首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Sexual size dimorphism of adults proximately results from a combination of sexually dimorphic growth patterns and selection on growing individuals. Yet, most studies of the evolution of dimorphism have focused on correlates of only adult morphologies. Here we examined the ontogeny of sexual size dimorphism in an isolated population of the house finch (Carpodacus mexicanus). Sexes differed in growth rates and growth duration; in most traits, females grew faster than males, but males grew for a longer period. Sexual dimorphism in bill traits (bill length, width, depth) and in body traits (wing, tarsus, and tail length; mass) developed during different periods of ontogeny. Growth of bill traits was most different between sexes during the juvenile period (after leaving the nest), whereas growth of body traits was most sexually dimorphic during the first few days after hatching. Postgrowth selection on juveniles strongly influenced sexual dimorphism in all traits; in some traits, this selection canceled or reversed dimorphism patterns produced by growth differences between sexes. The net result was that adult sexual dimorphism, to a large degree, was an outcome of selection for survival during juvenile stages. We suggest that previously documented fast and extensive divergence of house finch populations in sexual size dimorphism may be partially produced by distinct environmental conditions during growth in these populations.  相似文献   

2.
In many hummingbird species there is an opposite pattern of sexual dimorphism in bill length and other morphometric measures of body size. These differences seem to be closely related with differences in foraging ecology directly associated with a different resource exploitation strategy. The aim of this study was to assess if natural selection is acting on wing length and bill size in hummingbird males and females with different resource exploitation strategies (i.e., territorial males and non-territorial females). If competition for resources promotes sexual dimorphism as a selective pressure, males should be subjected to negative directional selection pressure for wing length and no selection pressure over bill size, while females should undergo positive directional selection pressure for both bill size and wing length. The morphometric data we collected suggests that there is no selection for wing length and bill size in male hummingbirds. In contrast, our females exhibited positive directional selection for both wing length and bill size. Although we cannot reject sexual selection acting on sexually dimorphic traits, this study suggests that natural selection may promote sexual dimorphism in traits that are closely related with hummingbird foraging ecology and resource exploitation strategies.  相似文献   

3.
Jacob González-Solís 《Oikos》2004,105(2):247-254
Northern giant petrels ( Macronectes halli ) are among the largest and most sexually size dimorphic species of seabirds, with females being only 80% the mass of males. Both sexes scavenge on seal and penguin carrion in the sub-Antarctic ecosystem, but during the breeding season females also feed extensively on other marine food resources and show more pelagic habits than males. The outstanding sexual segregation in foraging and feeding ecology in northern giant petrels suggests that mechanisms maintaining sexual size dimorphism by ecological factors may be operating. I evaluated this possibility by examining ecological correlates with body size and by static allometry analyses. Fledging sex ratio in four consecutive years did not depart from parity. There was no assortative mating by size neither association between the male size with the breeding performance. By contrast, smaller females raised their chick in better condition. Moreover, bill size showed a size dimorphism beyond that expected by body size dimorphism, i.e. when controlling for body mass, males showed relatively longer bill than females. This trait did not deviate from isometry with respect to body size and its phenotypic variability was low, suggesting that the disproportionately large bill of males is related to their more scavenging life style compared to females. In general, the increase and maintenance of sexual size dimorphism in giant petrels is more consistent with an ecological causation rather than a result of sexual selection.  相似文献   

4.
Bill size is often viewed as a species‐specific adaptation for feeding, but it sometimes varies between sexes, suggesting that sexual selection or intersexual competition may also be important. Hypotheses to explain sexual dimorphism in avian bill size include divergence in feeding niche or thermoregulatory demands, intrasexual selection based on increased competition among males, or female preference. Birds also show seasonal changes in bill size due to shifts in the balance between growth rate and wear, which may be due to diet or endogenous rhythms in growth. Insight into the function of dimorphism can be gained using the novel approach of digital x‐ray imaging of museum skins to examine the degree to which the skeletal core or the rhamphotheca contribute to overall dimorphism. The rhamphotheca is ever‐growing and ever‐wearing, varying in size throughout life; whereas the skeletal core shows determinant growth. Because tidal marsh sparrows are more dimorphic in bill size than related taxa, we selected two marsh taxa to investigate dimorphism and seasonality in the size of the overall bill, the skeletal core, and the rhamphotheca. Bill size varied by sex and season, with males having larger bills than females, and bill size increasing from nonbreeding to breeding season more in males. Skeletal bill size varied with season, but not sex. The rhamphotheca varied primarily with sex; males had a larger rhamphotheca (corrected for skeletal bill size), which showed a greater seasonal increase than females. The rhamphotheca, rather than the skeletal bill, was responsible for sexual dimorphism in overall bill size, which was particularly well developed in the breeding season. The size of the rhamphotheca may be a condition‐based character that is shaped by sexual selection. These results are consistent with the evidence that bill size is influenced by sexual selection as well as trophic ecology.  相似文献   

