首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Nonsyndromic cleft lip (CL) with or without cleft palate (CLP) is a common human birth defect with complex genetic etiology. One of the unidentified genes maps to chromosome 17q21. A mouse strain, A/WySn, has CLP with complex genetic etiology that models the human defect, and 1 of its causative genes, clf1, maps to a region homologous to human 17q21. Extensive studies of the candidate region pointed to a novel insertion of an IAP transposon 3' from the gene Wnt9b as the clf1 mutation. Independently a recessive knockout mutation of Wnt9b (Wnt9b-) was reported to cause a lethal syndrome that includes some CLP. METHODS: A standard genetic test of allelism between clf1 and the Wnt9b- mutation was done. A total of 83 F1 embryos at gestation day 14 (GD 14) from Wnt9b-/+ males crossed with A/WySn females, and 79 BC1 GD 14 embryos from F1 Wnt9b-/clf1 males back-crossed to A/WySn females were observed for CL. Embryo genotypes at clf1 and Wnt9b were obtained from DNA markers. Genotypes for a second unlinked modifier locus from A/WySn, clf2, were similarly obtained. RESULTS: The compound mutant embryos (Wnt9b-/clf1) had high frequencies of CL: 27% in the F1 and 63% in the BC1. The clf2 modifier gene was found to have 3 alleles segregating in this study and to strongly influence the penetrance of CL in the compound mutant. CONCLUSIONS: The noncomplementation of clf1 and Wnt9b- confirms that clf1 is a mutation of the Wnt9b gene. The homologous human WNT9B gene and 3' conserved noncoding region should be examined for a role in human nonsyndromic CLP.  相似文献   

2.
3.
4.
Cleft lip with or without cleft palate, CL(P), a common human birth defect, has a genetically complex etiology. An animal model with a similarly complex genetic basis is established in the A/WySn mouse strain, in which 20% of newborn have CL(P). Using a newly created congenic strain, AEJ.A, and SSLP markers, we have mapped a major CL(P)-causing gene derived from the A/WySn strain. This locus, here named clf1 (cleft lip) maps to Chromosome (Chr) 11 to a region having linkage homology with human 17q21-24, supporting reports of association of human CL(P) with the retinoic acid receptor alpha (RARA) locus.  相似文献   

5.
Unravelling the complex genetics of cleft lip in the mouse model   总被引:2,自引:0,他引:2  
Nonsyndromic cleft lip in ``A' strain mice and humans is genetically complex and is distinct from isolated cleft palate. Cleft lip embryos recovered in 2.4% of 1485 first backcross (BC1) segregants from a cross of A/WySnJ (24% cleft lip) and C57BL/6J (no cleft lip) in A/WySnJ mothers, and in testcrosses of 10 recombinant inbred (RI) strains (AXB/Pgn or BXA/Pgn), were used for gene mapping and for inference of genetic architecture. The A/WySnJ maternal genotype increased cleft lip risk in reciprocal crosses; the relevant genetic difference between AXB-6/Pgn (8%) and A/WySnJ (24%) is entirely maternal. A combination of new mapping panels (325 meioses), new markers, and a recombinant cleft lip embryo redefined the location of a recessive factor essential to cleft lip risk, clf1, and candidate genes Itgb3 and Crhr, to between D11Mit146/360 and D11Mit166/147. A screen of 54 YACs for 46 genes and SSLP loci located Wnt15, Wnt3, Crhr, Mtapt, Itgb3, Dlx3, and Dlx7 within the clf1 candidate region. The clf2 locus was newly mapped to Chromosome (Chr) 13 by a genome screen of BC1 segregants, and further defined to a 4-cM region between D13Mit13/54 and D13Mit231 by strain distribution patterns of cleft lip liability and markers in testcrossed RI strains. Specific combinations of marker genotypes associated with cleft lip risk indicated that high risk in A/WySnJ mice is caused by epistatic interaction between clf1 and clf2 in the context of a genetic maternal effect. Human homologs of clf1 and clf2 are expected to be on 17q and 5q/9q. Received: 17 May 2000 / Accepted: 30 November 2000  相似文献   

