首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
早期用于分离质粒DNA的方法大多数不适用于大质粒的分离。近几年来,随着遗传学实验方法的改进,从事分子生物学研究的科学家相继开发出多种快速、简便的大质粒分离技术,从很多不同种属的细菌中分离到许多大质粒,为分子遗传学的发展做出了贡献。 Eckardt报道了一种分离方法,首先将细菌细胞在Ficoll-溶菌酶混合液中初步软化,再将样品加到琼脂糖凝胶的加样孔中,用SDS裂解,然后进行电泳分离。  相似文献   

2.
为了在原核细胞中表达青岛文昌鱼Branchiostoma belcheri tsingtaunese S-腺苷高半胱氨酸水解酶(S-adeno-sylhomocysteine hydrolase,SAHH),采取构建文昌鱼SAHH基因的原核表达重组质粒pGEX-6P-1-SAHH的方法,转化入大肠杆菌JMl09感受态细胞中,IPTG诱导蛋白表达,并进行分离纯化.结果经SDS-PAGE分析,重组质粒在JM109中表达并纯化得到的融合蛋白大约为70 kDa,成功构建了文昌鱼SAHH基因原核表达载体,且重组载体表达出融合蛋白,分离纯化得到目的蛋白.  相似文献   

3.
目的:构建携带人BNP cDNA片段高效重组腺病毒Ad-hBNP,为实验提供研究工具.方法:从人心肌组织提取的RNA,用RT-PCR方法中获得hBNP扩增片段,与pUCm-T载体连接构成pUC-hBNP重组质粒;用KpnI、SalI分别双酶切pUC-hBNP和pAd-Track-CMV,将目的片段插入pAd-Track-CMV构建重组质粒pAdTrack-CMV-hBNP;pAdTrack-CMV-hBNP重组质粒经Pmcl酶切线性化后,电转法转入含有腺病毒骨架质粒的E.coli BJ5183感受态细胞中,同源重组获得重组质粒pAdEasy-hBNP;经BamHI、PacI酶切鉴定及基因序列检测后,重组成功的pAdEasy-hBNP经阳离子脂质体法转染HEK293T细胞,经过包装、扩增和纯化后,测定病毒滴度,电镜检测病毒形态.结果:转染HEK293T细胞5-6天GFP呈"彗星"状;重组腺病毒滴度为1.1×1012V.P/ml;电镜检测重组腺病毒为多面体结构.结论:应用Ad-Easy缺陷性腺病毒载体系统成功构建重组腺病毒Ad-hBNP,为进一步基因治疗研究提供分子生物学工具.  相似文献   

4.
Jacob,F.等(1)提出的复制子(replicon)假说中,认为细菌染色体是与细胞外膜(cell envelopes)相接触的,这种接触对于子代染色体的分离和染色体复制的控制起重要作用。近年来,有些实验室研究证实,在大肠杆菌中染色体DNA复制起始点(oric)区段是一个重要的接触点。我们从大肠杆菌细胞的外膜中分离并纯化了一个蛋白,分子量为12KD,与质粒pOC42(oric~+-DNA)有亲和力。  相似文献   

5.
[目的]构建IFN-λ1真核表达质粒,利用人胚胎肾HEK293T细胞表达系统,获得具有良好生物学活性的IFN-λ1重组蛋白。[方法]将IFN-λ1目的基因克隆到pcDNA3.1+载体NheⅠ与XhoⅠ多克隆位点构建pcDNA3.1-IFN-λ1分泌表达质粒,并将其转染到HEK293T细胞中;采用Ni-NTA亲和层析方法分离纯化重组蛋白,SDS-PAGE和蛋白免疫印迹(Western Blotting)检测IFN-λ1的表达与纯度;采用qPCR、WB结合显微镜观察检测IFN-λ1的生物学活性。[结果]IFN-λ1真核表达质粒构建正确,而且能够在HEK293T细胞中分泌表达重组蛋白,分离纯化的IFN-λ1能够有效地诱导ISG15、ISG54、ISG56、OAS1、TNFα、MX1和TRAIL等凋亡相关基因的表达,激活p38促凋亡信号通路,抑制水泡性口炎病毒对BHK-21细胞的感染。[结论]成功构建了pcDNA3.1-IFN-λ1真核表达质粒,能够在HEK293T细胞中分泌表达IFN-λ1重组蛋白;分离纯化的IFN-λ1重组蛋白具有潜在的抗肿瘤和抗病毒生物学活性,为进一步研究IFN-λ1的功能和临床应用奠定了基础。  相似文献   

