首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrification in some tropical soils   总被引:19,自引:0,他引:19  
Summary Nitrification of soil N in 8 mineral and 2 histosols having a wide range in pH (3.4 to 8.6), organic C (1.22 to 22.70%) and total N (0.09 to 1.20%) was studied by measuring nitrate fromation under aerobic incubation of the soil samples at 30°C for 4 weeks. The amounts of NO3-N produced in the soils varied from 0 to 123 μg/g of soil. Soil N in the two acid sulfate soils and one other acid soil did not nitrify under conditions that stimulate nitrification. Soils having pH more than 6.0 nitrified at a rapid rate and released NO3-N ranging from 98 to 123 μg/g. The two organic soils differed considerably in their capacity to nitrify though the total amounts of mineral N released were similar in these soils. The amounts of NO3-N formed in the soils was highly positively correlated with the soil pH but was not significantly correlated with the organic C of total N content of the soils. Statistical analysis also showed that nitrate formation was not significantly correlated with soil pH in soils having pH higher than 6.0.  相似文献   

2.
Brierley  E. D. R.  Wood  M.  Shaw  P. J. A. 《Plant and Soil》2001,231(1):97-104
Soil N transformations were studied at Ironhill, near Liphook, UK as part of a forest fumigation experiment. Nitrification potential was measured in a humoferric podzol soil, of pH 3 (in 0.01 M CaCl2). An initial experiment into nitrogen mineralisation potential indicated that nitrification was linked strongly to the species of coniferous tree growing in the soil. Transfer of soil solution between soils had no influence on mineralisation potential and allelopathic effects of the trees were not demonstrated. The initial finding was attributed subsequently to the type of ground vegetation and its management. Attempts to reproduce soil conditions, which promoted nitrification, were partially successful.Soil, from the Ironhill site, was incubated with various nitrogenous substrates and other nutrients and sources of carbon to test whether heterotrophs were responsible for nitrification. Organic N (which was ammonified) promoted nitrification, but the addition of ammonium was inhibitory unless supplied with a readily available carbon source such as acetate. Nitrification potential was unaffected when soils were incubated with an inhibitor of autotrophic nitrification. The results of these experiments supported strongly the hypothesis that heterotrophic organisms were responsible for nitrification in this soil.  相似文献   

3.
Summary Two laboratory incubation experiments were carried out to study the rate of nitrification of ammonium sulphate and urea in an acid red yellow podzolic tea soil. One experiment was with a soil (A) collected from under a good cover of high yielding clonal tea and the other with a soil (B) collected from a bare plot adjoining the tea field. Soil pH was adjusted with calcium carbonate or calcium oxide. Nitrification was appreciable in soil A whereas it was very low in soil B. Elevation of pH substantially increased nitrification in soil A, slightly increased and even depressed nitrification, in certain treatments, in soil B. The difference in the rates of nitrification in the two soils is discussed in relation to soil fertility.  相似文献   

4.
In a previous study, ammonia-oxidizing bacteria (AOB)-like sequences were detected in the fragmentation layer of acid Scots pine (Pinus sylvestris L.) forest soils (pH 2.9–3.4) with high nitrification rates (>11.0 μg g−1 dry soil week−1), but were not detected in soils with low nitrification rates (<0.5 μg g−1 dry soil week−1). In the present study, we investigated whether this low nitrification rate has a biotic cause (complete absence of AOB) or an abiotic cause (unfavorable environmental conditions). Therefore, two soils strongly differing in net nitrification were compared: one soil with a low nitrification rate (location Schoorl) and another soil with a high nitrification rate (location Wekerom) were subjected to liming and/or ammonium amendment treatments. Nitrification was assessed by analysis of dynamics in NH4 +-N and NO3 -N concentrations, whereas the presence and composition of AOB communities were assessed by polymerase chain reaction–denaturing gradient gel electrophoresis and sequencing of the ammonia monooxygenase (amoA) gene. Liming, rather than ammonium amendment, stimulated the growth of AOB and their nitrifying activity in Schoorl soil. The retrieved amoA sequences from limed (without and with N amendment) Schoorl and Wekerom soils exclusively belong to Nitrosospira cluster 2. Our study suggests that low nitrification rates in acidic Scots pine forest soils are due to pH-related factors. Nitrosospira cluster 2 detected in these soils is presumably a urease-positive cluster type of AOB.  相似文献   

