首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Studies were conducted to ascertain any involvement of free radical mediated prooxidative processes in different brain regions following diazopam administration. A significant decrease in TBA reactive substance formation was observed in cerebral cortex, cerebellum and brain stem regions after single doses of 1.5, 3 and 6 mg/kg b.wt. For further studies rats were given diazepam (i.p.) at 3 mg/kg body weight dose and sacrificed after 1 h to follow changes in the pro/antioxidant status. An enhancement in the TBARS formation was found in the mitochondrial fractions from cerebral cortex and brain stem. This effect was highest in brain stem being 107% as compared to controls. In the post mitochondrial fraction, cerebellum showed 49% enhancement whereas decreased formation of thiobarbituric acid reactive substances was observed in cerebral cortex and brain stem. Isozymes of superoxide dismutase showed a decrease in activity which was region dependent. Even though, total thiols were not significantly altered, free thiols showed depletion in cerebellum (39.8%) and brain stem (50%). Glutathione reductase activity was also decreased in cerebellum and brain stem. The results indicate that a single dose of diazepam causes free radical mediated changes and the modulatory response of antioxidant defences appears to be region specific.  相似文献   

2.
The present study was performed to investigate the effects of Valeriana wallichi (VW) aqueous root extract on sleep-wake profile and level of brain monoamines on Sprague-Dawley rats. Electrodes and transmitters were implanted to record EEG and EMG in freely moving condition and the changes were recorded telemetrically after oral administration of VW in the doses of 100, 200 and 300 mg/kg body weight. Sleep latency was decreased and duration of non-rapid eye movement (NREM) sleep was increased in a dose dependent manner. A significant decrease of sleep latency and duration of wakefulness were observed with VW at doses of 200 and 300 mg/kg. Duration of NREM sleep as well as duration of total sleep was increased significantly after treatment with VW at the doses of 200 and 300 mg/kg. VW also increased EEG slow wave activity during NREM sleep at the doses of 200 and 300 mg/kg. Level of norepinephrine (NE), dopamine (DA), dihydroxyphenylacetic acid (DOPAC), serotonin (5-HT) and hydroxy indole acetic acid (HIAA) were measured in frontal cortex and brain stem after VW treatment at the dose of 200mg/kg. NE and 5HT level were decreased significantly in both frontal cortex and brain stem. DA and HIAA level significantly decreased only in cortex. DOPAC level was not changed in any brain region studied. In conclusion it can be said that VW water extract has a sleep quality improving effect which may be dependent upon levels of monoamines in cortex and brainstem.  相似文献   

3.
Abstract: The effects of a novel prolyl endopeptidase (PEP) inhibitor, ( S )-2-[[( S )-2-(hydroxyacetyl)-1-pyrrolidinyl]carbonyl]- N -(phenylmethyl)-1-pyrrolidinecarboxamide (JTP-4819), on the PEP activity in the brain and on the contents of substance P (SP)- and arginine-vasopressin (AVP)-like immunoreactivity (LI) in the cerebral cortex and hippocampus of young and aged rats were investigated using enzyme immunoassay. JTP-4819 exhibited a concentration-dependent in vitro inhibitory action on PEP activity in the brains of both young and aged rats, with IC50 values of ∼0.7 and 0.8 n M , respectively. A single dose of JTP-4819 (3 mg/kg, p.o.) increased the SPLI content in the cerebral cortex but not the hippocampus of aged rats (23–24 months old). In addition, repeated administration of JTP-4819 (1 mg/kg, p.o., for 21 days) increased the SPLI content in the cerebral cortex and restored the SPLI content in the hippocampus, which had decreased with aging. In contrast, single (1 mg/kg, p.o.) and repeated (1 mg/kg, p.o., for 21 days) administration of JTP-4819 only tended to increase the AVPLI content of the hippocampus and cerebral cortex in aged rats, respectively. These results indicate that JTP-4819 increases the cerebral and hippocampal SPLI content in aged rats by inhibiting the action of PEP.  相似文献   