6.
Nonsyndromic cleft lip and palate (CLP) is among the most common human birth defects. Transmission patterns suggest that the causes are "multifactorial" combinations of genetic and nongenetic factors, mostly distinct from those causing cleft secondary palate (CP). The major etiological factors are largely unknown, and the embryological mechanisms are not well understood. In contrast to CP or neural tube defects (NTD), CLP is uncommon in mouse mutants. Fourteen known mutants or strains express CLP, often as part of a severe syndrome, whereas nonsyndromic CLP is found in two conditional mutants and in two multifactorial models based on a hypomorphic variant with an epigenetic factor. This pattern suggests that human nonsyndromic CLP is likely caused by regulatory and hypomorphic gene variants, and may also involve epigenetics. The developmental pathogenic mechanism varies among mutants and includes deficiencies of growth of the medial, lateral or maxillary facial prominences, defects in the fusion process itself, and shifted midline position of the medial prominences. Several CLP mutants also have NTD, suggesting potential genetic overlap of the traits in humans. The mutants may reflect two interacting sets of genetic signaling pathways: Bmp4, Bmpr1a, Sp8, and Wnt9b may be in one set, and Tcfap2a and Sox11 may be in another. Combining the results of chromosomal linkage studies of unidentified human CLP genes with insights from the mouse models, the following previously unexamined genes are identified as strong candidate genes for causative roles in human nonsyndromic CLP: BMP4, BMPR1B, TFAP2A, SOX4, WNT9B, WNT3, and SP8.  相似文献   

7.
The malformation of nonsyndromic cleft lip with or without cleft palate (CL/P) is a common congenital disease that affects approximately 1/1000 newborns in Caucasian populations. Genetic studies indicate that CL/P has the characteristics of a complex genetic trait. Linkage analysis and mouse-model knockout studies have suggested several candidate genes mapping in different chromosome regions for CL/P malformation. On these grounds, we have investigated, by linkage disequilibrium (LD) and parametric and nonparametric linkage analyses, five different candidate genes, including those for the beta3 subunit of the gamma-aminobutyric acid receptor (GABRB3), glutamic acid decarboxylase 1 (GAD1), retinoic acid receptor alpha (RARA), transforming growth factor beta3 (TGFB3), and msh ( Drosophila) homeobox homolog 1 (MSX1). Interestingly, a significant LD between GABRB3 and CL/P was obtained ( P-value=0.008 in the allele-wise analysis for multiallelic markers), suggesting that the GABRB3 gene is involved in this congenital disease. This new finding in humans is in agreement with previously reported data obtained with the murine model. Indeed, mouse studies indicate a role for gamma-aminobutyric acid (GABA) and its receptor in normal palate development. Exclusion of the GAD1 gene, which encodes the GABA-producing enzyme, in CL/P pathogenesis was obtained in our study. Moreover, we were unable to confirm the involvement of the MSX1 gene in nonsyndromic CL/P. Modest evidence of LD between marker alleles and CL/P was found at the RARA and TGFB3 loci suggesting a minor role for these genes in our family set of nonsyndromic CL/P.  相似文献   

