首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
The effects of adrenaline, reserpine and atropine on ACh content in the cerebral cortex and brain stem and in the gastric tissues were investigated in the rats at rest and during stress induced by forced swimming. Adrenaline administered intraperitoneally twice at an interval of two hours in doses of 0.1 mg/kg and then subcutaneously in a dose 0.5 mg/kg increased acetylcholine content in the cerebral cortex of resting and in the gastric tissues of resting and swimming rats. Reserpine in doses of 3 mg/kg given 48, 24 and 7 hours before the experiment caused a significant rise in ACh content in the cerebral cortex of resting rats and in the brain stem during stress. Atropine given in a dose of 6 mg/kg at 8 h intervals during 2 days caused a significant fall in ACh level in the cerebral cortex and brain stem of resting rats, in the cortex of swimming animals, as well as a considerable rise in the gastric tissues of swimming rats.  相似文献   

2.
We used knockout mice and receptor antagonist strategies to investigate the contribution of the serotonin (5-hydroxytryptamine, 5-HT) 5-HT1B receptor subtype in mediating the effects of selective serotonin reuptake inhibitors (SSRIs). Using in vivo intracerebral microdialysis in awake mice, we show that a single systemic administration of paroxetine (1 or 5 mg/kg, i.p.) increased extracellular serotonin levels [5-HT]ext in the ventral hippocampus and frontal cortex of wild-type and mutant mice. However, in the ventral hippocampus, paroxetine at the two doses studied induced a larger increase in [5-HT]ext in knockout than in wild-type mice. In the frontal cortex, the effect of paroxetine was larger in mutants than in wild-type mice at the 1 mg/kg dose but not at 5 mg/kg. In addition, either the absence of the 5-HT1B receptor or its blockade with the mixed 5-HT1B/1D receptor antagonist, GR 127935, potentiates the effect of a single administration of paroxetine on [5-HT]ext more in the ventral hippocampus than in the frontal cortex. Furthermore, we demonstrate that SSRIs decrease immobility in the forced swimming test; this effect is absent in 5-HT1B knockout mice and blocked by GR 127935 in wild-type suggesting therefore that activation of 5-HT1B receptors mediate the antidepressant-like effects of SSRIs. Taken together these data demonstrate that 5-HT1B autoreceptors appear to limit the effects of SSRI on dialysate 5-HT levels particularly in the hippocampus while presynaptic 5-HT1B heteroreceptors are likely to be required for the antidepressant activity of SSRIs.  相似文献   

3.
In vivo microdialysis in conscious rats was used to examine the effect of clozapine on serotonin (5-hydroxytryptamine, 5-HT) efflux in the prefrontal cortex and dorsal raphe nucleus and dopamine efflux in the prefrontal cortex. Both systemic and local administration of clozapine (systemic, 10 or 20 mg/kg, i.p.; local, 100 microM) increased 5-HT efflux in the dorsal raphe. However, in the prefrontal cortex, dialysate 5-HT increased when clozapine (100 microM) was administered through the probe, while no effect was observed when it was administered systemically. By pretreatment with the selective 5-HT1A receptor antagonist p-MPPI (3 mg/kg, i.p.), systemic treatment of clozapine (10 mg/kg, i.p.) significantly increased 5-HT efflux in the prefrontal cortex. This result suggests that the ability of clozapine to enhance the extracellular concentrations of 5-HT in the dorsal raphe attenuates this drug's effect in the frontal cortex, probably through the stimulation of 5-HT1A somatodendritic autoreceptors in the dorsal raphe. We also found that pretreatment with p-MPPI (3 mg/kg, i.p.) attenuated by 45% the rise in cortical dopamine levels induced by clozapine (10 mg/kg, i.p.). These findings imply that the reduction in serotonergic input from the dorsal raphe nucleus induced by clozapine could lead to an increase in dopamine release in the prefrontal cortex.  相似文献   