4.
The present study aimed at characterizing the effect of partial 5-HT denervation by parachloroamphetamine (PCA), a 5-HT selective neurotoxin, on forced swimming behaviour and monoamine levels in several rat brain regions. PCA was administered intraperitoneally in two independent experiments in doses of 2, 4 and 6 mg/kg and in doses 1, 2, 4 mg/kg, respectively. PCA (2 mg/kg) reduced immobility in the forced swimming test in the Experiment 1 and according to Experiment 2 this is explained by increased swimming time. Dose-dependent reductions in 5-HT and 5-HIAA levels were found in all brain regions studied, and the maximal effects were of a similar magnitude. In septum, the effect of PCA took more time to develop. The effects of the lowest dose of PCA suggest that the neurotoxin affects not only the dorsal raphe projection areas but also the fine axons which arise from the median raphe. alpha2-Adrenoceptors and beta-adrenoceptors in cerebral cortex were not affected by the PCA treatment. Binding affinity of the 5-HT(1A) receptors was higher after all doses of PCA. On the second exposure to the forced swimming the time spent in swimming was found to be negatively and the time spent in immobile posture positively correlated with serotonin turnover in frontal cortex. The time spent in struggling on the second exposure to test was found to be negatively correlated with KD of beta-adrenoceptor binding in cerebral cortex. These data suggest that partial 5-HT denervation with low doses of PCA, which elicits a specific pattern of neurodegeneration, results in an increased behavioural activity, and that the traditional interpretation of the measures in forced swimming test, despite of the test's predictive power in revealing antidepressants acting on monoaminergic systems, is not adequate for studies on the neurochemical basis of depression.  相似文献   

5.
The effects of intraperitoneally administered 4-(1-naphthylvinyl)pyridine (NVP; 200 mg/kg) on the concentrations of acetylcholine (ACh), choline (Ch), and acetyl-CoA (AcCoA) in rat striatum, cortex, hippocampus, and cerebellum were investigated. Twenty minutes after treatment, the content of ACh was significantly diminished, whereas that of Ch was increased. In response to stress (swimming for 20 min), these changes were enhanced. However, the AcCoA content did not change in any of the brain regions. It is thus very likely that the decrease of brain ACh concentration induced by NVP is due to the drug's effect on choline acetyltransferase (ChAT) and/or the reduction of the high-affinity Ch uptake, and not on the availability of AcCoA. Presumably, the pharmacologically diminished activity of ChAT may become the rate-limiting factor in the maintenance of ACh levels in cholinergic neurons.  相似文献   

6.
反复摄取烟碱对脑肌醇含量的影响   总被引:1,自引:0,他引:1  
急性实验中,间隔5min反复注射烟碱0.5,1.0,1.0,2.0,2.0mg/kgip,30min后大鼠大脑皮层及海马中肌醇含量升高,但纹状体中肌醇含量无显著变化;相同条件下,氯化锂10mmol/kgip30min后大脑皮层和海马中肌醇含量显著降低;慢性实验中,烟碱2.0-10.0mg/kgscbid14d后,大鼠大脑皮层中肌醇含量显著增高;烟碱2.69-11.53mg/kg/dpo64d后,大鼠大脑皮层中肌醇含量也显著增高。表明烟碱的作用不同于氯化锂,反复给予烟碱可使大鼠大脑皮层中肌醇含量增加。  相似文献   

7.
Acute and chronic ammonia toxicity was produced in the mice by intraperitoneal injection of ammonium chloride (200 mg/kg) and by exposure of mice to ammonia vapours (5% v/v) continuously for 2 days and 5 days respectively. The ammonia content was elevated in the cerebellum, cerebral cortex and brain stem and in liver. In acute ammonia intoxication there was a decrease in the monoamine oxidase (MAO) activity in all the three regions of brain. In chronic ammonia toxicity (2 days of exposure) a significant increase in the activity of MAO was observed in the cerebral cortex while in cerebellum and brain stem there was a significant decrease. In cerebral cortex and cerebellum there was a rise in the activity of MAO as a result of exposure to ammonia vapours for 5 days. A significant decrease was observed in the activity of glutamate decarboxylase (GAD) in all the three regions of the brain both in acute and chronic ammonia toxicity (2 days). There was a decrease in the activity of this enzyme only in the cerebral cortex in the animals exposed to ammonia for 5 days. The activity of GABA-aminotransferase (GABA-T) showed a significant rise in cerebellum and a fall in the brain stem in acute ammonia toxicity. In chronic ammonia toxicity GABA-T showed a rise in all the three regions of brain. Chronic ammonia toxicity produced a significant decrease in the content of glutamate in all the three regions without a significant change in the content of aspartate. GABA and glutamine. The content of alanine increased in all the three regions of brain under these experimental conditions. The ratio of glutamate + aspartate/GABA and glutamate/glutamine showed a decrease in all the three regions as a result of ammonia toxicity.  相似文献   