5.
Measuring nitrogen (N) transformations from organic fertilizers can help in selecting applications rates that provide sufficient soluble N to promote tree growth in short-rotation plantations. The objective of this study was to determine how organic fertilizers (papermill biosolids, liquid pig slurry) affected microbially-mediated N transformations in soils. Soil samples were collected from a hybrid poplar plantation before fertilization, 1 month after fertilizer application and at the end of the growing season. Net N mineralization and nitrification were evaluated during a 28 d laboratory incubation, while gross N transformations were assessed using a 15N isotope dilution technique. Pig slurry application increased soil ammonium (NH4-N) and nitrate (NO3-N) concentrations within 1 month, while papermill biosolids increased soil NH4-N and NO3-N concentrations at the end of the growing season. Gross N consumption rates were greater than gross N production rates. The NH4-N and NO3-N consumption rates were positively correlated with labile carbon and microbial biomass. The gross nitrification rate was 18 to 67% of the gross mineralization rate but 30% or less of the gross NH4-N consumption rate, indicating that NH4 consumption was overestimated by the isotope dilution technique. We conclude that N cycling in this hybrid poplar plantation was characterized by rapid consumption of plant-available N following N mineralization and nitrification.  相似文献   

6.
不同氮效率水稻生育后期根表和根际土壤硝化特征   总被引:1,自引:0,他引:1  
通过田间试验研究了不同氮效率粳稻品种4007(氮高效)和Elio(氮低效)生育后期在N0(0 kgN hm-2)、N180(180 kgN hm-2)和N300(300 kgN hm-2)水平下根表、根际和土体土壤pH值、铵态氮(NH+4-N)和硝态氮(NO-3-N)含量、硝化强度和氨氧化细菌(AOB)数量.结果表明无论是齐穗期、灌浆期还是成熟期,根表土壤pH值均显著低于根际和土体土壤.土壤pH值范围在5.95至6.84之间变化.土壤NH+4-N含量随水稻生长显著下降,且随施氮量增加而显著增加.根表土壤NH+4-N有明显亏缺区,且随距水稻根表距离增加,NH+4-N含量逐渐升高.土壤NO-3-N含量随水稻生长显著增加,施氮处理均显著高于不施氮处理,但N180和N300处理差异不显著.NO-3-N含量表现为根际>土体>根表.水稻根表和根际土壤硝化强度随水稻生长显著下降,而土体土壤硝化强度随时间延长小幅增加.施氮显著提高4007水稻根表土壤在齐穗和收获期硝化强度以及Elio在齐穗期根际硝化强度,但在施氮处理N180和N300中无显著差异.在整个采样期间,土壤硝化强度均表现为根际>根表>土体.水稻根表和根际AOB数量随水稻生长而显著降低,而土体土壤AOB数量无显著变化.例如,根表土壤AOB数量在齐穗期、灌浆期和收获期分别为16.7×105、8.77×105个g-1 dry soil和8.01×105个g-1 dry soil.根表和根际土壤AOB数量无显著差异,但二者显著高于土体土壤AOB数量.就两个氮效率水稻品种而言,土壤pH值基本无差异.4007土壤NH+4-N含量均显著高于Elio.在齐穗期水稻根表、根际和土体土壤NO-3-N含量在N180水平下均表现为Elio显著高于4007.而在灌浆期和收获期,水稻根表、根际和土体土壤则表现为4007显著高于Elio.在所有采样期,两个水稻品种土体土壤硝化强度和AOB数量在3个施氮量下均无显著差异.Elio根表和根际土壤硝化强度和AOB数量在水稻灌浆期之前一直显著高于4007,而在灌浆期之后则显著低于4007,且最终产量和氮素利用率(NUE)显著低于4007,这可能是由于4007灌浆期后硝化作用强,根际产生的NO-3-N含量高,从而4007根吸收NO-3-N的量也高造成的.因此水稻灌浆期和收获期根表和根际硝化作用以及AOB与水稻高产及氮素高效利用密切相关.  相似文献   

