首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
微重力下天花粉蛋白晶体生长初探   总被引:1,自引:0,他引:1  
报导了国内首次在微重力下进行蛋白质晶体生长的试验.与地面对照实验所生长的晶体相比较,在空间生长的多数天花粉蛋白晶体具有较完整的外形,初步展示了微重力条件对蛋白质晶体生长所具有的优越性.  相似文献   

2.
我国第2次空间蛋白质晶体生长实验   总被引:1,自引:0,他引:1  
1994年7月,在我国返回式卫星FSW-2上进行了第2次空间蛋白质结晶实验.该次实验中的晶体生长状况明显优于首次空间实验结果,参加实验的10种蛋白质中有9种蛋白质在空间长出了晶体,48个样品的单晶产生率达70%以上.其中3种蛋白质在空间长出较大单晶体,能用于X射线衍射实验和收集强度数据.这3种蛋白质中,除了在首次空间实验中长出较大晶体的溶菌酶,还有由于结晶条件优化而结晶效果明显改进的酸性磷脂酶A2和斑头雁氧合血红蛋白.微重力条件对蛋白质晶体生长的良好效应在本次实验中得到进一步证实.  相似文献   

3.
综述了杂质对蛋白质晶体生长影响研究领域的进展情况. 对可能的杂质来源以及杂质对结晶过程的影响进行了介绍.重点介绍了和结晶蛋白质分子结构相似的杂质分子的影响, 包括晶体成核、生长形态、表面形貌、生长动力学、质量等,以及杂质在晶体中的重新分配.  相似文献   

4.
利用我国返回式卫星和国内研制的蛋白质结晶装置 ,先后进行了 2次空间蛋白质晶体生长实验 ,均获得了质量较好的溶菌酶晶体 .为了探索微重力对溶菌酶晶体结构的影响 ,对 2次空间生长的和地面实验室生长的溶菌酶晶体进行了高精度的晶体结构测定和研究  相似文献   

5.
本文总结了最近以来国外在蛋白质晶体培养方面应用薄层凝胶等电聚焦电泳消除蛋白质样品的微观不均一性,改善晶体质量;在培养蛋白质晶体的溶液中加入适量的洗涤剂,β-辛基葡萄糖苷改善和改变水溶性蛋白质晶体生长的特性;采用聚乙二醇/洗涤剂,或者硫酸铵/洗涤剂体系培养膜蛋白晶体等新方法。  相似文献   

6.
汽相扩散蛋白质晶体生长的优化研究   总被引:1,自引:0,他引:1  
用汽相扩散法生长蛋白质晶体时,水的扩散速率对晶体的生长状况能够产生决定性影响。本文尝试用重量感应法定量考察了某些因素对水扩散时间曲线的影响。结果表明,除了蛋白质液滴与外液间的盐浓度差是影响水扩散的关键因素之外,外液的表面积对水的扩散也有明显的约束作用;此外,蛋白质液滴的初始表面积和蛋白质浓度对水扩散的影响也能从实验结果明显地体现出来。根据这些实验结果,提出了针对汽相扩散蛋白质晶体生长的可行优化路线  相似文献   

7.
杜仲抗真菌蛋白(Eucommiaantifungalprotein,EAFP)的单晶体具有在几小时内就可长大的快速生长特性.用原子力显微成像(atomicforcemicroscope,AFM)技术,原位实时观测了EAFP单斜晶体生长过程中的{10 0}表面形貌动态变化,并分别在不同的过饱和度下测量了其生长速率.结果表明,EAFP晶体生长的速率与蛋白质溶液的过饱和度相关,在过饱和度高时(σ =1 78)晶面生长极快;在中等过饱和度(σ =1 5)下,其晶面台阶的生长速率沿b,c方向分别为 12nm/s和 2 4 2nm/s,比溶菌酶生长速率(6~ 7nm/s)快很多;在蛋白质浓度很低的情况下,其生长速率仍与其他蛋白质相当.EAFP晶体快速生长可能与该分子尺寸较小,内部结构紧凑,分子骨架呈刚性和分子表面性质等其固有特性密切相关.沉淀剂浓度对EAFP晶体生长也有影响.过饱和度很低时,提高沉淀剂浓度会干扰晶体生长.  相似文献   

8.
使用动态光散射仪及微批量法,实时测量了溶菌酶晶体生长过程中,蛋白质颗粒的聚集情况。实验表明当液滴中的溶菌酶分子单体形式占多数,同时也存在一定数目的聚集体时,将会产生晶体。另外还通过观察有无絮状物附着情况下,溶菌酶晶体的生长情况,研究了絮状物对晶体生长速度的影响。实验表明这种由高密度的蛋白质聚集体组成的絮状物附着在晶体表面时,晶体的生长受到抑制。而絮状物会逐渐解体,重构成四方晶体或球状结晶等更稳定的聚集状态。研究在一定程度上揭示了溶液中溶菌酶分子的聚集状态与结晶的关系。  相似文献   