8.
Organotellurium compounds have been synthesized since 1840, but pharmacological and toxicological studies about them are still incipient. Therefore, the objective of this study was to verify the effect of acute administration of the organochalcogen 3-butyl-1-phenyl-2-(phenyltelluro)oct-en-1-one on some parameters of oxidative stress in the brain of 30-day-old rats. Animals were treated intraperitoneally with a single dose of the organotellurium (125, 250, or 500 μg/kg body weight) and sacrificed 60 min after the injection. The cerebral cortex, the hippocampus, and the cerebellum were dissected and homogenized in KCl. Afterward, thiobarbituric acid reactive substances (TBARS), carbonyl, sulfhydryl, catalase (CAT), superoxide dismutase (SOD), nitric oxide (NO) formation, and hydroxyl radical production were measured in the brain. The organotellurium enhanced TBARS in the cerebral cortex and the hippocampus, and increased protein damage (carbonyl) in the cerebral cortex and the cerebellum. In contrast, the compound provoked a reduced loss of thiol groups measured by the sulfhydryl assay in all the tissues studied. Furthermore, the activity of the antioxidant enzyme CAT was reduced by the organochalcogen in the cerebral cortex and the cerebellum, and the activity of SOD was inhibited in all the brain tissues. Moreover, NO production was increased in the cerebral cortex and the cerebellum by this organochalcogen, and hydroxyl radical formation was also enhanced in the cerebral cortex. Our findings indicate that this organotellurium compound induces oxidative stress in the brain of rats, corroborating that this tissue is a potential target for organochalcogen action.  相似文献   

9.
Naphthylvinylpyridine (NVP) in the cat cerebral cortex (50 mg/kg) and in the mouse brain (100 and 250 mg kg) caused inhibition of choline acetyltransferase (ChA) and didn't influence the acetyl- and butyrilcholinesterase activity and acetylcholine (Ach) content in the mouse brain. NVP (25 mg/kg) failed to influence the ChA activity. Pretreatment with NVP (25 and 250 mg/kg) increased the duration of hexenal sleep in mice greatly, and a dose of 250 mg/kg (but not of 25 mg/kg) enhanced the atropine activity in mice poisoned with armine. NVP (250 mg/kg) reduced the release of Ach from the cerebral cortex of a cat, spontaneous and evoked by atropine and electrical stimulation of the reticular formation of the brain stem. A conclusion was drawn that the pharmacological effect of NVP when the latter was applied in combination with atropine and armine could be connected with the anti-Cha action and the inhibition of the newly-formed Ach, rather than with depression of the microsomal enzymes.  相似文献   

10.
Pregangliaaonic stimulation of the cat's superior cervical ganglion in the presence of hemicholinium-3 (HC-3) produced the expected depletion of acetylcholine (ACh) stores, but failed to cause a corresponding reduction in the choline content. These results suggest that either HC-3 possesses an intracellular site of action or that in lower doses it selectively inhibits a specialized choline transport system in cholinergic nerves. At a dose of 2 mg/kg, HC-3 probably blocked ACh synthesis completely in ganglia stimulated at 20 Hz. Under these conditions, there was a rapid depletion of ACh to about 50% of control levels during the first 5 min of stimulation and thereafter the rate of decline in ACh levels proceeded at a much slower pace. Since the 2 mg/kg dose of HC-3 did not raise plasma choline concentrations, it may be assumed that non-specialized choline transport systems in other tissues were not significantly inhibited by this dose of HC-3. However, when the dose of HC-3 was increased to 4 mg/kg, plasma choline levels increased by 58%.  相似文献   

