被发生早于内层花被。雄花序为柔荑状,由多个小聚伞花序螺旋状排列组成。每个小花序原基分化出1枚初级苞片和一团小花序原基分生组织,由小花序原基分生组织分化出2枚次级苞片和4~6个雄蕊原基,形成4~6枚雄蕊,每个雄蕊具4个药囊,在雄蕊原基分化形成4药囊雄蕊过程中,出现雄蕊原基纵裂,并且花丝纵裂至基部。为进一步全面探讨桦木科属间系统演化关系提供了证据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号