9.
糖基化修饰是一类重要的翻译后修饰,对蛋白质的表达调控,折叠,分泌和功能等方面发挥着关键作用.酶是由活细胞产生的具有高度特异性和高效催化性的生物催化剂,酶的糖基化修饰对其生物催化特性和稳定性具有重要影响.研究糖基化修饰对酶蛋白的影响机制需要获取糖基化酶蛋白的结构,X-射线晶体衍射学是获得结构信息的重要技术手段,在糖基化酶蛋白的晶体衍射研究中,复杂,多样,不均一的糖基化修饰限制了该类酶的晶体生长,这是影响糖基化的酶蛋白结构解析的关键瓶颈问题.因此,如何提高糖基化的酶蛋白可结晶性是当前蛋白质结构研究的热点和难点.糖苷酶的去糖基处理,糖基转移酶抑制剂的引入和异源表达体系优化等手段都是当前研究领域提高糖基化的酶蛋白可结晶性的重要策略,这些手段可以在避免损害糖基化的酶蛋白稳定性和催化活性的同时提高其均一性.  相似文献   

10.
蛋白质晶体生长是用衍射法测定和研究蛋白质三维结构不可缺少的首要步骤,因而对于从分子水平了解生命过程和有效地开发蛋白质工程、理性药物设计等新的生物技术具有重要意义。这一结构测定步骤所处的落后状态,更使蛋白质晶体生长成为倍受重视的研究课题。蛋白质和核酸等生物大分子的结晶是一个受多个因素影响的过程。来自不同学科的研究人员从各个方面对蛋白质的晶体生长开展了研究,并取得了不同程度的进展。  相似文献   

11.
Protein stability is a crucial factor to consider when attempting to crystallize integral membrane proteins. Cubic phase, or in meso, lipid-bilayer crystallization media are thought to provide native-like environments that should facilitate membrane protein crystallization by helping to stabilize the native protein conformation for the duration of the crystallization process. While excellent crystals of bacteriorhodopsin (bR) and other Halobacterial rhodopsins have been obtained in lipid-bilayer gels formed with monoglycerides, success remains elusive in the general application of such media to other membrane proteins. Additionally, we have noted that some mutants of bR are highly unstable in gels formed with monoolein. Phosphatidylethanolamines (PE) and derivatives of PE represent another class of lipids that can form connected-bilayer gels. When wildtype bR and a labile bR mutant were reconstituted into this phospholipid gel, spectroscopy showed that the protein is both more stable and has improved conformational homogeneity as compared to gels formed using monoolein. In addition, we demonstrate that well-diffracting crystals of bR can be grown from a PE-based crystallization medium. Since most proteins lack a stability-indicating chromophore and other structure-based analytical techniques are poorly compatible with the lipid gel, we developed a generally-applicable spectroscopic technique based on the intrinsic fluorescence of tryptophan residues. This fluorescence assay makes possible the rapid evaluation of lipid gels as media for the crystallization of membrane proteins.  相似文献   

12.
Protein crystallization offers great potential in downstream processing of pharmaceutical protein active ingredients. The advantages, which are well known and widely utilized in low‐molecular weight crystallization, can also be expected to be found to some extent in protein crystallization. However, there is still a marked need for improvement in two main areas of protein processing, namely, in crystallization from impure solutions and scale‐up.  相似文献   

13.
Important progress has been made in recent years toward developing a molecular-level understanding of protein phase behavior in terms of the osmotic second virial coefficient, a thermodynamic parameter that characterizes pairwise protein interactions. Yet there has been little practical application of this knowledge to the field of protein crystallization, largely because of the difficult and time-consuming nature of traditional techniques for characterizing protein interactions. Self-interaction chromatography has recently been proposed as a highly efficient method for measuring the osmotic second virial coefficient. The utility of the technique is examined in this work by characterizing virial coefficients for ribonuclease A under 59 solution conditions using several crystallization additives, including PEG, sodium chloride, ammonium sulfate, and propanol. The virial coefficient measurements show some counterintuitive trends and shed light on the previous difficulties in crystallizing ribonuclease A. Crystallization experiments at the corresponding solution conditions were conducted by using ultracentrifugal crystallization. Using this methodology, ribonuclease A crystals were obtained under conditions for which the virial coefficients fell within the "crystallization slot." Crystallographic characterization showed that the crystals diffract to high resolution. Metastable crystals were also obtained for conditions outside, but near, the "crystallization slot," and they could also be frozen and used to collect structural information.  相似文献   

14.
Co-crystallization experiments of proteins with nucleic acids do not guarantee that both components are present in the crystal. We have previously developed DIBER to predict crystal content when protein and DNA are present in the crystallization mix. Here, we present RIBER, which should be used when protein and RNA are in the crystallization drop. The combined RIBER/DIBER suite builds on machine learning techniques to make reliable, quantitative predictions of crystal content for non-expert users and high-throughput crystallography.  相似文献   