8.
BACKGROUND: The SELH/Bc mouse strain has 10-30% exencephaly and is an animal model for human neural tube closure defects. This study examined the number of causative genes, their dominance relationships, and linkage map positions. METHODS: The SELH/Bc strain (S) was crossed to the normal LM/Bc strain (L) and frequencies of exencephaly were observed in the F(1), BC(1), and F(2) generations. 102 F(2) males were individually testcrossed by SELH/Bc. The extremes, the 10 highest and 10 zero exencephaly-producing F(2) sires, were typed for 109 SSLP marker loci in a genome screen. Next, the resultant five provisional chromosomal regions were tested for linkage in 31 F(2) exencephalic embryos. Finally, 12 males, SS or LL for the Chr 13 region on an LM/Bc background, were testcrossed by SELH/Bc. RESULTS: The exencephaly frequencies in the F(1) (0.3%), BC(1) (4.4%), and F(2) (3.7%), and the distribution of F(2) males' testcross values (0-15.5%), indicated that the high risk of exencephaly in SELH/Bc is due to the cumulative effect of two or three loci. Linkage studies indicated the location of semidominant exencephaly-risk genes on Chr 13 near D13Mit13 (P < 0.001), Chr 5 near D5Mit168 (P < 0.025), and possibly Chr 11 near D11Mit10 (P < 0.07). The gene on Chr 13, Exen1, and the strong role of other loci were confirmed by the congenic males. CONCLUSIONS: The high risk of exencephaly in SELH/Bc mice is caused by the cumulative effect of two to three semidominant genes. Candidate genes include Msx2, Madh5, Ptch, and Irx1 (Chr 13) and Actb and Rac1 (Chr 5).  相似文献   

9.
Isolated oral clefts, including cleft lip with/without cleft palate (CL/P) and cleft palate (CP), have a complex and heterogeneous etiology. Case-parent trios from three populations were used to study genes spanning chromosome 2, where single nucleotide polymorphic (SNP) markers were analyzed individually and as haplotypes. Case-parent trios from three populations (74 from Maryland, 64 from Singapore and 95 from Taiwan) were genotyped for 962 SNPs in 104 genes on chromosome 2, including two well-recognized candidate genes: TGFA and SATB2. Individual SNPs and haplotypes (in sliding windows of 2–5 SNPs) were used to test for linkage and disequilibrium separately in CL/P and CP trios. A novel candidate gene (ZNF533) showed consistent evidence of linkage and disequilibrium in all three populations for both CL/P and CP. SNPs in key regions of ZNF533 showed considerable variability in estimated genotypic odds ratios and their significance, suggesting allelic heterogeneity. Haplotype frequencies for regions of ZNF533 were estimated and used to partition genetic variance into among-and within-population components. Wright’s fixation index, a measure of genetic diversity, showed little difference between Singapore and Taiwan compared with Maryland. The tensin-1 gene (TNS1) also showed evidence of linkage and disequilibrium among both CL/P and CP trios in all three populations, albeit at a lower level of significance. Additional genes (VAX2, GLI2, ZHFX1B on 2p; WNT6–WNT10A and COL4A3–COL4A4 on 2q) showed consistent evidence of linkage and disequilibrium only among CL/P trios in all three populations, and TGFA showed significant evidence in two of three populations.Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

10.
Isolated or nonsyndromic cleft lip with or without cleft palate (CL/P) is a common birth defect with a complex etiology. A 10-cM genome scan of 388 extended multiplex families with CL/P from seven diverse populations (2,551 genotyped individuals) revealed CL/P genes in six chromosomal regions, including a novel region at 9q21 (heterogeneity LOD score [HLOD]=6.6). In addition, meta-analyses with the addition of results from 186 more families (six populations; 1,033 genotyped individuals) showed genomewide significance for 10 more regions, including another novel region at 2q32-35 (P=.0004). These are the first genomewide significant linkage results ever reported for CL/P, and they represent an unprecedented demonstration of the power of linkage analysis to detect multiple genes simultaneously for a complex disorder.  相似文献   