6.
目的:利用昆虫细胞表达系统真核表达并纯化小电导钙激活钾离子通道蛋白1(KCNN1)。方法:以基因重组方法构建杆状病毒穿梭质粒reBacmid-KCNN1,将其转染至杆状病毒/Sf9细胞表达系统表达目的蛋白,并用Western印迹鉴定KCNN1的表达水平;用Ni-IDA-Sepharose CL-6B亲和层析柱纯化裂解细胞上清中的KCNN1,并用Western印迹鉴定纯化结果。结果:KCNN1在Sf9细胞中高效表达,通过亲和层析获得了纯化的KCNN1。结论:膜蛋白KCCN1在昆虫细胞Sf9中的表达与纯化,为深入研究其分子生物学功能提供了材料,也为全长膜蛋白的体外表达提供了一套可借鉴的实验方法。  相似文献   

7.
真核基因表达的调控的研究,是分子生物学最活跃的领域之一。为了深入地对这一问题进行研究,分离特定蛋白质的信使RNA(mRNA)及其基因(DNA)是非常之必需。由于mRNA分子的长度随其所编码的多肽链的长度不同而有很大的差别,因此按其分子量的大小和密度,通过密度梯度超离心的方法,从理论上来说可以得到不同的mRNA。然而到目前为止,用此法只从特定组织或细胞中分离纯化几种蛋白质的mRNA,如分别从网织红血球、蚕丝腺以及早期海胆胚及同步的Hela细胞中分离纯化了血红蛋白、丝蛋白及组蛋白等mRNA,由于这些mRNA多半是这些组织和细胞中mRNA  相似文献   

8.
密度梯度离心技术在分子生物学研究中的应用   总被引:1,自引:0,他引:1  
密度梯度离心技术是随着分子生物学的飞速发展而建立起来的一种重要的实验技术,广泛应用于核酸,蛋白、酶等生物大分子和生物膜、细胞大颗粒,亚细胞颗粒的分离、纯化及分析。可以说七十年代分子生物学研究中许多重大的成果都和这种技术的应用分不开。密度梯度离心大致可分二大类,一类是速率区带密度梯度离心,这类离心主要是利用生物大分子或亚细胞颗粒不同的沉降常数,在离心后分布在不同的预先铺制好的介质密度区,从而达到分离、纯化的目的。离心密度介质主要用蔗糖也可用甘露糖、甘油,多聚糖类、中性硅胶油等。这类离心技术广  相似文献   

9.
根据端粒酶含有蛋白质组分和RNA组分的特点,采用寡核苷酸亲和纯化法从HeLa细胞蛋白粗提物中分离纯化人类端粒酶,纯化产物以TRAP法检测其延伸端粒活性,并采用RNA印迹法进行鉴定,然后从纯化产物中分离蛋白质组分,以SDS-聚丙烯酰胺凝胶电泳检测其蛋白质亚基成分,可见到4种蛋白质亚基成分,与蛋白质分子质量标准比较,有两条位置接近212.2 ku,一条接近116.0 ku,一条接近42.7 ku.结果表明,蛋白质寡核苷酸亲和纯化法一步性分离纯化HeLa细胞端粒酶可得到端粒酶活性片段.  相似文献   

10.
用耐高温的DNA聚合酶进行酶法DNA序列测定在分子生物学中具有十分重要的实际应用价值,从耐高温的嗜热脂肪芽孢杆菌(Bacillusstearothermophilus)特异菌株中克隆分离了编码去除了5′-3′外切酶活性的BstDNA聚合酶大片段的结构基因。经重组于表达质粒载体pYZ23,在大肠杆菌JF1125(EscherichiacoliJF1125)中得到了稳定的高效表达,经分离纯化,此基因工  相似文献   

11.
Supercoiled plasmid DNA was selectively purified from its open circular form by thiophilic interaction chromatography, performed in the presence of high concentrations of water-structuring salts. To identify optimal conditions for purification, various aromatic thioether ligands were coupled to a chromatographic support and screened for their ability to separate plasmid isoforms from each other and from other host cell contaminants, including RNA, genomic DNA, protein, and endotoxins. Selectivity of the chromatographic medium depended on the structure of the ligands, with characteristics of the substituents on the aromatic ring determining the resolution between the different plasmid DNA isoforms. Optimal resolution was obtained with ligands consisting of an thioaromate, substituted with highly electronegative groups. When 2-mercaptopyridine was used as a ligand, the difference in conductivity for eluting open circular and supercoiled plasmid DNA is only 6 mS/cm. However, with 4-nitrothiophol the resolution for plasmid DNA separation on the media increased, resulting in a 20 mS/cm difference. When used in combination with a prior group separation step, these aromatic thioether ligands facilitated the isolation of highly purified supercoiled plasmid DNA, suitable for use in gene therapy and DNA vaccine applications.  相似文献   