7.
Abstract Using aerobic soil slurry technique nitrification and nitrous oxide production were studied in samples from a pine site in Western Finland. The site received atmospheric ammonium deposition of 7–33 kg N ha−1 a−1 from a mink farm. The experiments with soil slurries showed that the nitrification potential in the litter layer was higher at pH 6 than at pH 4. However, the nitrification potentials in the samples from the organic and mineral horizons at pH 6 and 4 were almost equal. Also N2O was produced at a higher rate at pH 6 than at pH 4 in slurries of the litter layer samples. The reverse was true for samples from the organic and mineral horizons. The highest N2O production and nitrification rates were measured in the suspensions of litter layer samples. Nitrification activity in field-moist soil samples was lower than the activity in the slurries indicating that the availability of ammonium limited nitrification in these soils. Acetylene (2.5 kPa) retarded nitrification activity (70-–100%) and N2O production (40 – 90%) in soil slurries. Acetylene inhibited the N2O production by 40–60% during the first 3 days after its addition to field-moist samples incubated in aerobic atmosphere. After 3 days the inhibition became much lower (4–5%). The results indicate that, in soil profiles of boreal coniferous forests receiving ammonium deposition, chemolithotrophic nitrification may have importance in the N2O production, and that changes in soil pH affect differently nitrification as well as N2O production in litter and deeper soil layers.  相似文献   

8.
Rates of nitrification in well drained granitic soils from forest stands and grassland of differing successional status and from beneath isolated individuals of several tree species were compared in a series of laboratory experiments. Fresh samples were perfused with distilled water or nutrient solution for 10 to 14 weeks at 20°C. The following treatments were applied to the soils singly and in combination: 200 and 400 g N g–1 as (NH4)2SO4; 100 g P g–1 as KH2PO4; 4000 g CaCO3 g–1; inoculation of non-nitrifying soil with nitrifying soil; perfusion of nitrifying soil with leachate from non-nitrifying soil.Nitrification was absent or occurred at only a low rate in many soils; it generally increased as succession proceeded from nature grassland or eucalypt forest towards climax temperate rainforest, but decreased in mature climax forests. However, the influence of individual tree species was often paramount. Nitrification was stimulated by disturbance of a stand by disease. A possible inhibitor of nitrification in a rainforest soil could not be removed by leaching with water, nor transferred via the leachate to a nitrifying soil. Addition of P was without effect on either total amount of nitrate produced or on net mineralisation of soil N, but sometimes increased the rate of nitrification of added ammonium. Non-nitrifying rainforest soil of pH 4.3 was induced to nitrify only after addition of (NH4)2SO4, inoculation with a nitrifying soil, and addition of CaCO3 to raise pH by 3 units. However, once nitrification had commenced it could continue with little change in rate while pH decreased to a value of 3.4.It was concluded that rate of nitrification is dependent upon the presence of particular tree species in a stand, upon its history of disturbance, and hence in part upon the stand's successional status. It is not limited by pHper se within the range found in these soils, although an increase in pH may be necessary to initiate nitrification. In some soils the rate of nitrification may be limited by the level of ammonium substrate, and nitrifiers are virtually absent from others. Overall microbial activity is limited by lack of utilisable carbon substrate.  相似文献   