4.
Since substance P (SP) has been demonstrated to coexist with serotonin (5-HT) in the same population of neurons in the descending raphe system, we have studied the possibility of interactions between these neurotransmitters in other brain areas. Brain nuclei were punched from frozen 300-micron slices of rat brain and extracted with 0.1 M HCIO4 or 2 M acetic acid prior to assay, respectively, of 5-HT content by HPLC with electrochemical detection or SP content by specific radioimmunoassay. Ten days after injection of rats with the 5-HT neurotoxin P-chloroamphetamine (PCA, 10 mg/kg, B.W., i.p.) or 3 days after 5-HT synthesis blockade with p-chlorophenylalanine (PCPA, 300 mg/kg, B.W., i.p.), the 5-HT content of all brain nuclei studied was reduced by means of, respectively, 50% and 81%. In PCA-treated animals, the SP content of the periaqueductal grey matter was significantly increased; PCPA treatment caused, in addition, large increases in the SP content of five other brain nuclei. Blockade of 5-HT receptors by methysergide (15 mg/kg for 5 days) did not significantly change 5-HT levels or turnover, but resulted in 50-200% increases in the SP content of 10 of the 28 brain nuclei studied. Significant decreases in the SP content of numerous areas were seen following treatments (pargyline 30 mg/kg, alone or in combination with 5-hydroxytryptophan, 60 mg/kg) that simultaneously increased 5-HT levels. These results illustrate the modulation of distinct SP-containing systems of the rat brain by perturbation of central serotoninergic pathways and indicate a reciprocal relationship between the SP and 5-HT concentrations of numerous brain nuclei, in particular n. striae terminalis, n. raphe dorsalis, n. accumbens, n. septi, substantia grisea centralis, and n. raphes medianus.  相似文献   

5.
The problem of drug-resistant depression indicates a strong need for alternative antidepressant therapies. In our earlier papers we described synergistic, antidepressant-like effects of a combination of imipramine (IMI) and amantadine (AMA) in the forced swimming test in rats, an animal model of depression. Moreover, preliminary clinical data showed that the above-mentioned combination had beneficial effects in treatment-resistant patients. In addition, a number of studies predicted a role of the brain-derived neurotrophic factor (BDNF) in the mechanism of action of antidepressant drugs (ADs). Since the most potent effect of ADs on BDNF gene expression was found after prolonged treatment, in the present study we investigated the influence of repeated treatment with IMI (5 or 10 mg/kg) and AMA (10 mg/kg), given separately or jointly (twice daily for 14 day), on mRNA level (the Northern blot) in the hippocampus and cerebral cortex. The experiment was carried out on male Wistar rats. The tissue for biochemical assays was dissected 24 h after the last dose of IMI and AMA. We also studied the effect of repeated treatment with IMI and AMA on the action of 5-HT(1A)- and 5-HT(2A) receptor agonists (8-OH-DPAT and (+/-)DOI, respectively) in behavioral tests. The obtained results showed that in the hippocampus IMI (10 mg/kg), and in the cerebral cortex IMI (5 and 10 mg/kg) and AMA (10 mg/kg) significantly elevated BDNF mRNA level. Joint administration of IMI (5 or 10 mg/kg) and AMA (10 mg/kg) induced a more potent increase BDNF gene expression in the hippocampus (but not in cerebral cortex) and either inhibited the behavioral syndrome induced by (+/-)DOI or did not change the action of 8-OH-DPAT (compared to treatment with either drug alone). The obtained results suggest that the enhancement of BDNF gene expression may be essential for the therapeutic effect of co-administration of IMI and AMA to drug-resistant depressed patients, and that among other mechanisms, 5-HT(2A) receptors possibly play some role in this effect.  相似文献   

6.
Large evidence showing an association between depression and tobacco smoking is known. Nicotine is the active chemical responsible for smoking addiction, and its withdrawal may induce in smokers greater sensitivity to stress. Our aim has been to investigate the links between tobacco addiction and depression by studying the long-term effects of repeated administration of nicotine followed by dependence, to forced swimming test, serotonin content and 5-HT(1A) expression in diencephalon. Dependence has been induced by daily subcutaneous injection in mice of nicotine (2mg/kg four injections daily) for 15 days and assessed after nicotine withdrawal with an abstinence scale; control animals received daily subcutaneous injection of saline for the same period. Experiments on forced swimming test have been carried out at t=0 (last day of nicotine or saline treatment), and 15, 30, 45 and 60 days after saline or nicotine withdrawal. Both control mice and nicotine mice have been pre-treated with oral 5-hydroxy-tryptophan (12.5-50mg/kg), precursor of serotonin, before forced swimming test. Nicotine mice have shown on forced swimming test a significant increase of immobility time compared to control mice. This increase was not evident in nicotine mice treated with 5-hydroxy-tryptophan and treatment with the selective serotonin receptorial antagonist WAY 100635 (WAY) abolished 5-hydroxy-tryptophan effects. Evaluation of diencephalic serotonin, performed at t=0 showed an increase of diencephalic serotonin content, while serotonin measured 15, 30, 45 and 60 days after nicotine withdrawal, was significantly reduced in nicotine mice compared to control mice. Western blot analysis showed a great reduction of 5-HT(1A) receptor expression in nicotine mice measured at t=0 (last day of treatment) and at 15 and 30 days after nicotine withdrawal compared to control mice. Our results show that (i) behavioural alterations estimated with forced swimming test and (ii) changes in diencephalic serotonin content and 5-HT(1A) receptor expression, are present since nicotine is withdrawn even after a long time, suggesting a role of serotonin in mood disorders eventually occurring following smoking cessation.  相似文献   