15.
Crystallization has been a bottleneck in the X-ray crystallography of proteins. Although many techniques have been developed to overcome this obstacle, the impurities caused by chemical reactions during crystallization have not been sufficiently considered. Oxidation of proteins, which can lead to poor reproducibility of the crystallization, is a prominent example. Protein oxidization in the crystallization droplet causes inter-molecular disulfide bridge formation, formation of oxidation film, and precipitation of proteins. These changes by oxidation are typically irreversible. The best approach for preventing protein oxidization during crystallization is anaerobic crystallization. Here we review the anaerobic crystallization of proteins, which was originally developed to trap a reaction intermediate of the enzyme in the crystal. We also summarize representative anaerobic crystallizations from our laboratory and the general setup of anaerobic crystallization.  相似文献   

16.
The crystallization facility of the TB Structural Genomics Consortium, one of nine NIH-sponsored structural genomics pilot projects, employs a combinatorial random sampling technique in high-throughput crystallization screening. Although data are still sparse and a comprehensive analysis cannot be performed at this stage, preliminary results appear to validate the random-screening concept. A discussion of statistical crystallization data analysis aims to draw attention to the need for comprehensive and valid sampling protocols. In view of limited overlap in techniques and sampling parameters between the publicly funded high-throughput crystallography initiatives, exchange of information should be encouraged, aiming to effectively integrate data mining efforts into a comprehensive predictive framework for protein crystallization.  相似文献   

17.
Protein crystallographers are often confronted with recalcitrant proteins not readily crystallizable, or which crystallize in problematic forms. A variety of techniques have been used to surmount such obstacles: crystallization using carrier proteins or antibody complexes, chemical modification, surface entropy reduction, proteolytic digestion, and additive screening. Here we present a synergistic approach for successful crystallization of proteins that do not form diffraction quality crystals using conventional methods. This approach combines favorable aspects of carrier‐driven crystallization with surface entropy reduction. We have generated a series of maltose binding protein (MBP) fusion constructs containing different surface mutations designed to reduce surface entropy and encourage crystal lattice formation. The MBP advantageously increases protein expression and solubility, and provides a streamlined purification protocol. Using this technique, we have successfully solved the structures of three unrelated proteins that were previously unattainable. This crystallization technique represents a valuable rescue strategy for protein structure solution when conventional methods fail.  相似文献   

18.
The limiting step in macromolecular crystallography is the preparation protein crystals suitable for X-ray diffraction studies. A strong prerequisite for the success of crystallization experiments is the ability to produce monodisperse and properly folded protein samples. Since the production of most protein is usually achieved using recombinant methods, it has become possible to engineer target proteins with increased propensities to form well diffracting crystals. Recent advances in bioinformatics, which takes advantage from an enhanced information in the protein databases, are of enormous help for the design of modified proteins. Based on bioinformatics analyses, the reduction of the structural complexity of proteins or their site-specific mutagenesis has proven to have a dramatic impact on both the yield of heterologous protein expression and its crystallizability. Therefore, protein engineering represents a valid tool which supports the classical crystallization screenings with a more rational approach. This review describes key methods of protein-engineering and provides a number of examples of their successful use in crystallization. Scope of proposed topic: This Topic is focused on state-of-art protein engineering techniques to increase the propensity of proteins to form crystals with suitable X-ray diffraction properties. Protein engineering methods have proven to be of great help for the crystallization of difficult targets. We herein review molecular biology and chemical methods to help protein crystallization.  相似文献   

19.
A systematic approach for improving protein crystals by growing them in the metastable zone using the vapor diffusion technique is described. This is a simple technique for optimization of crystallization conditions. Screening around known conditions is performed to establish a working phase diagram for the crystallization of the protein. Dilutions of the crystallization drops across the supersolubility curve into the metastable zone are then carried out as follows: the coverslips holding the hanging drops are transferred, after being incubated for some time at conditions normally giving many small crystals, over reservoirs at concentrations which normally yield clear drops. Fewer, much larger crystals are obtained when the incubation times are optimized, compared with conventional crystallization at similar conditions. This systematic approach has led to the structure determination of the light-harvesting protein C-phycocyanin to the highest-ever resolution of 1.45 Å.  相似文献   

20.
High-resolution structural data of membrane proteins can be obtained by studying 2D crystals by electron crystallography. Finding the right conditions to produce these crystals is one of the major bottlenecks encountered in 2D crystallography. Many reviews address 2D crystallization techniques in attempts to provide guidelines for crystallographers. Several techniques including new approaches to remove detergent like the biobeads technique and the development of dedicated devices have been described (dialysis and dilution machines). In addition, 2D crystallization at interfaces has been studied, the most prominent method being the 2D crystallization at the lipid monolayer. A new approach based on detergent complexation by cyclodextrins is presented in this paper. To prove the ability of cyclodextrins to remove detergent from ternary mixtures (lipid, detergent and protein) in order to get 2D crystals, this method has been tested with OmpF, a typical beta-barrel protein, and with SoPIP2;1, a typical alpha-helical protein. Experiments over different time ranges were performed to analyze the kinetic effects of detergent removal with cyclodextrins on the formation of 2D crystals. The quality of the produced crystals was assessed with negative stain electron microscopy, cryo-electron microscopy and diffraction. Both proteins yielded crystals comparable in quality to previous crystallization reports.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号