11.
In 404 Lep(ob/ob) F2 progeny of a C57BL/6J (B6) x DBA/2J (DBA) intercross, we mapped a DBA-related quantitative trait locus (QTL) to distal Chr1 at 169.6 Mb, centered about D1Mit110, for diabetes-related phenotypes that included blood glucose, HbA1c, and pancreatic islet histology. The interval was refined to 1.8 Mb in a series of B6.DBA congenic/subcongenic lines also segregating for Lep(ob). The phenotypes of B6.DBA congenic mice include reduced beta-cell replication rates accompanied by reduced beta-cell mass, reduced insulin/glucose ratio in blood, reduced glucose tolerance, and persistent mild hypoinsulinemic hyperglycemia. Nucleotide sequence and expression analysis of 14 genes in this interval identified a predicted gene that we have designated "Lisch-like" (Ll) as the most likely candidate. The gene spans 62.7 kb on Chr1qH2.3, encoding a 10-exon, 646-amino acid polypeptide, homologous to Lsr on Chr7qB1 and to Ildr1 on Chr16qB3. The largest isoform of Ll is predicted to be a transmembrane molecule with an immunoglobulin-like extracellular domain and a serine/threonine-rich intracellular domain that contains a 14-3-3 binding domain. Morpholino knockdown of the zebrafish paralog of Ll resulted in a generalized delay in endodermal development in the gut region and dispersion of insulin-positive cells. Mice segregating for an ENU-induced null allele of Ll have phenotypes comparable to the B.D congenic lines. The human ortholog, C1orf32, is in the middle of a 30-Mb region of Chr1q23-25 that has been repeatedly associated with type 2 diabetes.  相似文献   

12.
Based on epidemiologic and embryologic patterns, nonsyndromic orofacial clefts– the most common craniofacial birth defects in humans– are commonly categorized into cleft lip with or without cleft palate (CL/P) and cleft palate alone (CP), which are traditionally considered to be etiologically distinct. However, some evidence of shared genetic risk in IRF6, GRHL3 and ARHGAP29 regions exists; only FOXE1 has been recognized as significantly associated with both CL/P and CP in genome-wide association studies (GWAS). We used a new statistical approach, PLACO (pleiotropic analysis under composite null), on a combined multi-ethnic GWAS of 2,771 CL/P and 611 CP case-parent trios. At the genome-wide significance threshold of 5 × 10−8, PLACO identified 1 locus in 1q32.2 (IRF6) that appears to increase risk for one OFC subgroup but decrease risk for the other. At a suggestive significance threshold of 10−6, we found 5 more loci with compelling candidate genes having opposite effects on CL/P and CP: 1p36.13 (PAX7), 3q29 (DLG1), 4p13 (LIMCH1), 4q21.1 (SHROOM3) and 17q22 (NOG). Additionally, we replicated the recognized shared locus 9q22.33 (FOXE1), and identified 2 loci in 19p13.12 (RAB8A) and 20q12 (MAFB) that appear to influence risk of both CL/P and CP in the same direction. We found locus-specific effects may vary by racial/ethnic group at these regions of genetic overlap, and failed to find evidence of sex-specific differences. We confirmed shared etiology of the two OFC subtypes comprising CL/P, and additionally found suggestive evidence of differences in their pathogenesis at 2 loci of genetic overlap. Our novel findings include 6 new loci of genetic overlap between CL/P and CP; 3 new loci between pairwise OFC subtypes; and 4 loci not previously implicated in OFCs. Our in-silico validation showed PLACO is robust to subtype-specific effects, and can achieve massive power gains over existing approaches for identifying genetic overlap between disease subtypes. In summary, we found suggestive evidence for new genetic regions and confirmed some recognized OFC genes either exerting shared risk or with opposite effects on risk to OFC subtypes.  相似文献   

13.
Seven genes were regionally localized on rat Chromosome (Chr) 1, from 1p11 to 1q42, and two of these genes were also included in a linkage map. This mapping work integrates the genetic linkage map and the cytogenetic map, and allows us to orient the linkage map with respect to the centromere, and to deduce the approximate position of the centromere in the linkage map. These mapping data also indicate that the Slc9a3 gene, encoding the Na+/H+ exchanger 3, is an unlikely candidate for the blood pressure loci assigned to rat Chr 1. These new localizations expand comparative mapping between rat Chr 1 and mouse or human chromosomes. Received: 21 March 1997 / Accepted: 3 May 1997  相似文献   