12.
The aim of this study was to develop a simple and rapid method for purification of ultrapure supercoiled plasmid DNA with high yields from bacterial cultures. Nanosized superparamagnetic nanoparticles (Fe3O4) were prepared by chemical precipitation method using Fe2+, Fe3+ salt, and ammonium hydroxide under a nitrogen atmosphere. The surface of Fe3O4 nanoparticles was modified by coating with the multivalent cationic agent, polyethylenimine (PEI). The nanoparticles were characterized by transmission electron microscopy, X-ray diffraction, Fourier transformation infrared spectroscopy and superconducting quantum interference device magnetometer. The PEI-modified magnetic nanobeads were employed to simplify the purification of plasmid DNA from bacterial cells. We demonstrated a useful plasmid, pRSETB-EGFP, encoding the green fluorescent protein with T7 promoter, was amplified in DE3 strain of Escherichia coli. The loaded nanobeads are recovered by magnetically driven separation and regenerated by exposure to the elution buffer with optimal ionic strength (1.25 M) and pH (9.0). Up to approximately 35 microg of high-purity (A260/A280 ratio=1.87) plasmid DNA was isolated from 3ml of overnight bacterial culture. EGFP expression was detected by fluorescent microscopy in the transformed E. coli cells, indicating the biological activities of DNA fragments were retained after purified from magnetic nanobeads. The protocol, starting from the preparation of bacterial lysate and ending with purified plasmids takes less than 10 min. Thus, the separation and purification qualities of PEI-modified magnetic nanobeads as well as its ease of use surpass those of conventional anion-exchange resins.  相似文献   

13.
Numerous methods have previously been reported for the final steps in the large-scale purification of plasmid DNA. Although gel permeation and reverse-phase high-performance liquid chromatography have been utilized for this procedure in the past, the limited capacity of these systems often necessitated multiple rounds of chromatography, especially with the high copy number plasmids commonly in use today. In this paper, the use of the high-capacity, high-resolution Protein-Pak DEAE 8HR column is presented for the large-scale isolation of highly purified plasmid DNA from crude E. coli cell lysates. Up to 5 mg of plasmid DNA have been purified in a single 50-minute chromatography run. The purified DNA demonstrated excellent biological activity as demonstrated by restriction endonuclease digestion, E. coli transformation and DNA-mediated gene transfection of eukaryotic cells.  相似文献   

14.
Purification of plasmids by triplex affinity interaction.   总被引:4,自引:1,他引:3       下载免费PDF全文
Production of pharmaceutical grade plasmid DNA is an important issue in gene therapy. We developed a method for affinity purification of plasmids by triple helix interaction. This method is based on sequence-specific binding of an oligonucleotide immobilized on a large pore chromatography support to a target sequence on the plasmid. Using design criteria derived from thermodynamic data, we produced a 15mer target sequence which binds strongly to the affinity support under mildly acidic conditions. Plasmid DNA was purified from clarified Escherichia coli lysate by incubation with the affinity beads at pH 5.0 and high NaCl concentration. After extensive washing of the beads, purified plasmid DNA was eluted with alkaline buffer. The purified plasmid showed no RNA or cell DNA contamination in HPLC analysis and total protein concentration was reduced considerably. Due to its mechanical stability and porosity this support can be used in a continuous affinity purification process, which has a high potential for scale up.  相似文献   

15.
Extracts from HeLa cells were used to study the susceptibility of repair synthesis in UV-irradiated plasmid DNA to inhibition by exogenously added nucleic acid. Purified DNA restriction fragments have little inhibitory effect on repair synthesis. However, activated calf thymus DNA fragments, genomic DNA fragments in cell extracts, and sonicated plasmid DNA all inhibited repair synthesis. Degraded DNA fragments arising from E. coli during bacterial plasmid purification were found to be particularly inhibitory. tRNA is not a potent inhibitor of in vitro repair synthesis. In order to observe efficient DNA repair synthesis mediated by human cell extracts, it is essential to prepare highly purified closed circular plasmid DNA, and we describe a reliable method for doing so.  相似文献   

16.
We have shown previously that a sequence-specific DNA-binding protein based on the Lac repressor protein can isolate pre-purified DNA efficiently from simple buffer solution but our attempts to purify plasmids directly from crude starting materials were disappointing with impractically low DNA yields. We have optimized the procedure and present a simple affinity methodology whereby plasmid DNA is purified directly by mixing two crude cell lysates, one cell lysate containing the plasmid and the other the protein affinity ligand, without the need for treatment by RNaseA. After IMAC chromatography, high purity supercoiled DNA is recovered in good yields of 100-150 microg plasmid per 200 mL shake flask culture. Moreover, the resulting DNA is free from linear or open-circular plasmid DNA, genomic DNA, RNA, and protein, to the limits of our detection. Furthermore, we show that lyophilized affinity ligand can be stored at room temperature and re-hydrated for use when required.  相似文献   