9.
H. Ssali 《Plant and Soil》1981,62(1):53-63
Summary The effect of level of CaCO3, inoculation and lime pelleting on the nodulation, dry matter yield and % N content of common bean plants (Phaseolus vulgaris) grown in five acid soils was investigated in a greenhouse study. The soils represented a range in pH from 3.9 to 5.1, in exchangeable Al from 0.0 to 4 meq/100 gm, in exchangeable Mn from 0.35 to 2.32 me/100 gm, and in %C from 0.69 to 5.60.Nodule weight decreased with increasing %C and for the soil with highest %C (5.60) no nodules were observed. In soils with low organic matter and low exchangeable Al and Mn, inoculation increased nodule weight, dry matter yield and %N especially at the lowest pH level. Where the seeds were not inoculated, nodule weight and dry matter yield increased with soil pH. No such increases were observed where the seeds were inoculated. There was no apparent advantage in lime pelleting in such soils.In soils with low organic matter content and with substantial amounts of Al and/or Mn, liming increased nodule weight and dry matter yield, and decreased exchangeable Al and/or Mn. Lime pelleting was superior to mere inoculation in increasing nodule weight particularly at low lime rates.In soils with relatively high organic matter content, nodulation was very low or none at all. Low lime rates had little effect on exchangeable Al and Ca and dry matter yield. Higher lime rates, however, decreased exchangeable Al and dry matter yield but increased exchangeable Ca.  相似文献   

10.
左倩倩  王邵军  王平  曹乾斌  赵爽  杨波 《生态学报》2021,41(18):7339-7347
蚂蚁作为生态系统工程师能够调节土壤微生物及理化环境,进而对热带森林土壤有机氮矿化速率及其时间动态产生显著影响。以西双版纳白背桐热带森林群落为研究对象,采用室内需氧培养法测定土壤有机氮矿化速率,比较蚁巢和非蚁巢土壤有机氮矿化速率的时间动态,揭示蚂蚁筑巢活动引起土壤无机氮库、微生物生物量碳及化学性质改变对有机氮矿化速率时间动态的影响。结果表明:(1)蚂蚁筑巢显著影响土壤有机氮矿化速率(P<0.01),相较于非蚁巢,蚁巢土壤有机氮矿化速率提高了261%;(2)土壤有机氮矿化速率随月份推移呈明显的单峰型变化趋势,即6月最大(蚁巢1.22 mg kg-1 d-1、非蚁巢0.41 mg kg-1 d-1),12月最小(蚁巢0.82 mg kg-1 d-1、非蚁巢0.18 mg kg-1 d-1);(3)两因素方差分析表明,不同月份及不同处理对土壤有机氮矿化速率、NH4-N及NO3-N产生显著影响(P<0.05),但对NO3-N的交互作用不显著;(4)蚂蚁筑巢显著提高了无机氮库(NH4-N与NO3-N)、微生物生物量碳、有机质、水解氮、全氮及易氧化有机碳等土壤养分含量,而降低了土壤pH值;(5)回归分析表明,铵态氮和硝态氮对土壤有机氮矿化速率产生显著影响,分别解释87.89%、61.84%的有机氮矿化速率变化;(6)主成份分析表明NH4-N、微生物生物量碳及有机质是影响有机氮矿化速率时间动态的主要因素,而全氮、NO3-N、易氧化有机碳、水解氮及pH对土壤有机氮矿化速率的影响次之,且pH与土壤有机氮矿化速率呈显著负相关。总之,蚂蚁筑巢活动主要通过影响土壤NH4-N、微生物生物量碳及有机质的状况,进而调控西双版纳热带森林土壤有机氮矿化速率的时间动态。研究结果将有助于进一步提高对土壤氮矿化生物调控机制的认识。  相似文献   