14.
Analysis of the human expressed sequence tag (EST) database identified four clones that contain sequences of previously uncharacterized genes, members of the ATP-binding cassette (ABC) superfamily. Two new ABC genes (EST20237, 31252) are located at Chromosome (Chr) 1q42 and 1q25 respectively in humans, as determined by FISH; at locations distinct from previously mapped genes of this superfamily. Two additional clones, EST 600 and EST 1596, were found to represent different ATP-binding domains of the same gene, ABC2. This gene was localized to 9q34 in humans by FISH and to the proximal region of Chr 2 in mice by linkage analysis. All genes display extensive diversity in sequence and expression pattern. We present several approaches to characterizing EST clones and demonstrate that the analysis of EST clones from different tissues is a powerful approach to identify new members of important gene families. Some drawbacks of using EST databases, including chimerism of cDNA clones, are discussed.  相似文献   

15.
16.
We previously defined quantitative trait loci (QTLs) that control susceptibility to 7,12-dimethylbenz(α)anthracene-induced mammary carcinoma in SPRD-Cu3 (susceptible) and WKY (resistant) rats. Two of these QTLs, assigned to chromosomes (Chr) 10 and 18, control tumor growth rate and invasiveness. In this study we characterized a congenic strain in which a large segment of WKY Chr 10 was introduced in the SPRD-Cu3 genetic background and demonstrated that this chromosome segment controls this tumor trait. The WKY allele at this QTL (Mcsta1) reduces the growth rate of the fastest growing tumors by 26%. We also previously showed that two SPRD-Cu3-WKY congenic strains containing a WKY chromosome segment derived either from Chr 5 or from Chr 18 exhibit a reduction in tumor multiplicity (QTLs Msctm1 and Mcstm2, respectively) (with no reduction in tumor growth rate in the Chr 18 congenic). In this study we generated a double congenic strain, which contains the two WKY differential segments from Chr 5 and 18, to determine how these two segments interact with one another. Interestingly, two types of epistatic interactions were found: no additive effect was seen with respect to tumor multiplicity, while a reduction in tumor growth rate was observed. It thus appears that WKY alleles located on Chr 5 and Chr 8 interact epistatically in a contrasting manner to modulate tumor multiplicity (in a nonadditive manner) and growth rate (in a synergic manner). Tumor growth rate is thus influenced by two QTLs, on Chr 10 (Mcsta1) and on Chr 18 (Mcsta2), the action of the latter being dependent on the presence of the Chr5 QTL (Mcstm1). The expression level of positional and functional candidate genes was also analyzed. On Chr 5, Pla2g2a is subject to a syntenic control while expression of the Tp53 (Chr 10) and Pmai1/Noxa (Chr 18) genes appears to be controlled by several mammary cancer resistance QTLs.  相似文献   

17.
We have recently identified a new vertebrate gene family encoding putative hyaluronan (HA) synthases. Three highly conserved related genes have been identified, designatedHAS1, HAS2,andHAS3in humans andHas1, Has2,andHas3in the mouse. All three genes encode predicted plasma membrane proteins with multiple transmembrane domains and approximately 25% amino acid sequence identity to theStreptococcus pyogenesHA synthase, HasA. Furthermore, expression of any oneHASgene in transfected mammalian cells leads to high levels of HA biosynthesis. We now report the chromosomal localization of the threeHASgenes in human and in mouse. The genes localized to three different positions within both the human and the mouse genomes.HAS1was localized to the human chromosome 19q13.3–q13.4 boundary andHas1to mouse Chr 17.HAS2was localized to human chromosome 8q24.12 andHas2to mouse Chr 15.HAS3was localized to human chromosome 16q22.1 andHas3to mouse Chr 8. The map position forHAS1reinforces the recently reported relationship between a small region of human chromosome 19q and proximal mouse chromosome 17.HAS2mapped outside the predicted critical region delineated for the Langer–Giedion syndrome and can thus be excluded as a candidate gene for this genetic syndrome.  相似文献   