17.
Mitkova AV  Biswas EE  Biswas SB 《Biochemistry》2002,41(16):5255-5265
Plasmid DNA replication in nuclear extracts of Saccharomyces cerevisiae in vitro has been shown to be S-phase specific, similar to that observed in vivo. We report here a reconstituted in vitro system with partially purified replication proteins, purified replication protein A (RPA), and recombinant proliferating cell nuclear antigen (PCNA). Nuclear extracts from S-phase, G(1)-phase, and unsynchronized yeast cells were fractionated by phosphocellulose chromatography. Protein fraction (polymerase fraction) enriched with replication proteins, including DNA polymerases (alpha, delta, etc.), was isolated, which was not capable of in vitro replication of supercoiled plasmid DNA. However, when purified yeast RPA and recombinant PCNA together were added to the polymerase fraction obtained from S-phase synchronized cells, in vitro plasmid DNA replication was restored. In vitro plasmid DNA replication with polymerase fractions from unsynchronized and G(1)-phase cells could not be reconstituted upon addition of purified RPA and PCNA. RPA and PCNA isolated from various phases of the cell cycle complemented the S-phase polymerase pool to the same extent. Reconstituted systems with the S-phase polymerase pool, complemented with either the RPA- and PCNA-containing fraction or purified RPA and recombinant PCNA together, were able to produce replication intermediates (ranging in size from 50 to 1500 bp) similar to that observed with the S-phase nuclear extract. Results presented here demonstrate that both RPA and PCNA are cell cycle-independent in their ability to stimulate in vitro plasmid DNA replication, whereas replication factors in the polymerase fractions are strictly S-phase dependent.  相似文献   

18.
The demand for highly purified plasmids in gene therapy and plasmid-based vaccines requires large-scale production of pharmaceutical-grade plasmid. Plasmid DNA was selectively precipitated from a clarified alkaline lysate using the polycation poly(N,N'-dimethyldiallylammonium) chloride which formed insoluble polyelectrolyte complex (PEC) with the plasmid DNA. Soluble PECs of DNA with polycations have earlier been used for cell transformation, but now the focus has been on insoluble PECs. Both DNA and RNA form stable PECs with synthetic polycations. However, it was possible to find a range of salt concentration where plasmid DNA was quantitatively precipitated whereas RNA remained in solution. The precipitated plasmid DNA was resolubilised at high salt concentration and the polycation was removed by gel-filtration.  相似文献   

19.
The demand for highly purified plasmids in gene therapy and plasmid-based vaccines requires large-scale production of pharmaceutical-grade plasmid. Large-scale purification of plasmid DNA from bacterial cell culture normally includes one or several chromatographic steps. Prechromatographic steps include precipitation with solvents, salts, and polymers combined with enzymatic degradation of nucleic acids. No method alone has so far been able to selectively capture plasmid DNA directly from a clarified alkaline lysate. We present a method for selective precipitation of plasmid DNA from a clarified alkaline lysate using polycation poly(N, N'-dimethyldiallylammonium) chloride (PDMDAAC). The specific interaction between the polycation and the plasmid DNA resulted in the formation of a stoichiometric insoluble complex. Efficient removal of contaminants such as RNA, by far the major contaminant in a clarified lysate, and proteins as well as 20-fold plasmid concentration has been obtained with about 80% recovery. The method utilizes a inexpensive, commercially available polymer and thus provides a capture step suitable for large-scale production.  相似文献   

20.
Abstract To study the effect of plasmids on the arbitrary primer-polymerase chain reaction fingerprint of bacterial strains, the Escherichia coli strains DH5, Top10, and W3110 were transformed with plasmids of different sizes: respectively, pUC19, pCEP and two clinically important plasmids carrying resistance to several antibiotics. Total DNA, i.e. both chromosomal and plasmid DNA, was prepared from transformed cells by boiling the cell suspensions and by phenol-chloroform extraction; chromosomal DNA was prepared by the same methods from the non-transformed, plasmid-free strains; plasmid DNA of pUC19 was purchased; plasmid DNA of pCEP was purified from the transformed strains by caesium chloride density gradient centrifugation. Arbitrarily primed polymerase chain reaction was carried out for all of these preparations. Amplification carried out independently with three different primers resulted in similar patterns for the chromosomal preparations whether or not plasmid was present. Amplification of plasmid DNA gave different patterns, characterized by fragments larger than those obtained when total or chromosomal DNA were used as the target. These data illustrate that the plasmids studied here do not influence the chromosomal arbitrarily primed PCR fingerprint, although plasmids alone are amplified in the absence of chromosomal DNA. Experiments comparing different relative concentrations of plasmid and chromosomal DNA indicate that under natural conditions the amount of chromosomal DNA per cell is sufficient to inhibit observable amplification of the plasmid(s) present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号