首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
Transient oscillations induced by delayed growth response in the chemostat   总被引:2,自引:0,他引:2  
In this paper, in order to try to account for the transient oscillations observed in chemostat experiments, we consider a model of single species growth in a chemostat that involves delayed growth response. The time delay models the lag involved in the nutrient conversion process. Both monotone response functions and nonmonotone response functions are considered. The nonmonotone response function models the inhibitory effects of growth response of certain nutrients when concentrations are too high. By applying local and global Hopf bifurcation theorems, we prove that the model has unstable periodic solutions that bifurcate from unstable nonnegative equilibria as the parameter measuring the delay passes through certain critical values and that these local periodic solutions can persist, even if the delay parameter moves far from the critical (local) bifurcation values.When there are two positive equilibria, then positive periodic solutions can exist. When there is a unique positive equilibrium, the model does not have positive periodic oscillations and the unique positive equilibrium is globally asymptotically stable. However, the model can have periodic solutions that change sign. Although these solutions are not biologically meaningful, provided the initial data starts close enough to the unstable manifold of one of these periodic solutions they may still help to account for the transient oscillations that have been frequently observed in chemostat experiments. Numerical simulations are provided to illustrate that the model has varying degrees of transient oscillatory behaviour that can be controlled by the choice of the initial data.Mathematics Subject Classification: 34D20, 34K20, 92D25Research was partially supported by NSERC of Canada.This work was partly done while this author was a postdoc at McMaster.  相似文献   

2.
In this paper, stability of two-prey, one-predator communities is investigated by Lyapunov's direct method and Hopf's bifurcation theory. Three patterns of three-species coexistence are possible. A globally stable non-negative equilibrium exists for the system even if two competing prey species without a predator cannot coexist. The stable equilibrium bifurcates to a periodic motion with a small amplitude when the predation rate increases. It is also shown that a chaotic motion emerges from the periodic motion when one of two prey has greater competitive abilities than the other. This predator-mediated coexistence can be realized by the intimate relationship between preferences of a predator and competitive abilities of two prey.  相似文献   

3.
Although long-period population size cycles and chaotic fluctuations in abundance are common in ecological models, such dynamics are uncommon in simple population-genetic models where convergence to a fixed equilibrium is most typical. When genotype-frequency cycling does occur, it is most often due to frequency-dependent selection that results from individual or species interactions. In this paper, we demonstrate that fertility selection and genomic imprinting are sufficient to generate a Hopf bifurcation and complex genotype-frequency cycling in a single-locus population-genetic model. Previous studies have shown that on its own, fertility selection can yield stable two-cycles but not long-period cycling characteristic of a Hopf bifurcation. Genomic imprinting, a molecular mechanism by which the expression of an allele depends on the sex of the donating parent, allows fitness matrices to be nonsymmetric, and this additional flexibility is crucial to the complex dynamics we observe in this fertility selection model. Additionally, we find under certain conditions that stable oscillations and a stable equilibrium point can coexist. These dynamics are characteristic of a Chenciner (generalized Hopf) bifurcation. We believe this model to be the simplest population-genetic model with such dynamics.  相似文献   

4.
The cytotoxic T lymphocyte (CTL) response to the infection of CD4+ T cells by human T cell leukemia virus type I (HTLV-I) has previously been modelled using standard response functions, with relatively simple dynamical outcomes. In this paper, we investigate the consequences of a more general CTL response and show that a sigmoidal response function gives rise to complex behaviours previously unobserved. Multiple equilibria are shown to exist and none of the equilibria is a global attractor during the chronic infection phase. Coexistence of local attractors with their own basin of attractions is the norm. In addition, both stable and unstable periodic oscillations can be created through Hopf bifurcations. We show that transient periodic oscillations occur when a saddle-type periodic solution exists. As a consequence, transient periodic oscillations can be robust and observable. Implications of our findings to the dynamics of CTL response to HTLV-I infections in vivo and pathogenesis of HAM/TSP are discussed.  相似文献   