18.
Analgesia (pain reduction, or antinociception) is a classical and clinically important effect of morphine administration, and in rodent models sensitivity to morphine has been shown to be strongly influenced by genotype. For example, several studies have reported marked differences in morphine antinociception between the insensitive C57BL/6 (B6) and sensitive DBA/2 (D2) inbred mouse strains on the hot-plate assay. This prompted the present genome-wide search for quantitative trait loci (QTLs) that are chromosomal sites influencing the magnitude of antinociception, by using four mapping populations derived from the B6 and D2 progenitor inbred strains. These four were the BXD recombinant inbred (RI) strain set, an F2 (B6D2F2) population, short-term selective breeding for antinociception from a B6D2F2 founding population, and incipient or completed congenic strains. In the BXD RI set and in the B6D2F2, a genome-wide search identified 10-12 provisional QTLs at a nominal p <.05. The other populations were subsequently used as confirmation steps to test each of the provisional QTL regions. Based on all available mapping populations, four QTLs emerged as significant (p <.00005) on proximal Chromosome (Chr) 1 (females only), proximal Chr 9 (females only), mid Chr 9, and proximal Chr 10. The Chr 10 QTL comaps to the same region as the micro-opioid receptor gene (Oprm); this receptor is a known mediator of morphine's antinociceptive effects. The Chr 1 QTL was evident only in females and comapped with the kappa-opioid receptor gene, Oprk.  相似文献   

19.
《Genomics》1999,55(2):147-156
The genetic basis for differential sensitivity of inbred mice to inflammatory bowel disease induced by dextran sulfate sodium (DSS) is unknown. Susceptible C3H/HeJ were outcrossed to partially resistant C57BL/6J mice. F2 and N2 progeny were phenotyped by evaluating histopathologic lesions in large intestine detected 16 days after a 5-day period of feeding 3.5% DSS. Screening for DSS colitis (Dssc) loci revealed quantitative trait loci (QTL) on Chr 5 (Dssc1) and Chr 2 (Dssc2). These traits contributed additively, explaining 17.5% of the variation in total colonic lesions. Additional QTL on Chr 18 and 1 that collectively explained 11% of the variation in total colon lesions were indicated. In the cecum, only a putative QTL on Chr 11 was associated with pathology (lesion severity) in the cecum. Reduced DSS susceptibility was observed in congenic stocks in which the highly susceptible NOD/Lt strain carried putative resistance alleles from either B6 on Chr 2 or from the highly resistant NON/Lt strain on Chr 9. We conclude that multiple genes control susceptibility to DSS colitis in mice. PossibleDssccandidate genes are discussed in terms of current knowledge of inflammatory bowel disease susceptibility loci in humans.  相似文献   

20.
Human WNT10A and WNT6 were cloned and characterized. WNT10A encoded a 417-amino-acid polypeptide with WNT core domain, and WNT6 encoded a 365-amino-acid polypeptide with N-terminal signal peptide, WNT core domain, and RGD motif. WNT10A and WNT6 genes were clustered in the head-to-tail manner with an interval less than 7.0 kb in human chromosome 2q35 region. Among human WNT family, WNT10A was most homologous to WNT10B (59.2% amino-acid identity), and WNT6 was most homologous to WNT1 (47.4% amino-acid identity). WNT10B and WNT1 genes were also clustered in human chromosome 12q13 region. Two WNT gene clusters in human chromosome 2q35 and 12q13 regions might be generated due to duplication of ancestral gene cluster. The 3.0- and 2.4-kb WNT10A mRNAs were expressed in fetal kidney, placenta, adult spleen and kidney. The 2.0-kb WNT6 mRNA was coexpressed with WNT10A in placenta and adult spleen. WNT10A and WNT6 were strongly coexpressed in SW480 (colorectal cancer). In addition to SW480, WNT10A was strongly expressed in HL-60 (promyelocytic leukemia) and Raji (Burkitt's lymphoma), and WNT6 in HeLa S3 (cervical cancer). Overexpression WNT10A and WNT6 might play key roles in human carcinogenesis through activation of WNT-beta-catenin-TCF signaling pathway, just like Wnt10b and Wnt1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号