7.
Abstract— l -5-Hydroxytryptophan ( l -5-HTP) was administered intravenously to rats (12 mg/kg) after inhibition of the peripheral aromatic l -amino acid decarboxylase with l -α-hydrazino-α-methyl dopa (MK 486). The accumulation of 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid in the cerebral cortex was measured 1, 2 and 4 h after injection of 5-HTP with automated assay techniques. Besides controls two groups of rats were studied: rats after inhibition of tryptophan-5-hydroxylase with p -chlorophenylalanine (pcpa) and subjects with a chronic lesion in the area of the raphe nucleus. The net accumulation of both measured 5-hydroxyindoles was diminished in rat cerebral cortex after degeneration of 5-HT containing nerve endings, compared with control animals and pcpa-treated rats. These results indicate that the formation of 5-HT in the cerebral cortex from exogenous l -5-HTP, after inhibition of the peripheral aromatic amino acid decarboxylase, occurs predominantly in 5-HT containing nerve endings possibly by a specific 5-HTP-decarboxylating enzyme.  相似文献   

8.
Two classic animal behavior despair tests-the forced swimming test (FST) and the tail suspension test (TST) were used to evaluate antidepressant-like activity of a new chalcone compound, chalcone-1203 in mice. It was observed that chalcone-1203 at dose of 1, 5, and 10 mg/kg significantly reduced the immobility time in the FST and TST in mice 30 min after treatment. In addition, chalcone-1203 was found to exhibit significant oral activity in the FST in mice. It also produced a reduction in the ambulation in the open-field test in mice not previously habituated to the arena, but no effect in the locomotor activity in mice previously habituated to the open-field. The main monoamine neurotransmitters and their metabolites in mouse brain regions were also simultaneously determined by HPLC–ECD. It was found that chalcone-1203 significantly increased the concentrations of the main neurotransmitters 5-HT and NE in the hippocampus, hypothalamus and cortex. Chalcone-1203 also significantly reduced the ratio of 5-HIAA/5-HT in the hippocampus and cortex, shown down 5-HT metabolism compared with mice treated with stress vehicle. In conclusion, chalcone-1203 produced significant antidepressant-like activity, and the mechanism of action may be due to increased 5-HT and NE in the mouse hippocampus and cortex.  相似文献   

9.
The intravenous administration of low doses of lysergic acid diethylamide (LSD) or of the selective 5-hydroxytryptamine1A (5-HT1A) receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) depresses the firing activity of dorsal raphe 5-HT-containing neurons, presumably via the activation of 5-HT1A receptors. The present studies were undertaken to determine the effect of different types of 5-HT receptor antagonists on this effect of LSD and 8-OH-DPAT. (-)-Propranolol (2 mg/kg i.v.), methiothepin (2 mg/kg i.p., twice daily for 4 days followed by an additional dose of 2 mg/kg i.p., prior to the experiment), pelanserine (0.5 mg/kg i.v.), and indorenate (125 micrograms/kg i.v.) failed to block the effects of either LSD or 8-OH-DPAT on the firing activity of 5-HT neurons of the dorsal raphe nucleus. However, spiperone (1 mg/kg i.v.) significantly reduced the effect of both LSD and 8-OH-DPAT. These results indicate that, among the five putative 5-HT receptor antagonists tested, only spiperone can antagonize the suppressant effect of 5-HT receptor agonists on the firing of dorsal raphe 5-HT neurons.  相似文献   