5.
Sexual dimorphism in relation to current selection in the house finch   总被引:3,自引:0,他引:3  
Abstract.— Sexual dimorphism is thought to have evolved in response to selection pressures that differ between males and females. Our aim in this study was to determine the role of current net selection in shaping and maintaining contemporary sexual dimorphism in a recently established population of the house finch ( Carpodacus mexicanus ) in Montana. We found strong differences between sexes in direction of selection on sexually dimorphic traits, significant heritabilities of these traits, and a close congruence between current selection and observed sexual dimorphism in Montana house finches. Strong directional selection on sexually dimorphic traits and similar intensities of selection in each sex suggested that sexual dimorphism arises from adaptive responses in males and females, with both sexes being far from their local fitness optimum. This pattern is expected when a recently established population experiences continuous immigration from ecologically distinct areas of a species range or as a result of widely fluctuating selection pressures, as found in our study. Strong and sexually dimorphic selection pressures on heritable morphological traits, in combination with low phenotypic and genetic covariation among these traits during growth, may have accounted for close congruence between current selection and observed sexual dimorphism in the house finch. This conclusion is consistent with the profound adaptive population divergence in sexual dimorphism that accompanied very successful colonization of most of the North America by the house finch over the last 50 years.  相似文献   

6.
At least two adaptive processes can lead to the evolution of sexual dimorphism: sexual selection (e.g. male-male combat) or natural selection (e.g. dietary divergence). We investigated the adaptive significance of a distinctive pattern of sexual dimorphism in a south-eastern Australian frog, Adelotus brevis. Male Adelotus grow larger than female conspecifics, have larger heads relative to body size, and have large paired projections (‘tusks’) in the lower jaw. All of these traits are rare among anurans. We quantified the degree of dimorphism in Adelotus, and gathered data on diets and mating systems of this species to evaluate the possible roles of sexual selection and dietary divergence in favoring die evolution of these sexually dimorphic traits. Analysis of prey items in alimentary tracts revealed significant sex differences in prey types. For example, females ate proportionally more arthropods and fewer molluscs than did males. However, this difference is likely to be a secondary consequence of habitat differences between the sexes (due in turn to their different reproductive roles) rather than a selective force for the evolution of sexual dimorphism. Calling males spend their time in moist habitats where pondsnails are abundant, whereas females are more often encountered in the drier arthropod-rich woodlands. A three-year behavioural ecology study on a field population revealed that reproductive males engage in agonistic interactions, with the sexually dimorphic tusks used to attack rivals. Larger body size contributed to male reproductive success. Small males were excluded from calling sites and, among the calling males, larger animals had higher reproductive success (numbers of matings) than did smaller individuals. Hence, the atypical pattern of sexual dimorphism in Adelotus brevis seems to have resulted from sexual selection for larger body size and tusk size in males, in the context of male-male agonistic behaviour, rather than natural selection for ecological divergence between the sexes.  相似文献   