5.
For a single patch SIRS model with a period of immunity of fixed length, recruitment-death demographics, disease related deaths and mass action incidence, the basic reproduction number R(0) is identified. It is shown that the disease-free equilibrium is globally asymptotically stable if R(0)<1. For R(0)>1, local stability of the endemic equilibrium and Hopf bifurcation analysis about this equilibrium are carried out. Moreover, a practical numerical approach to locate the bifurcation values for a characteristic equation with delay-dependent coefficients is provided. For a two patch SIRS model with travel, it is shown that there are several threshold quantities determining its dynamic behavior and that travel can reduce oscillations in both patches; travel may enhance oscillations in both patches; or travel can switch oscillations from one patch to another.  相似文献   

6.
This paper introduces a novel partial differential equation immuno-eco-epidemiological model of competition in which one species is affected by a disease while another can compete with it directly and by lowering the first species' immune response to the infection, a mode of competition termed stress-induced competition. When the disease is chronic, and the within-host dynamics are rapid, we reduce the partial differential equation model (PDE) to a three-dimensional ordinary differential equation (ODE) model. The ODE model exhibits backward bifurcation and sustained oscillations caused by the stress-induced competition. Furthermore, the ODE model, although not a special case of the PDE model, is useful for detecting backward bifurcation and oscillations in the PDE model. Backward bifurcation related to stress-induced competition allows the second species to persist for values of its invasion number below one. Furthermore, stress-induced competition leads to destabilization of the coexistence equilibrium and sustained oscillations in the PDE model. We suggest that complex systems such as this one may be studied by appropriately designed simple ODE models.  相似文献   

7.
Structured population on two patches: modeling dispersal and delay   总被引:3,自引:0,他引:3  
We derive from the age-structured model a system of delay differential equations to describe the interaction of spatial dispersal (over two patches) and time delay (arising from the maturation period). Our model analysis shows that varying the immature death rate can alter the behavior of the homogeneous equilibria, leading to transient oscillations around an intermediate equilibrium and complicated dynamics (in the form of the coexistence of possibly stable synchronized periodic oscillations and unstable phase-locked oscillations) near the largest equilibrium.  相似文献   

8.
Although it is known that two coupled Wilson–Cowan models with reciprocal connections induce aperiodic oscillations, little attention has been paid to the dynamical mechanism for such oscillations so far. In this study, we aim to elucidate the fundamental mechanism to induce the aperiodic oscillations in the coupled model. First, aperiodic oscillations observed are investigated for the case when the connections are unidirectional and when the input signal is a periodic oscillation. By the phase portrait analysis, we determine that the aperiodic oscillations are caused by periodically forced state transitions between a stable equilibrium and a stable limit cycle attractors around the saddle-node and saddle separatrix loop bifurcation points. It is revealed that the dynamical mechanism where the state crosses over the saddle-node and saddle separatrix loop bifurcations significantly contributes to the occurrence of chaotic oscillations forced by a periodic input. In addition, this mechanism can also give rise to chaotic oscillations in reciprocally connected Wilson–Cowan models. These results suggest that the dynamic attractor transition underlies chaotic behaviors in two coupled Wilson–Cowan oscillators.  相似文献   

9.
In the Hodgkin-Huxley equations (HH), we have identified the parameter regions in which either two stable periodic solutions with different amplitudes and periods and an equilibrium point or two stable periodic solutions coexist. The global structure of bifurcations in the multiple-parameter space in the HH suggested that the bistabilities of the periodic solutions are associated with the degenerate Hopf bifurcation points by which several qualitatively different behaviors are organized. In this paper, we clarify this by analyzing the details of the degenerate Hopf bifurcations using the singularity theory approach which deals with local bifurcations near a highly degenerate fixed point. Received: 23 April 1999 / Accepted in revised form: 24 September 1999  相似文献   