10.
We used the microdialysis technique to compare basal extracellular serotonin (5-HT) and the response to citalopram in different strains of mice with functionally different allelic forms of tryptophan hydroxylase-2 (TPH-2), the rate-limiting enzyme in brain 5-HT synthesis. DBA/2J, DBA/2N and BALB/c mice carrying the 1473G allele of TPH-2 had less dialysate 5-HT in the medial prefrontal cortex and dorsal hippocampus (DH) (20-40% reduction) than C57BL/6J and C57BL/6N mice carrying the 1473C allele. Extracellular 5-HT estimated by the zero-net flux method confirmed the result of conventional microdialysis. Citalopram, 1.25, 5 and 20 mg/kg, dose-dependently raised extracellular 5-HT in the medial prefrontal cortex of C57BL/6J mice, with maximum effect at 5 mg/kg, but had significantly less effect in DBA/2J and BALB/c mice and in the DH of DBA/2J mice. A tryptophan (TRP) load enhanced basal extracellular 5-HT in the medial prefrontal cortex of DBA/2J mice but did not affect citalopram's ability to raise cortical and hippocampal extracellular 5-HT. The impairment of 5-HT synthesis quite likely accounts for the reduction of basal 5-HT and the citalopram-induced rise in mice carrying the mutated enzyme. These findings might explain why DBA/2 and BALB/c mice do not respond to citalopram in the forced swimming test. Although TRP could be a useful strategy to improve the antidepressant effect of citalopram (Cervo et al. 2005), particularly in subjects with low 5-HT synthesis, the contribution of serotonergic and non-serotonergic mechanisms to TRP's effect remains to be elucidated.  相似文献   

11.
In humans, depression is associated with altered rapid eye movement (REM) sleep. However, the exact nature of the relationship between depressive behaviors and sleep abnormalities is debated. In this study, bilateral olfactory bulbectomy (OBX) was carried out to create a model of depression in rats. The sleep-wake profiles were assayed using a cutting-edge sleep bioassay system, and depressive behaviors were evaluated by open field and forced swimming tests. The monoamine content and monoamine metabolite levels in the brain were determined by a HPLC-electrochemical detection system. OBX rats exhibited a significant increase in REM sleep, especially between 15:00 and 18:00 hours during the light period. Acute treatment with fluoxetine (10 mg/kg, i.p.) immediately abolished the OBX-induced increase in REM sleep, but hyperactivity in the open field test and the time spent immobile in the forced swimming test remained unchanged. Neurochemistry studies revealed that acute administration of fluoxetine increased serotonin (5-HT) levels in the hippocampus, thalamus, and midbrain and decreased levels of the 5-HT metabolite 5-hydroxyindoleacetic acid (5-HIAA). The ratio of 5-HIAA to 5-HT decreased in almost all regions of the brain. These results indicate that acute administration of fluoxetine can reduce the increase in REM sleep but does not change the depressive behaviors in OBX rats, suggesting that there was no causality between REM sleep abnormalities and depressive behaviors in OBX rats.  相似文献   