11.
The ACTH4-9-analog Hoe 427 systemically injected in a dose range from 0.01-10 micrograms/kg caused a fall in acetylcholine (ACh) content in different brain areas of the rat. This effect occurred 0.5 hour after a single administration and lasted up to 24 hours. The decrease in ACh content induced by Hoe 427 was more pronounced when the animals were pretreated with dexamethasone (over 7 days 1 mg/kg SC, daily). Coadministration of the choline uptake inhibitor hemicholinium-3 (HC-3) and Hoe 427 potentiated the decrease in ACh content induced by HC-3. In the same dose range Hoe 427 acutely evoked an increase of the activity of the enzyme choline acetyltransferase as well as an elevation of brain cyclic GMP content. These data indicate that Hoe 427 enhances ACh metabolism in rat brain after systemic administration.  相似文献   

12.
We investigated the effect of peripherally administered caffeine (50 mg/kg), choline (30, 60, or 120 mg/kg) or combinations of both drugs on the spontaneous release of acetylcholine (ACh) from the corpus striatum of anesthetized rats using in vivo microdialysis. Caffeine alone or choline in the 30 or 60 mg/kg dose failed to increase ACh in microdialysis samples; the 120 mg/kg choline dose significantly enhanced ACh during the 80 min following drug administration. Coadministration of caffeine with choline significantly increased ACh release after each of the choline doses tested. Peak microdialysate levels with the 120 mg/kg dose were increased 112% when caffeine was additionally administered, as compared with 54% without caffeine. These results indicate that choline administration can enhance spontaneous ACh release from neurons, and that caffeine, a drug known to block adenosine receptors on these neurons, can amplify the choline effect.  相似文献   

13.
Changes in the catecholamine content in adrenergic fibres, acetylcholinesterase activity, and in the energy metabolism enzymes lactate dehydrogenase and succinate dehydrogenase in neurons of the gastric intramural plexus during emotional stress in rats a day after combined exposure to prolonged (30 days) ionizing radiation in a total dose 1.0 Gy and 0.6 mg/kg lead were studied. A decrease in catecholamines in adrenergic fibres and acetylcholinesterase and lactate dehydrogenase activity in neurons was observed. An enhanced sensitivity of the gastric intramural plexus after the prolonged exposure to small doses of ionizing radiation and lead in conditions of emotional stress was suggested.  相似文献   

14.
Abstract— The effects of 121 m m -K+, 10 m m -glutamate, 5 m m -GABA, 1 m m -glycine, 0.1 m m -NE, and 1–10 μ m ACh on cyclic GMP levels in tissue slices prepared from cerebral cortex and cerebellum of mouse, rabbit, guinea-pig, cat, and rat were studied. Basal levels of cyclic GMP in the cerebella of mice, guinea-pigs and cats were 4–15 and 70 pmol/mg prot in rat, whereas in the cerebral cortex of the same animals, levels were only 0.6–2 pmol/mg prot. In contrast, basal levels of the cyclic nucleotide were 1–2 pmol/mg prot in both of these regions in rabbit brain. Only 121 m m -K+ was capable of increasing cyclic GMP levels in all the tissues studied. Elevations ranged from 30% in rat cerebral cortex to 2800% in mouse cerebellum. Glutamate produced a 30–1000% rise of cyclic GMP levels in all tissues except rabbit cerebellum. NE elevated levels of cyclic nucleotide 2- to 3-fold in slices of cerebellum from all species studied but had no effect in cerebral cortex. GABA and glycine had no effect in any tissue except mouse cerebellum. ACh had no consistent effect on levels of cyclic GMP in any brain region investigated. These results suggest that mechanisms regulating cyclic GMP levels in mammalian CNS vary among brain regions and among animal species.  相似文献   

15.
The induction of oxidative stress by TCDD in various brain regions of rats has been investigated after subchronic exposure. TCDD was administered by gavage to female Sprague-Dawley rats at daily doses of 0, 10, 22, and 46 ng/kg for 13 weeks. The brains were dissected to cerebral cortex (Cc), hippocampus (H), cerebellum (C), and brain stem (Bs); the production of superoxide anion (SA) and lipid peroxides and the activities of the antioxidant enzymes superoxide dismutase (SOD), catalase, and glutathione peroxidase (GSH-Px) were determined in those regions. TCDD caused dose-dependent increases in the production of SA and lipid peroxidation in Cc and H and those were associated with dose-dependent suppressions of SOD. While a TCDD dose of 10 ng/kg/d resulted in significant increases in catalase and GSH-Px activities in Cc and H, doses of 22 and 46 ng/kg/d resulted in dose-dependent suppressions of these two enzymes in the same regions. In the C and Bs, TCDD treatment did not result in significant production of SA and lipid peroxidation but it resulted in dose-dependent increases in the activities of various antioxidant enzymes. These results suggest that Cc and H are vulnerable to TCDD-induced oxidative stress after subchronic exposure, and that C and Bs are protected against that effect.  相似文献   