11.
The effect of soil burning on N and P availability and on mineralization and nitrification rates of N in the burned mineral soil was studied by combustion of soils in the laboratory. At a fire temperature of 600°C, there was a complete volatilization of NH4 and a significant increase of pH, from 7.6 in the unburned soil to 11.7 in the burned soil. Under such conditions ammonification and nitrification reactions were inhibited. Less available P was produced immediately after the fire at 600°C, as compared to P amount produced at 250°C. Burning the soils with plants caused a decrease in NH4-N and (NO2+NO3)-N concentrations in the soil as well as a reduction in ammonification and nitrification rates. Combustion of soil with plants contributed additional available P to the burned soil. The existence of a non-burned soil under the burned one played an important role in triggering ammonification and nitrification reactions.  相似文献   

12.
选择位于滇西北高原纳帕海国际重要湿地内的典型沼泽化草甸湿地为研究对象,采用原位土柱室内控制实验法研究了放牧干扰(猪翻拱扰动和牲畜践踏)对沼泽化草甸湿地土壤氮转化的影响。研究结果表明,放牧活动显著提高了沼泽化草甸湿地表层土壤的容重和pH值,降低了土壤含水率、TOC、TN和NH_4~+-N含量,而对NO_3~--N含量影响不显著。放牧干扰下沼泽化草甸湿地土壤的矿化速率和硝化速率均表现为猪翻拱扰动样地(ZG)牲畜践踏样地(JT)对照样地(CK);表现为ZGJTCK。放牧干扰促进了沼泽化草甸湿地土壤的矿化和硝化作用,猪的翻拱活动比牲畜践踏活动对土壤氮矿化和硝化作用的促进作用更显著。放牧干扰下沼泽化草甸湿地土壤的反硝化速率表现为ZGCKJT,猪的翻拱活动促进了土壤N_2O气体的排放,而牲畜践踏活动抑制了土壤N_2O气体的排放。相关性分析表明,受放牧干扰的沼泽化草甸湿地土壤的矿化和硝化速率均与土壤容重、pH呈显著正相关,与土壤含水率、NH_4~+-N、TOC、TN含量呈显著负相关;反硝化速率与TOC含量呈显著负相关。  相似文献   

13.
Soil nitrogen mineralisation and nitrification potentials, and soil solution chemistry were measured in black locust (Robinia pseudo-acacia L.), in pine-mixed hardwood stands on an early successional watershed (WS6), and in an older growth oak-hickory forest located on an adjacent, mixed hardwood watershed (WS14) at Coweeta Hydrologic laboratory, in the southern Appalachian mountains, U.S.A. Nitrification potentials were higher in black locust and pine-mixed hardwood early successional stands than in the oak-hickory forest of the older growth watershed. Ammonification rates were the main factor controlling nitrification in the early successional stands. There was no evidence of inhibition of nitrification in soils from the older growth oak-hickory forest site.Within the early successional watershed, black locust sites had net mineralisation and nitrification rates at least twice as high as those in the pine mixed-hardwood stands. Concentrations of exchangeable nitrate in the soil of black locust stands were higher than in pine-mixed hardwoods at 0–15 cm in March and they were also higher at 0–15, 16–30 and 31–45 cm depth in the black locust dominated sites in July. Soil solution nitrate concentrations were higher under black locust than under pine-mixed hardwoods. Areas dominated by the nitrogen fixing black locust had greater nitrogen mineralisation and nitrification rates, resulting in higher potential for leaching losses of nitrate from the soil column in the early successional watershed.  相似文献   