12.
Abstract Substance P antagonists of the neurokinin-1 receptor type (NK1) are gaining growing interest as new antidepressant therapies. It has been postulated that these drugs exert this putative therapeutic effect without direct interactions with serotonin (5-HT) neurones. Our recent microdialysis experiment performed in NK1 receptor knockout mice suggested evidence of changes in 5-HT neuronal function (Froger et al. 2001). The aim of the present study was to evaluate the effects of coadministration of the selective 5-HT reuptake inhibitor (SSRI) paroxetine with a NK1 receptor antagonist (GR205171 or L733060), given either intraperitoneally (i.p.) or locally into the dorsal raphe nucleus, on extracellular levels of 5-HT ([5-HT]ext) in the frontal cortex and the dorsal raphe nucleus using in vivo microdialysis in awake, freely moving mice. The systemic or intraraphe administration of a NK1 receptor antagonist did not change basal cortical [5-HT]ext in mice. A single systemic dose of paroxetine (4 mg/kg; i.p.) resulted in a statistically significant increase in [5-HT]ext with a larger extent in the dorsal raphe nucleus (+ 138% over basal AUC values), than in the frontal cortex (+ 52% over basal AUC values). Co-administration of paroxetine (4 mg/kg; i.p.) with the NK1 receptor antagonists, GR205171 (30 mg/kg; i.p.) or L733060 (40 mg/kg; i.p.), potentiated the effects of paroxetine on cortical [5-HT]ext in wild-type mice, whereas GR205171 (30 mg/kg; i.p.) had no effect on paroxetine-induced increase in cortical [5-HT]ext in NK1 receptor knock-out mice. When GR205171 (300 micro mol/L) was perfused by 'reverse microdialysis' into the dorsal raphe nucleus, it potentiated the effects of paroxetine on cortical [5-HT]ext, and inhibited paroxetine-induced increase in [5-HT]ext in the dorsal raphe nucleus. Finally, in mice whose 5-HT transporters were first blocked by a local perfusion of 1 micro mol/L of citalopram into the frontal cortex, a single dose of paroxetine (4 mg/kg i.p.) decreased cortical 5-HT release, and GR205171 (30 mg/kg i.p.) reversed this effect. The present findings suggest that NK1 receptor antagonists, when combined with a SSRI, augment 5-HT release by modulating substance P/5-HT interactions in the dorsal raphe nucleus.  相似文献   

13.
Abstract: After a single intraperitoneal injection of the irreversible tryptophan hydroxylase inhibitor p -chlorophenylalanine (PCPA; 300 mg/kg), there was a rapid down-regulation of serotonin (5-HT) transporter mRNA levels in cell bodies. This change was significant at 1 and 2 days after PCPA administration within the ventromedial but not the dorsomedial portion of the dorsal raphe nucleus. Seven days after PCPA treatment, 5-HT transporter mRNA levels were significantly elevated compared with controls in both regions of the dorsal raphe nucleus. PCPA administration produced no change in the [3H]-citalopram binding and synaptosomal [3H]5-HT uptake in terminal regions at 2 and 7 days after treatment but significantly reduced both these parameters by ∼20% in the hippocampus and in cerebral cortex 14 days after PCPA administration. The striatum showed a lower sensitivity to this effect. No significant changes were observed in the levels of [3H]citalopram binding to 5-HT cell bodies in the dorsal raphe nucleus. In the same animals used for 5-HT transporter mRNA level measurements, levels of tryptophan hydroxylase mRNA in neurons of the ventromedial and dorsomedial portions of the dorsal raphe nucleus were increased 2 days after PCPA administration and fell to control levels 7 days after injection in the ventromedial region but not in the dorsomedial portion of the dorsal raphe nucleus, where they remained significantly higher than controls. Altogether, these results show that changes in 5-HT transporter mRNA are not temporally related to changes in 5-HT transporter protein levels. In addition, our results suggest that the 5-HT transporter and tryptophan hydroxylase genes are regulated by different mechanisms. We also provide further evidence that dorsal raphe 5-HT neurons are differentially regulated by drugs, depending on their location.  相似文献   

14.
Abstract: 5-HT1A autoreceptor antagonists enhance the effects of antidepressants by preventing a negative feedback of serotonin (5-HT) at somatodendritic level. The maximal elevations of extracellular concentration of 5-HT (5-HText) induced by the 5-HT uptake inhibitor paroxetine in forebrain were potentiated by the 5-HT1A antagonist WAY-100635 (1 mg/kg s.c.) in a regionally dependent manner (striatum > frontal cortex > dorsal hippocampus). Paroxetine (3 mg/kg s.c.) decreased forebrain 5-HText during local blockade of uptake. This reduction was greater in striatum and frontal cortex than in dorsal hippocampus and was counteracted by the local and systemic administration of WAY-100635. The perfusion of 50 µmol/L citalopram in the dorsal or median raphe nucleus reduced 5-HText in frontal cortex or dorsal hippocampus to 40 and 65% of baseline, respectively. The reduction of cortical 5-HText induced by perfusion of citalopram in midbrain raphe was fully reversed by WAY-100635 (1 mg/kg s.c.). Together, these data suggest that dorsal raphe neurons projecting to striatum and frontal cortex are more sensitive to self-inhibition mediated by 5-HT1A autoreceptors than median raphe neurons projecting to the hippocampus. Therefore, potentiation by 5-HT1A antagonists occurs preferentially in forebrain areas innervated by serotonergic neurons of the dorsal raphe nucleus.  相似文献   