7.
Abstract. Charadrii (shorebirds, gulls, and alcids) have an unusual diversity in their sexual size dimorphism, ranging from monomorphism to either male-biased or female-biased dimorphism. We use comparative analyses to investigate whether this variation relates to sexual selection through competition for mates or natural selection through different use of resources by males and females. As predicted by sexual selection theory, we found that in taxa with socially polygynous mating systems, males were relatively larger than females compared with less polygynous species. Furthermore, evolution toward socially polyandrous mating systems was correlated with decreases in relative male size. These patterns depend on the kinds of courtship displays performed by males. In taxa with acrobatic flight displays, males are relatively smaller than in taxa in which courtship involves simple flights or displays from the ground. This result remains significant when the relationship with mating system is controlled statistically, thereby explaining the enigma of why males are often smaller than females in socially monogamous species. We did not find evidence that evolutionary changes in sexual dimorphism relate to niche division on the breeding grounds. In particular, biparental species did not have greater dimorphism in bill lengths than uniparental species, contrary to the hypothesis that selection for ecological divergence on the breeding grounds has been important as a general explanation for patterns of bill dimorphism. Taken together, these results strongly suggest that sexual selection has had a major influence on sexual size dimorphism in Charadrii, whereas divergence in the use of feeding resources while breeding was not supported by our analyses.  相似文献   

8.
Recent colonization of ecologically distinct areas in North America by the house finch (Carpodacus mexicanus) was accompanied by strong population divergence in sexual size dimorphism. Here we examined whether this divergence was produced by population differences in local selection pressures acting on each sex. In a long-term study of recently established populations in Alabama, Michigan, and Montana, we examined three selection episodes for each sex: selection for pairing success, overwinter survival, and within-season fecundity. Populations varied in intensity of these selection episodes, the contribution of each episode to the net selection, and in the targets of selection. Direction and intensity of selection strongly differed between sexes, and different selection episodes often favored opposite changes in morphological traits. In each population, current net selection for sexual dimorphism was highly concordant with observed sexual dimorphism--in each population, selection for dimorphism was the strongest on the most dimorphic traits. Strong directional selection on sexually dimorphic traits, and similar intensities of selection in both sexes, suggest that in each of the recently established populations, both males and females are far from their local fitness optimum, and that sexual dimorphism has arisen from adaptive responses in both sexes. Population differences in patterns of selection on dimorphism, combined with both low levels of ontogenetic integration in heritable sexually dimorphic traits and sexual dimorphism in growth patterns, may account for the close correspondence between dimorphism in selection and observed dimorphism in morphology across house finch populations.  相似文献   

9.
Sexual dimorphism (SD) is a common feature of animals, and selection for sexually dimorphic traits may affect both functional morphological traits and organismal performance. Trait evolution through natural selection can also vary across environments. However, whether the evolution of organismal performance is distinct between the sexes is rarely tested in a phylogenetic comparative context. Anurans commonly exhibit sexual size dimorphism, which may affect jumping performance given the effects of body size on locomotion. They also live in a wide variety of microhabitats. Yet the relationships among dimorphism, performance, and ecology remain underexamined in anurans. Here, we explore relationships between microhabitat use, body size, and jumping performance in males and females to determine the drivers of dimorphic patterns in jumping performance. Using methods for predicting jumping performance through anatomical measurements, we describe how fecundity selection and natural selection associated with body size and microhabitat have likely shaped female jumping performance. We found that the magnitude of sexual size dimorphism (where females are about 14% larger than males) was much lower than dimorphism in muscle volume, where females had 42% more muscle than males (after accounting for body size). Despite these sometimes-large averages, phylogenetic t-tests failed to show the statistical significance of SD for any variable, indicating sexually dimorphic species tend to be closely related. While SD of jumping performance did not vary among microhabitats, we found female jumping velocity and energy differed across microhabitats. Overall, our findings indicate that differences in sex-specific reproductive roles, size, jumping-related morphology, and performance are all important determinants in how selection has led to the incredible ecophenotypic diversity of anurans.  相似文献   