16.
Three hours after the dimethylhydrazine-3H (DMH) treatment specific radioactivity in the male rat pituitary, adrenal cortex, and the testes was higher than in the liver by 53, 85, and 108%, respectively. Tritium incorporation into the hypothalamus was higher than that by the liver, cerebral cortex, and the brain stem by 33, 69, and 44%, respectively. Three hours after the diethyl-hydrazine-3H (DEH) treatment the specific activities of the pituitary and the testes in male rats were higher than that of the liver by 57 and 108%, respectively. A single DMH and DEH administration to male rats in a dose of 21 mg per kg body weight resulted in a significant decrease of the pituitary FSH level (by 63 and 53%, respectively). The data obtained were indicative of a marked influence of the carcinogenic dialkylhydrazines on the rat neuroendocrin system.  相似文献   

17.
Mammalian target of rapamycin (mTOR) regulates cell growth, cell differentiation and protein synthesis. Rapamycin, an inhibitor of mTOR, has been widely used as an immunosuppressant and anti-cancer drug. Recently, mTOR inhibitors have also been reported to be a potential anti-epileptic drug, which may be effective when used in young patients with genetic epilepsy. Thus, a suitable dose of rapamycin which can maintain the normal function of mTOR and has fewer side effects ideally should be identified. In the present study, we first detected changes in marker proteins of mTOR signaling pathway during development. Then we determined the dose of rapamycin by treating rats of 2 weeks of age with different doses of rapamycin for 3 days and detected its effect on mTOR pathway. Young rats were then treated with a suitable dose of rapamycin for 4 weeks and the effect of rapamycin on mTOR, development and immunity were investigated. We found that the expression of the marker proteins of mTOR pathway was changed during development in brain hippocampus and neocortex. After 3 days of treanent, 0.03 mg/kg rapamycin had no effect on phospho-S6, whereas 0.1, 0.3, 1.0 and 3.0 mg/kg rapamycin inhibited phospho-S6 in a dose-dependent manner. However, only 1.0 mg/kg and 3.0 mg/kg rapamycin inhibited phospho-S6 after 4 weeks treatment of rapamycin. Parallel to this result, rats treated with 0.1 and 0.3 mg/kg rapamycin had no obvious adverse effects, whereas rats treated with 1.0 and 3.0 mg/kg rapamycin showed significant decreases in body, spleen and thymus weight. Additionally, rats treated with 1.0 and 3.0 mg/kg rapamycin exhibited cognitive impairment and anxiety as evident by maze and open field experiments. Furthermore, the content of IL-1β, IL-2, IFN-γ, TNF-α in serum and cerebral cortex were significantly decreased in 1.0 and 3.0 mg/kg rapamycin-treated rats. The expression of DCX was also significantly decreased in 1.0 and 3.0 mg/kg rapamycin-treated rats. However, rats treated with 1.0 mg/ kg rapamycin exhibited fewer and milder side effects than those treated with 3.0 mg/kg. In summary, all these data suggest that there is not a rapamycin dose that can inhibit mTOR for epilepsy without causing any side effects, but 1 mg /kg may be the optimal dose for young rats for suppressing mTOR with relatively few side effects.  相似文献   