15.
The aim of this study was to investigate if p-chloroamphetamine (PCA), which is neurotoxic to serotonin (5-HT) nerve terminals, was able to induce, like 3,4-methylenedioxymethamphetamine, a region-specific regulation of 5-HT1A receptor mRNA expression. The effect of PCA on the expression of 5-HT7 receptors, which share some pharmacological properties with 5-HT1A receptors, was comparatively studied. PCA (2 x 5 mg/kg) produced a lasting depletion of 5-HT content in the rat frontal cortex and hippocampus. In the hippocampus, the maximal 5-HT depletion was found on day 21 (-70%), whereas in the cortex, the highest 5-HT depletion was found on day 14 (-73%), with a partial but significant recovery on day 21. At the latter time point, 5-HT1A receptor mRNA expression was increased by 80% in the cortex and decreased by 50% in the hippocampus. The 5-HT1A receptor mRNA expression was also enhanced after exposure to PCA of rat cortical but not of hippocampal primary cultures. In regard to 5-HT7 receptor mRNA expression, the most remarkable change after PCA was the great increase (+200%) in the brain-stem. Binding studies to 5-HT1A receptors matched the changes in receptor mRNA expression. Gel shift assays revealed enhanced nuclear protein binding to the KB sequence with use of cortical but not hippocampal extracts of PCA-treated rats. Overall, the data show region-specific changes in 5-HT receptor-type expression that may not be entirely dependent on the neurotoxic effect of PCA on 5-HT terminals.  相似文献   

16.
An infusion prepared with aerial parts from Galphimia glauca has been widely used in Mexican traditional medicine as a remedy for nervous excitement. The sedative activity of a methanolic extract from this plant has been demonstrated by neuropharmacological tests. This effect was attributed to the nor-secotriterpene named galphimine B (GB). In the present work, the anxiolytic and antidepressant-like effects of G. glauca methanolic extract (standardized on GB content, 8.3mg/g) were assayed by using the elevated plus-maze, light-dark test and the forced swimming paradigm, on ICR albino mice. This extract, administered orally, three times (24, 18 and 1h before the test), and in different doses (125, 250, 500, 1,000 and 2,000 mg/kg) was able to increase significantly (p<0.05) the number of entries, as well as the time spent in the open arms of the elevated plus-maze, indicating an anxiolytic-like effect. A similar effect was observed in the light-dark paradigm test, the time spent in the light box was increased in treated mice. Nevertheless, this treatment was unable to change any parameter in the forced swimming test. Altogether, these results suggest an anxiolytic-like effect to the methanolic standardized extract of G. glauca on ICR inbred mice.  相似文献   

17.
Peng WH  Lo KL  Lee YH  Hung TH  Lin YC 《Life sciences》2007,81(11):933-938
This study investigated the effect of berberine (BER) in the mouse forced swim test (FST) and in the tail suspension test (TST), two models predictive of antidepressant activity. We also investigated the antidepressant-like mechanism of BER by the combination of the desipramine [DES, an inhibitor of reuptake of noradrenaline (NA) and serotonin (5-HT)], maprotiline (MAP, selective NA reuptake inhibitor), fluoxetine (FLU, selective 5-HT reuptake inhibitor) and moclobemide [MOC, monoamine oxidase (MAO) A inhibitor). Then we further measured the levels of monoamines [NA, dopamine (DA) and 5-HT) in mice striatum, hippocampus and frontal cortex. The results show that BER (10, 20 mg/kg, p.o.), significantly reduced the immobility time during the FST and the TST. The immobility time after treatment with BER (20 mg/kg, p.o.) in FST was augmented by DES, FLU and MOC, and not affected by MAP. Furthermore, BER (20 mg/kg, p.o.) increased NA and 5-HT levels in the hippocampus and frontal cortex. Our findings support the view that BER exerts antidepressant-like effect. The antidepressant-like mechanism of BER may be related to the increase in NA and 5-HT levels in the hippocampus and frontal cortex.  相似文献   