14.
滇西北高原纳帕海湿地土壤氮矿化特征   总被引:8,自引:4,他引:4  
解成杰  郭雪莲  余磊朝  许静 《生态学报》2013,33(24):7782-7787
采用树脂芯原位培育法,研究了纳帕海沼泽、沼泽化草甸和草甸土壤氮的矿化特征。结果表明,铵态氮(NH4+-N)为沼泽、沼泽化草甸土壤中无机氮的主要存在形式,分别占无机氮含量的96.76%和75.24%,而硝态氮(NO3--N)为草甸土壤中无机氮的主要存在形式,占无机氮含量的58.77%。植物生长期内,纳帕海湿地土壤的净氮矿化速率表现为沼泽化草甸 > 草甸 > 沼泽,表明干湿交替的土壤环境更利于土壤氮矿化作用的进行,土壤中氮素有效性和维持植物可利用氮素的能力更强。整个生长季,沼泽和草甸土壤氮矿化为硝化作用,而沼泽化草甸土壤氮矿化为氨化作用。土壤硝态氮含量、有机质含量、碳氮比和含水量均对纳帕海沼泽、沼泽化草甸和草甸土壤的氮矿化产生显著影响。  相似文献   

15.
南方丘陵红壤茶园长期受到酸沉降的胁迫,但茶树根际氮(N)、磷(P)转化过程对酸雨的响应及其机制尚不清楚.以江西典型丘陵红壤25年茶园为对象,开展pH 4.5、pH 3.5、pH 2.5及对照4种不同强度酸雨处理的原位模拟试验,于试验第3年测定根际和非根际土壤矿质N、速效P和相关酶的活性,并估测土壤N、P矿化速率,计算各变量的根际效应.结果表明: 与对照相比,pH 4.5、pH 3.5和pH 2.5处理根际土壤NO3--N含量分别降低了7.1%、42.1%和49.9%,矿质N分别降低了6.4%、35.9%和40.3%,速效P分别降低了10.5%、41.1%和46.9%;根际氨化速率分别降低了18.7%、30.1%和44.7%,N净矿化速率分别降低了3.6%、12.7%和38.8%,P矿化速率分别降低了31.5%、41.8%和63.0%,但不同处理之间根际硝化速率差异不显著;根际土壤脲酶和酸性磷酸酶活性均表现为随酸雨加重呈增强的趋势(P<0.05).非根际土壤除NH4+-N外,其他有效N和P含量未随酸雨加重而改变;不同酸雨处理对非根际土壤氨化、硝化、N净矿化速率和P矿化速率的影响差异均不显著.根际NH4+-N、NO3--N、矿质N、氨化和净矿化速率均随着酸雨强度加重由正效应转变为负效应,而脲酶和酸性磷酸酶活性由负效应转变为正效应,但速效P和P矿化速率始终表现为负效应,硝化速率始终为正效应.综上所述,连续酸雨加重总体上抑制了根际N、P转化,降低其有效性,且不同程度改变其根际效应,从而影响茶园养分循环.  相似文献   

16.
Nitrification following ureolysis in soil samples from tea growing soils (pH 4.5–5.5) was found to be chiefly due to the activity of heterotrophic bacteria belonging to generaBacillus, Arthrobacter, Sporosarcina, Micrococcus, Clostridium, Pseudomonas andProteus. A correlation between the intensity of ureolytic activity of organisms in a given soil sample and the yield levels of tea was observed. In culture media the increase in the quantity of NH 4 + -N indicating ureolysis was not accompanied by proportional increase in biomass. Ureolysis and nitrification in sterile soil sample inoculated with the isolates improved through amendment of organic carbon to the soil.  相似文献   