18.
Lycopene attenuates diabetes-associated cognitive decline in rats   总被引:2,自引:0,他引:2  
Kuhad A  Sethi R  Chopra K 《Life sciences》2008,83(3-4):128-134
Diabetes-induced learning and memory impairment, characterized by impaired cognitive functions and neurochemical and structural abnormalities, involve direct neuronal damage caused by intracellular glucose. The present study was designed to investigate the effect of lycopene, a potent anti-oxidant and anti-inflammatory molecule, on cognitive functions, oxidative stress and inflammation in streptozotocin (STZ)-induced diabetic rats. Cognitive functions were investigated using a spatial version of the Morris water maze test. Acetylcholinesterase activity, a marker of cholinergic dysfunction, was increased by 1.8 fold in the cerebral cortex of diabetic rats. There was about 2 fold and 2.2 fold rise in thiobarbituric acid-reactive substance levels in cerebral cortex and hippocampus of diabetic rats, respectively. Non-protein thiol levels and enzymatic activities of superoxide dismutase and catalase were decreased in both cerebral cortex and hippocampal regions of diabetic rat brain. Total nitric oxide levels in cerebral cortex and hippocampus was increased by 2.4 fold and 2 fold respectively. Serum tumor necrosis factor-alpha, an inflammatory marker, was found to increase by 8 fold in diabetic rats. Chronic treatment with lycopene (1, 2 and 4 mg/kg; p.o.) significantly and dose dependently attenuated cognitive deficit, increased acetylcholinesterase activity, oxidative-nitrosative stress and inflammation in diabetic rats. The results emphasize the involvement of oxidative-nitrosative stress and peripheral inflammation in the development of cognitive impairment in diabetic animals and point towards the therapeutic potential of lycopene in diabetes-induced learning and memory impairment.  相似文献   

19.
Cathepsins are lysosomal enzymes that are used a sensitive markers in various toxicological investigations. The purpose of this study was to evaluate and compare the influence of cimetidine and famotidine on the cerebral cortex, particularly on the activity of cortical cathepsin B, D and L in the frontal lobe of rat brain. The drugs were administered intraperitoneally, twice a day, for six weeks to male Wistar rats in two doses. The initial dose was 2.85 mg/kg for cimetidine and 0.285 mg/kg for famotidine. The second dose was 10 times higher. Control animals were injected with 0.9% NaCl. Half of the animals from each of the drug-treated and control groups were sacrificed on the 42nd day of the experiment. The remaining animals were raised for another 6 weeks without any xenobiotics, and sacrificed on the 84th day. The frontal lobe of the right cerebral hemisphere was taken for biochemical investigation. The activities of free and bound fractions of cathepsin B, D and L were evaluated spectrophotometrically in cortical homogenates. The activity of bound fraction of cathepsin D and L decreased significantly in animals exposed to the higher dose of cimetidine and sacrificed on the 42nd day. Also significant elevation of the free fraction of cathepsin L was noted in the same group of rats. Cathepsin activities were normalized during the next six weeks. No behavioural changes were noted among the observed animals. Unlike cimetidine, famotidine did not change profiles of the cerebral cathepsins.  相似文献   

20.
The antiulcerogenic effect of diffractaic acid (DA) isolated from Usnea longissima, a lichen species, on indomethacin (IND)-induced gastric lesions was investigated in rats. Administration of 25, 50, 100 and 200 mg/kg doses of DA and ranitidine (RAN) (50 mg/kg dose) reduced the gastric lesions by 43.5%, 52.9%, 91.4%, 96.7% and 72.7%, respectively. It is known that oxidative stress leads to tissue injury in organisms. Thus, in all treated groups of rats, the in vivo activities of the antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and the levels of reduced glutathione (GSH) and lipid peroxidation (LPO) were evaluated. IND caused oxidative stress, which resulted in LPO in tissues, by decreasing the levels of GPx, SOD and GSH as compared to healthy rats. In contrast to IND, the administration of DA and RAN showed a significant decrease in LPO level and an increase in tissue SOD, GPx and GSH levels. However, while CAT activity was significantly increased by the administration of IND, the administration of DA and RAN decreased CAT activity. The administration of IND also increased the myeloperoxidase (MPx) activity, which shows neutrophil infiltration into the gastric mucosal tissues. In contrast to IND, the administration of DA and RAN decreased MPx activity. The changes in activities of gastric mucosal nitric oxide synthases (NOS) throughout the development of gastric mucosal damage induced by IND were also studied. A decrease in constitutive NOS (cNOS) activity and an increase in inducible NOS (iNOS) activity were determined in gastric damaged tissues induced by IND. The administration of DA (100 mg/kg dose) and RAN reversed the activities of iNOS and cNOS. These results suggest that the gastroprotective effect of DA can be attributed to its enhancing effects on antioxidant defense systems as well as reducing effects of neutrophil infiltration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号