10.
Chronic hepatitis B virus (HBV) infection is a major cause of human suffering, and a number of mathematical models have examined within-host dynamics of the disease. Most previous HBV infection models have assumed that: (a) hepatocytes regenerate at a constant rate from a source outside the liver; and/or (b) the infection takes place via a mass action process. Assumption (a) contradicts experimental data showing that healthy hepatocytes proliferate at a rate that depends on current liver size relative to some equilibrium mass, while assumption (b) produces a problematic basic reproduction number. Here we replace the constant infusion of healthy hepatocytes with a logistic growth term and the mass action infection term by a standard incidence function; these modifications enrich the dynamics of a well-studied model of HBV pathogenesis. In particular, in addition to disease free and endemic steady states, the system also allows a stable periodic orbit and a steady state at the origin. Since the system is not differentiable at the origin, we use a ratio-dependent transformation to show that there is a region in parameter space where the origin is globally stable. When the basic reproduction number, R 0, is less than 1, the disease free steady state is stable. When R 0 > 1 the system can either converge to the chronic steady state, experience sustained oscillations, or approach the origin. We characterize parameter regions for all three situations, identify a Hopf and a homoclinic bifurcation point, and show how they depend on the basic reproduction number and the intrinsic growth rate of hepatocytes.  相似文献   

11.
We show the existence of a periodic solution in which four species coexist in competition for three essential resources in the standard model of resource competition. By assuming that species i is limited by resource i for each i near the positive equilibrium, and that the matrix of contents of resources in species is a combination of cyclic matrix and a symmetric matrix, we obtain an asymptotically stable periodic solution of three species on three resources via Hopf bifurcation. A simple bifurcation argument is then employed which allows us to add a fourth species. In principle, the argument can be continued to obtain a periodic solution adding one new species at a time so long as asymptotic stability can be assured at each step. Numerical simulations are provided to illustrate our analytical results. The results of this paper suggest that competition can generate coexistence of species in the form of periodic cycles, and that the number of coexisting species can exceed the number of resources in a constant and homogeneous environment.  相似文献   

12.
 The Hodgkin-Huxley equations (HH) are parameterized by a number of parameters and shows a variety of qualitatively different behaviors depending on the parameter values. We explored the dynamics of the HH for a wide range of parameter values in the multiple-parameter space, that is, we examined the global structure of bifurcations of the HH. Results are summarized in various two-parameter bifurcation diagrams with I ext (externally applied DC current) as the abscissa and one of the other parameters as the ordinate. In each diagram, the parameter plane was divided into several regions according to the qualitative behavior of the equations. In particular, we focused on periodic solutions emerging via Hopf bifurcations and identified parameter regions in which either two stable periodic solutions with different amplitudes and periods and a stable equilibrium point or two stable periodic solutions coexist. Global analysis of the bifurcation structure suggested that generation of these regions is associated with degenerate Hopf bifurcations. Received: 23 April 1999 / Accepted in revised form: 24 September 1999  相似文献   

13.
Summary For a general multiple loop feedback inhibition system in which the end product can inhibit any or all of the intermediate reactions it is shown that biologically significant behaviour is always confined to a bounded region of reaction space containing a unique equilibrium. By explicit construction of a Liapunov function for the general n dimensional differential equation it is shown that some values of reaction parameters cause the concentration vector to approach the equilibrium asymptotically for all physically realizable initial conditions. As the parameter values change, periodic solutions can appear within the bounded region. Some information about these periodic solutions can be obtained from the Hopf bifurcation theorem. Alternatively, if specific parameter values are known a numerical method can be used to find periodic solutions and determine their stability by locating a zero of the displacement map. The single loop Goodwin oscillator is analysed in detail. The methods are then used to treat an oscillator with two feedback loops and it is found that oscillations are possible even if both Hill coefficients are equal to one.  相似文献   

14.
提出一个改进的乙肝病毒感染动力学模型.本模型有三个平衡点.对于HBV感染人群,三个平衡点分别对应于三类人群:感染病毒后自愈人群、健康带毒人群、慢性乙肝患者人群.证明了当模型导出的基本复制数R_0〈1时病毒清除平衡点具有局部稳定性和全局渐近稳定性,当1〈R_0〈k_3d/(k_2λ-k_3a)+1时持续带毒平衡点具有局部稳定性.  相似文献   

15.
Stable periodic oscillations have been shown to exist in mathematical models for the CTL response to HTLV-I infection. These periodic oscillations can be the result of mitosis of infected target CD4+ cells, of a general form of response function, or of time delays in the CTL response. In this study, we show through a simple mathematical model that time delays in the CTL response process to HTLV-I infection can lead to the coexistence of multiple stable periodic solutions, which differ in amplitude and period, with their own basins of attraction. Our results imply that the dynamic interactions between the CTL immune response and HTLV-I infection are very complex, and that multi-stability in CTL response dynamics can exist in the form of coexisting stable oscillations instead of stable equilibria. Biologically, our findings imply that different routes or initial dosages of the viral infection may lead to quantitatively and qualitatively different outcomes.  相似文献   