18.
Peng WH  Wu CR  Chen CS  Chen CF  Leu ZC  Hsieh MT 《Life sciences》2004,75(20):2451-2462
The aim of this study was to assess the anxiolytic effect of berberine (abbrev. BER) using two experimental anxiety models in the mouse. In the black and white test of anxiety, berberine (100, 500 mg/kg) produced an increase in the first time entry, time spent in the white section, and total changes between two compartments. On the other hand, in the elevated plus-maze test, berberine (100, 500 mg/kg) produced an increase in the time spent and arm entries in the open arms, and a decrease in the time spent and arm entries in the closed arms. Berberine (500 mg/kg) decreased locomotor activity in mice. Furthermore, BER at 100, 500 mg/kg decreased concentrations of NE, DA and 5-HT, and increased the concentrations of VMA, HVA and 5-HIAA in the brain stem. BER also attenuated the anxiogenic effect of WAY-100635, 8-OH DPAT and DOI and enhanced the anxiolytic effect of BUS, p-MPPI and RIT in the elevated plus-maze. These results suggested that berberine at 100 mg/kg had a significant anxiolytic-like effect, which was similar to that observed with 1 mg/kg diazepam and 2 mg/kg buspirone. The anxiolytic mechanism of BER might be related to the increase in turnover rates of monoamines in the brain stem and decreased serotonergic system activity. Moreover, BER decreased serotonergic system activity via activation of somatodendritic 5-HT1A autoreceptors and inhibition of postsynaptic 5-HT1A and 5-HT2 receptors.  相似文献   

19.
It has been suggested that drugs combining activities of selective serotonin reuptake inhibitor and 5-HT1A receptor agonist may form a novel strategy for higher therapeutic efficacy of antidepressant. The present study aimed to examine the pharmacology of YL-0919, a novel synthetic compound with combined high affinity and selectivity for serotonin transporter and 5-HT1A receptors. We performed in vitro binding and function assays and in vivo behavioral tests to assess the pharmacological properties and antidepressant-like efficacy of YL-0919. YL-0919 displayed high affinity in vitro to both 5-HT1A receptor and 5-HT transporter prepared from rat cortical tissue. It exerted an inhibitory effect on forskolin-stimulated cAMP formation and potently inhibited 5-HT uptake in both rat cortical synaptosomes and recombinant cells. After acute p.o. administration, very low doses of YL-0919 reduced the immobility time in tail suspension test and forced swimming test in mice and rats, with no significant effect on locomotor activity in open field test. Furthermore, WAY-100635 (a selective 5-HT1A receptor antagonist, 0.3 mg/kg) significantly blocked the effect of YL-0919 in tail suspension test and forced swimming test. In addition, chronic YL-0919 treatment significantly reversed the depressive-like behaviors in chronically stressed rats. These findings suggest that YL-0919, a novel structure compound, exerts dual effect on the serotonergic system, as both 5-HT1A receptor agonist and 5-HT uptake blocker, showing remarkable antidepressant effects in animal models. Therefore, YL-0919 may be used as a new option for the treatment of major depressive disorder.  相似文献   

20.
Various doses (0, 1, 5, 10, 15, 20, or 25 mg/kg) of methylazoxymethanol acetate (MAM), a potent alkylating agent, were injected singly into pregnant rats intraperitoneally on day 15 of gestation. Relationships between brain weights and neurochemical changes in the cerebral hemispheres (CHs; cerebral cortex and subjacent white matter, hippocampus, amygdala) and remainder of the brain (BGDM; basal ganglia, diencephalon, and mesencephalon) were examined at 60 days of age in offspring; varying degrees of microencephaly were observed. Dose-dependent reductions in the weights of CH and BGDM were observed. Reductions in total DNA content positively correlated with decreases in brain weights also observed. Dose-dependent elevations of noradrenaline (NA) and dopamine (DA) were observed in CH at MAM levels 10 mg/kg and above; dose-dependent elevations of 5-hydroxytryptamine (5-HT) were observed at 15 mg/kg and above; and in BGDM at 20 mg/kg and above dose-dependent elevations for NA and 5-HT were observed; dose-dependent elevations at 15 mg/kg and above were observed for DA. Monoamine concentrations were negatively correlated with brain weights or total DNA contents. NA and DA concentrations increased to the extent of approximately 1.3 times of control at a time when an 18% loss of CH weight was noted in animals treated with 10 mg/kg MAM. It is suggested that the above variables might be appropriately sensitive neurochemical markers for detecting minor developmental anomalies in the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号