17.
不同土地利用类型对丹江口库区土壤氮矿化的影响   总被引:10,自引:0,他引:10       下载免费PDF全文
氮(N)素是陆地生态系统净初级生产力的重要限制因子, 土地利用类型的变化对生态系统氮循环过程有着重要的影响。采用PVC顶盖埋管原位培养的方法, 对丹江口库区清塘河流域相邻的侧柏(Platycladus orientalis)人工林、人工种植灌木林地和农田3种土地利用类型的氮素矿化和硝化作用进行了研究。结果表明, 侧柏人工林、灌木林地和农田的NH4+-N浓度(mg·kg-1)依次为1.33 ± 0.20、1.67 ± 0.17和1.62 ± 0.13, 不同土地利用类型间的NH4+-N浓度无显著性差异; 而3种土地利用类型下土壤NO3--N浓度(mg·kg-1)差异显著, 农田NO3--N浓度(9.00 ± 0.73)显著高于侧柏人工林(1.27 ± 0.18)和灌木林地(3.51 ± 0.11)。NO3--N在灌木林地和农田中分别占土壤无机氮库的67.8%和84.8%, 是土壤无机氮库的主要存在形式; 而侧柏人工林中NO3--N和NH4+-N浓度则基本相等。土壤硝化速率(mg·kg-1·30 d-1)从农田(7.13 ± 2.19)、灌木林地(2.56 ± 1.07)到侧柏人工林(0.85 ± 0.10)显著性降低。侧柏人工林、灌木林地和农田的矿化速率(mg·kg-1·30 d-1)依次为0.98 ± 0.12、2.52 ± 1.25和6.58 ± 2.29。矿化速率和硝化速率显著正相关, 但是矿化速率在不同的土地利用类型间差异不显著。培养过程中灌木林地和农田NH4+-N的消耗大于积累, 氨化速率为负值, 导致灌木林地和农田矿化速率小于硝化速率。氮素的矿化和硝化作用受土壤含水量和土壤温度的影响, 并对土壤含水量更为敏感。土壤C:N与土壤矿化和硝化速率显著负相关。研究结果表明: 土地利用类型的变化会改变土壤微环境和土壤C:N, 进而会影响到土壤氮循环过程。  相似文献   

18.
The influence of added ammonium, phosphorus, potassium, and gypsum on net nitrogen mineralization was studied in soil beneath a six-year-old plantation of the N2-fixing tree Dalbergia sissoo in Pakistan. Soil with and without amendments was placed in polyethylene bags and incubated, buried in the soil, for 30 days. After that time the soil was analyzed and net ammonium and nitrate production and net nitrogen mineralization were calculated. The addition of ammonium stimulated nitrification indicating that the process was substrate limited. The inhibition of nitrification by Nitrapyrin showed that the process is autotrophic in these soils. Gypsum addition lowered soil pH from 8.0 to 7.2 and significantly stimulated ammonification, nitrification and net nitrogen mineralization. The addition of potassium more than tripled the soil K:Na ratio. Net ammonium and nitrate production and net nitrogen mineralization all increased in this treatment. The addition of phosphorus had no significant effect on soil nitrogen dynamics.  相似文献   

19.
Soil percolation columns in which a pF of 2 could be maintained were developed to study nitrification in soils and litter of an acid and a calcareous forest soil location. High nitrification rates were observed in the calcareous soil. In the acid soil nitrification was much slower. A column filled with leaf litter gave a low nitrification rate at the start of the experiment, but a high rate was found after 60 days of percolation with an ammonium-containing medium of pH 4. In this leaf litter high numbers of autotrophic bacteria were just present at the beginning of the experiment, whereas at the end only low numbers were detected. Results indicate that autotrophic bacteria from acid soils are sensitive to a pH increase.  相似文献   

20.
Chen Qian  Zucong Cai 《Plant and Soil》2007,300(1-2):197-205
A soil column method was used to determine the effect of nitrification on leaching of nitrate and ammonium from three acid subtropical soils after application of ammonium bicarbonate. Three soils, designated QF, GB and SU, derived from Quaternary red earth, granite and tertiary red sandstone, were collected from forest land, brush land and upland field, ranged in nitrification potential and cation exchange capacity. The results indicated that nitrate leaching increased with the soil nitrification potential. The soils with higher nitrification potential had a higher nitrate peak concentration and required a shorter time to reach it. In soils QF and GB with low cation exchange capacity, and a low content of exchangeable base cations, there were not sufficient base cations to accompany the nitrate leached with the result that ammonium and hydrogen ions were leached from the soil, and pH changes occurred in different layers of the soil column.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号