10.
Sexual size dimorphism is widespread in shorebirds, yet no tests of the assumption that such size dimorphism extends to functionally significant dimensions of the bill exist. This report presents tests of: (1) the assumption that sexual size dimorphism extends to the feeding structures in sexually size dimorphic bird, and (2) the hypothesis that bill-size variation influences feeding performance in Phalaropus lobatus, the red-necked phalarope. Discriminant function analysis revealed that the sexes of this species can be distinguished on the basis of five body size/bill length variables, but with low accuracy in sexing of females because of misclassification of small females as males. In the shorebird literature, the assumption is generally made that in the absence of selection to the contrary, bill size scales to body size and hence sexual size dimorphism extends to bill size. However, discriminant function analysis of measures from red-necked phalaropes failed to separate the sexes on the basis of either external or internal bill dimensions other than length. Nonetheless, internal dimensions of the upper jaw combined with exposed culmen length explained 86% of the variance in feeding performance of phalaropes; high feeding performance depends on a wide, shallow, complex internal bill structure. This study provides evidence that internal bill dimensions determine feeding performance in a manner consistent with the mechanics of surface tension transport of prey. These results suggest that some dimensions of bill size may be constrained by performance demands and demonstrate that variation in bill morphology has functional consequences. © 1996 Wiley-Liss, Inc.  相似文献   

11.
Adaptive divergence of phenotypes, such as sexual dimorphism or adaptive speciation, can result from disruptive selection via competition for limited resources. Theory indicates that speciation and sexual dimorphism can result from identical ecological conditions, but co-occurrence is unlikely because whichever evolves first should dissipate the disruptive selection necessary to drive evolution of the other. Here, we consider ecological conditions in which disruptive selection can act along multiple ecological axes. Speciation in lake populations of threespine sticklebacks (Gasterosteus aculeatus) has been attributed to disruptive selection due to competition for resources. Head shape in sticklebacks is thought to reflect adaptation to different resource acquisition strategies. We measure sexual dimorphism and species variation in head shape and body size in stickleback populations in two lakes in British Columbia, Canada. We find that sexual dimorphism in head shape is greater than interspecific differences. Using a numerical simulation model that contains two axes of ecological variation, we show that speciation and sexual dimorphism can readily co-occur when the effects of loci underlying sexually dimorphic traits are orthogonal to those underlying sexually selected traits.  相似文献   

12.
Current theory and empirical evidence suggests that, if a character is sexually dimorphic as a result of sexual selection, it should be positively allometric (i.e. relatively larger in larger individuals), whereas if the dimorphism is the result of natural selection (e.g. niche divergence), it should be isometric. I show how this can be used to study the selective forces responsible for dimorphic morphological characters, using the monochromatic Marbled Teal Marmaronetta angustirostris as an example. In absolute terms, first-year male teals have a higher body mass, wing length, head length and bill length than females. In relative terms (controlling for body size), males still have longer wings, heads and bills. The scaling in Marbled Teal suggests that bill and head dimorphisms are due to sexual selection, whereas wing dimorphism is due to natural selection. Tail length is sexually monomorphic but positively allometric, possibly because of a display function. Such scaling studies are easy to carry out, and provide a useful complement to direct investigation of the influence of variation in the size of dimorphic characters on mating success, foraging efficiency etc.  相似文献   

13.
Abstract 1. Diversification of some highly host‐specific herbivorous insects may occur in allopatry, without shifts in host use. Such allopatric divergence may be accelerated by sexual selection operating on courtship displays. Wing size and shape may affect visual and vibrational courtship displays in tephritid fruit flies. Geometric morphometric methods were used to examine wings of six sympatric cryptic species in the neotropical genus Blepharoneura. All six species feed on flowers of the same species of host (Gurania spinulosa), a neotropical vine in the Cucurbitaceae. Three of the fly species court and mate in close proximity on the host. Thus, courtship behaviours could serve as important reproductive isolating mechanisms. Two sets of hypotheses were tested: (i) species differ in wing shape and wing size; and (ii) species are sexually dimorphic in wing size and wing shape. Wing size differed among a few species, but wing shape differed significantly among all six species. Sexual dimorphism in wing size was found in only one species, but sexual dimorphism in wing shape was found in two of the three species known to court on the same host plant. In the two sexually dimorphic species, wing shape differed among males, but not among females. This suggests that selection for reproductive character displacement might accelerate divergence in wing shape.  相似文献   