16.
Under haploid selection, a multi-locus, diallelic, two-niche Levene (1953) model is studied. Viability coefficients with symmetrically opposing directional selection in each niche are assumed, and with a further simplification that the most and least favored haplotype in each niche shares no alleles in common, and that the selection coefficients monotonically increase or decrease with the number of alleles shared. This model always admits a fully polymorphic symmetric equilibrium, which may or may not be stable.We show that a stable symmetric equilibrium can become unstable via either a supercritical or subcritical pitchfork bifurcation. In the supercritical bifurcation, the symmetric equilibrium bifurcates to a pair of stable fully polymorphic asymmetric equilibria; in the subcritical bifurcation, the symmetric equilibrium bifurcates to a pair of unstable fully polymorphic asymmetric equilibria, which then connect to either another pair of stable fully polymorphic asymmetric equilibria through saddle-node bifurcations, or to a pair of monomorphic equilibria through transcritical bifurcations. As many as three fully polymorphic stable equilibria can coexist, and jump bifurcations can occur between these equilibria when model parameters are varied.In our Levene model, increasing recombination can act to either increase or decrease the genetic diversity of a population. By generating more hybrid offspring from the mating of purebreds, recombination can act to increase genetic diversity provided the symmetric equilibrium remains stable. But by destabilizing the symmetric equilibrium, recombination can ultimately act to decrease genetic diversity.  相似文献   

17.
Phase resetting and bifurcation in the ventricular myocardium.   总被引:1,自引:1,他引:0  
With the dynamic differential equations of Beeler, G. W., and H. Reuter (1977, J. Physiol. [Lond.]. 268:177-210), we have studied the oscillatory behavior of the ventricular muscle fiber stimulated by a depolarizing applied current I app. The dynamic solutions of BR equations revealed that as I app increases, a periodic repetitive spiking mode appears above the subthreshold I app, which transforms to a periodic spiking-bursting mode of oscillations, and finally to chaos near the suprathreshold I app (i.e., near the termination of the periodic state). Phase resetting and annihilation of repetitive firing in the ventricular myocardium were demonstrated by a brief current pulse of the proper magnitude applied at the proper phase. These phenomena were further examined by a bifurcation analysis. A bifurcation diagram constructed as a function of I app revealed the existence of a stable periodic solution for a certain range of current values. Two Hopf bifurcation points exist in the solution, one just above the lower periodic limit point and the other substantially below the upper periodic limit point. Between each periodic limit point and the Hopf bifurcation, the cell exhibited the coexistence of two different stable modes of operation; the oscillatory repetitive firing state and the time-independent steady state. As in the Hodgkin-Huxley case, there was a low amplitude unstable periodic state, which separates the domain of the stable periodic state from the stable steady state. Thus, in support of the dynamic perturbation methods, the bifurcation diagram of the BR equation predicts the region where instantaneous perturbations, such as brief current pulses, can send the stable repetitive rhythmic state into the stable steady state.  相似文献   

18.
Some results are presented relating to the question whether self-sustained oscillations are possible in a sequence of biochemical reactions with end- point inhibition. The model used has a single nonlinear ordinary differential equation coupled to a set of linear equations, with all coefficients in the linear terms equal. The explicit algebraic form of the Hopf-Friedrich bifurcation theory is used to show that when the number of coupled equations is large enough this model has a stable periodic solution when the equilibrium point of the equations has just become unstable.  相似文献   

19.
Thresholds, equilibria, and their stability are found for SIQS and SIQR epidemiology models with three forms of the incidence. For most of these models, the endemic equilibrium is asymptotically stable, but for the SIQR model with the quarantine-adjusted incidence, the endemic equilibrium is an unstable spiral for some parameter values and periodic solutions arise by Hopf bifurcation. The Hopf bifurcation surface and stable periodic solutions are found numerically.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号