14.
The evolution of sexual dimorphism in species with separate sexes is influenced by the resolution of sexual conflicts creating sex differences through genetic linkage or sex‐biased expression. Plants with different degrees of sexual dimorphism are thus ideal to study the genetic basis of sexual dimorphism. In this study we explore the genetic architecture of sexual dimorphism between Silene latifolia and Silene dioica. These species have chromosomal sex determination and differ in the extent of sexual dimorphism. To test whether QTL for sexually dimorphic traits have accumulated on the sex chromosomes and to quantify their contribution to species differences, we create a linkage map and performed QTL analysis of life history, flower and vegetative traits using an unidirectional interspecific F2 hybrid cross. We found support for an accumulation of QTL on the sex chromosomes and that sex differences explained a large proportion of the variance between species, suggesting that both natural and sexual selection contributed to species divergence. Sexually dimorphic traits that also differed between species displayed transgressive segregation. We observed a reversal in sexual dimorphism in the F2 population, where males tended to be larger than females, indicating that sexual dimorphism is constrained within populations but not in recombinant hybrids. This study contributes to the understanding of the genetic basis of sexual dimorphism and its evolution in Silene.  相似文献   

15.
Differences among taxa in sexual size dimorphism of adults can be produced by changes in distinct developmental processes and thus may reflect different evolutionary histories. Here we examine whether divergence in sexual dimorphism of adults between recently established Montana and Alabama populations of the house finch (Carpodacus mexicanus) can be attributed to population differences in growth of males and females. In both populations, males and females were similar at hatching, but as a result of sex-specific growth attained sexual size dimorphism by the time of independence. Timing and extent of growth varied between the sexes: Females maintained maximum rates of growth for a longer time than males, whereas males had higher initial growth rates and achieved maximum growth earlier and at smaller sizes than females. Ontogeny of sexual dimorphism differed between populations, but in each population, sexual dimorphism in growth parameters and sexual dimorphism at the time of nest leaving were similar to sexual dimorphism of adults. Variation in growth of females contributed more to population divergence than did growth of males. In each population, we found close correspondence between patterns of sexual dimorphism in growth and population divergence in morphology of adults: Traits that were the most sexually dimorphic in growth in each population contributed the most to population divergence in both sexes. We suggest that sex-specific expression of phenotypic and genetic variation throughout the ontogeny of house finches can result in different responses to selection between males and females of the same age, and thus produce fast population divergence in the sexual size dimorphism.  相似文献   

16.
Why are American mink sexually dimorphic? A role for niche separation   总被引:3,自引:0,他引:3  
American mink are highly sexually dimorphic, with males being up to twice the size of females. Sexual dimorphism may arise for several reasons, including intra- or inter-sexual selection, inter-sexual competition, or divergent reproductive roles. Whether or not dimorphism arises from competition, a degree of niche separation is expected in dimorphic species. Sexual divergence in feeding niche has been reported for many species, including mink. This is likely to be manifested in a greater degree of dimorphism in those structures, such as teeth, that are used for the acquisition of prey. We tested the hypothesis that teeth and other trophic structures of male mink would be significantly larger than those of females, after controlling for underlying skeletal size differences. Canine and carnassial teeth, and several skull dimensions, were larger than predicted in males. There is good evidence that sexual dimorphism in mink trophic apparati is greater than predicted from allometry. We examined the development of dimorphism in various features with age and found that it was not consistent. Several trophic features were dimorphic amongst juveniles, and the degree of dimorphism remained relatively constant with age. Dimorphism in canines, and in relative body mass, was less apparent amongst juveniles and increased with increasing age. We discuss our results in the light of contemporary theories on the evolution and maintenance of sexual size dimorphism and argue that niche separation as a result of dimorphism in trophic features, while probably not the driving force behind sexual size dimorphism, may play a role in its maintenance.  相似文献   

17.
The evolution of sexual dimorphism is an important topic of evolutionary biology, but few studies have investigated the determinants of sexual dimorphism over broad phylogenetic scales. The number of vertebrae is a discrete character influencing multiple traits of individuals, and is particularly suitable to analyze processes determining morphological variation. We evaluated the support of multiple hypotheses concerning evolutionary processes that may cause sexual dimorphism in the number of caudal vertebrae in Urodela (tailed amphibians). We obtained counts of caudal vertebrae from >2,000 individuals representing 27 species of salamanders and newts from Europe and the Near East, and integrated these data with a molecular phylogeny and multiple information on species natural history. Per each species, we estimated sexual dimorphism in caudal vertebrae number. We then used phylogenetic least squares to relate this sexual dimorphism to natural history features (courtship complexity, body size dimorphism, sexual ornamentation, aquatic phenology) representing alternative hypotheses on processes that may explain sexual dimorphism. In 18 % of species, males had significantly more caudal vertebrae than females, while in no species did females have significantly more caudal vertebrae. Dimorphism was highest in species where males have more complex courtship behaviours, while the support of other candidate mechanisms was weak. In many species, males use the tail during courtship displays, and sexual selection probably favours tails with more vertebrae. Dimorphism for the number of tail vertebrae was unrelated to other forms of dimorphism, such as sexual ornamentation or body size differences. Multiple sexually dimorphic features may evolve independently because of the interplay between sexual selection, fecundity and natural selection.  相似文献   

18.
动物中普遍存在雌雄个体身体大小的性二态现象。了解近缘种之间身体大小性二态现象的差异,可为深入探讨身体大小性二态现象的潜在驱动机制提供证据。国外对欧亚大山雀(Parus major)的研究发现,其喙长、跗跖长、翅长等 6 项身体大小指标存在着明显的性二态,且喙长的性二态存在季节间差异。大山雀(P. cinereus)曾被作为欧亚大山雀的一个亚种,其形态和行为与欧亚大山雀存在着诸多相似之处。为探讨大山雀是否也存在身体大小性二态及季节性差异,本研究分析了 2018 至 2020 年间在河南董寨国家级自然保护区捕捉的 226 只(雌性 96 只和雄性 130 只)大山雀的喙长、头喙长、跗跖长、翅长、尾长和体长这 6 项体征指标的两性差异及其季节变化。结果显示,大山雀上述 6 项身体大小指标均存在不同程度的性二态现象,且雄性个体仅喙长与雌性的差异不显著,其余 5 项指标均显著大于雌性。此外,身体大小指标的两性差异不随季节显著变化,但两性的跗跖长在秋季均显著短于冬季和繁殖季,尾长在繁殖季均显著长于秋季和冬季。上述结果表明,大山雀身体大小的性二态及其季节性差异与欧亚大山雀并不完全相似。无论其身体大小存在性二态和季节变化的原因,还是其与欧亚大山雀在身体大小性二态模式上的差别,都有待今后进一步的研究。  相似文献   

19.
Strong sex-specific selection on traits common to both sexes typically results in sexual dimorphism. Here we find that Wellington tree weta (Hemideina crassidens) are sexually dimorphic in both head shape and size due to differential selection pressures on the sexes: males use their heads in male-male combat and feeding whereas females use theirs for feeding only. Remarkably, the sexes share a common ontogenetic trajectory with respect to head growth. Male head shape allometry is an extension of the female’s trajectory despite maturing two instars earlier, a feat achieved through ontogenetic acceleration and hypermorphosis. Strong sexual selection also favours the evolution of alternative reproductive strategies in which some males produce morphologically different weapons. Wild-caught male H. crassidens are trimorphic with regard to weapon size, a rare phenomenon in nature, and weapon shape is related to each morph’s putative mating strategy.  相似文献   

20.
鸟类性二态现象广泛存在,比如身体大小、羽色等,性二态很可能是自然选择和性选择共同作用的结果。为了探索和更好地了解雀形目鸟类身体大小性二态的进化,在2019年繁殖季节早期研究了灰椋鸟(Sturnus cineraceus)野外种群身体大小和内脏器官形态的两性差异。结果表明,除嘴宽外,其他身体特征参数均雄性显著大于雌性,表现出雄性偏向的身体大小二态性。内脏器官大小两性间无显著差异。灰椋鸟是聚群生活的鸟类,雌雄鸟常一起觅食,食性相似,雌雄鸟内脏器官和消化道形态差异不显著,暗示食性分化在灰椋鸟身体大小性二态进化中的作用并不明显;雄鸟体型较大的原因可能是其在巢址竞争、配偶保护中适应进化的结果。本研究明确了灰椋鸟身体大小的两性差异,对于该物种身体大小性二态进化的确切原因,尚需更多研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号