首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The PST-01 protease is secreted by the organic solvent-tolerant microorganism Pseudomonas aeruginosa PST-01 and is stable in the presence of various organic solvents. Therefore, the PST-01 strain and the PST-01 protease are very useful for fermentation and reactions in the presence of organic solvents, respectively. The organic solvent-stable PST-01 protease has two disulfide bonds (between Cys-30 and Cys-58 and between Cys-270 and Cys-297) in its molecule. Mutant PST-01 proteases in which one or both of the disulfide bonds were deleted were constructed by site-directed mutagenesis, and the effect of the disulfide bonds on the activity and the various stabilities was investigated. The disulfide bond between Cys-270 and Cys-297 in the PST-01 protease was found to be essential for its activity. The disulfide bond between Cys-30 and Cys-58 played an important role in the organic solvent stability of the PST-01 protease.  相似文献   

2.
The PST-01 protease is secreted by the organic solvent-tolerant microorganism Pseudomonas aeruginosa PST-01 and is stable in the presence of various organic solvents. Therefore, the PST-01 strain and the PST-01 protease are very useful for fermentation and reactions in the presence of organic solvents, respectively. The organic solvent-stable PST-01 protease has two disulfide bonds (between Cys-30 and Cys-58 and between Cys-270 and Cys-297) in its molecule. Mutant PST-01 proteases in which one or both of the disulfide bonds were deleted were constructed by site-directed mutagenesis, and the effect of the disulfide bonds on the activity and the various stabilities was investigated. The disulfide bond between Cys-270 and Cys-297 in the PST-01 protease was found to be essential for its activity. The disulfide bond between Cys-30 and Cys-58 played an important role in the organic solvent stability of the PST-01 protease.  相似文献   

3.
The initial synthetic rates of peptide Cbz-Arg-Leu-NH(2) from Cbz-Arg and Leu-NH(2) using PST-01 protease in the presence and absence of organic solvents were investigated under various conditions. The synthetic rates of Cbz-Arg-Leu-NH(2) in the presence of 50% (v/v) methanol, 50% (v/v) N,N-dimethylformamide (DMF) and 60% (v/v) dimethyl sulfoxide (DMSO) were 1.6-, 2.4-, and 5.1-times higher than that in the absence of organic solvent, respectively. The PST-01 protease was not only stable in the presence of organic solvents but also exhibited high reaction rates in the presence of methanol, DMF, and DMSO. When the Cbz-Arg concentration was lower than 60mM or the Leu-NH(2) concentration was lower than 400mM, the initial rates increased lineally with increase in their concentrations. However, the rates did not increase when the Leu-NH(2) concentration was more than 500mM. The optimum temperature and pH of the reaction were 40 degrees C and 7.0, respectively.  相似文献   

4.
The PST-01 protease is a metalloprotease that has zinc ion at the active center and is very stable in the presence of water-soluble organic solvents. The reaction rates and the equilibrium yields of the aspartame precursor N-carbobenzoxy-L-aspartyl-L-phenylalanine methyl ester (Cbz-Asp-Phe-OMe) synthesis from N-carbobenzoxy-L-aspartic acid (Cbz-Asp) and L-phenylalanine methyl ester (Phe-OMe) in the presence of water-soluble organic solvents were investigated under various conditions. Higher reaction rate and yield of Cbz-Asp-Phe-OMe were attained by the PST-01 protease when 30 mM Cbz-Asp and 500 mM Phe-OMe were used. The maximum reaction rate was obtained pH 8.0 and 37 degrees C. In the presence of dimethylsulfoxide (DMSO), glycerol, methanol, and ethylene glycol, higher reaction rates were obtained. The equilibrium yield was the highest in the presence of DMSO. The equilibrium yield of Cbz-Asp-Phe-OMe using the PST-01 protease attained 83% in the presence of 50% (v/v) DMSO.  相似文献   

5.
A gene of organic solvent-stable protease (PST-01 protease) secreted by Pseudomonas aeruginosa PST-01 was cloned and its nucleotide was sequenced. The nucleotide sequence analysis revealed that the PST-01 protease was a pseudolysin, which was an elastase produced by P. aeruginosa and was well characterized by the previous investigators. The PST-01 protease produced in recombinant Escherichia coli was not secreted into the extracellular medium, but its proenzyme was released by the lysis of the cells and became a 33.1kDa mature enzyme autoproteolytically. Its characteristics including organic solvent stability were as same as those of the PST-01 protease secreted by P. aeruginosa PST-01.  相似文献   

6.
Subtilisin Carlsberg, an alkaline protease from Bacillus licheniformis, was modified with polyoxyethylene (PEG) or aerosol-OT (AOT), and the solubility, conformation, and catalytic activity of the modified subtilisins in some organic media were compared under the same conditions. The solubility of modified subtilisins depended on the solubility of the modifier. On the other hand, the conformational changes depended on the solubility, rather than the property, of the modifier. When the modified subtilisin was dissolved in water-miscible polar solvents such as dimethylsulfoxide, acetonitrile, and tetrahydrofuran, significant conformational changes occurred. When modified subtilisin was dissolved in water-immiscible organic solvents, such as isooctane and benzene, the solvent did not induce significant conformational changes. The catalytic activity in the transesterification reaction of the N-acetyl-L-phenylalanine ethylester of the modified subtilisin in organic solvents was higher than that of native subtilisin. The high activity of modified subtilisin was thought to be due to a homogeneous reaction by the dissolved enzymes.  相似文献   

7.
Halophilic enzymes have been manifested for their stability and catalytic abilities under harsh operational conditions. These have been documented to withstand denaturation in presence of high temperature, pH, presence of organic solvents and chaotropic agents. The present study aims at understanding the stability and activity of a halophilic Bacillus sp. EMB9 protease in organic solvents. The protease was uniquely stable in polar solvents. A clear correlation was evident between the protease function and conformational transitions, validated by CD and fluorescence spectral studies. The study affirms that preservation of protein structure, possibly due to charge screening of the protein surface by Ca2+ and Na+ ions provides stability against organic solvents and averts denaturation. Salt was also found to exert a protective effect on dialyzed protease against chaotropism of solvents. Presence of 1 % (w/v) NaCl restored the activity in the dialyzed protease and prevented denaturation in methanol, toluene and n-decane. The work will have further implication on discerning protein folding in saline as well as non-aqueous environments.  相似文献   

8.
In order to explore the correlation between protease susceptibility and conformational stability of a protein, the proteolytic degradation by trypsin, subtilisin and pronase P of the wild-type alpha subunit of tryptophan synthase from Escherichia coli and of its two mutant proteins was studied by measuring circular dichroism at 222 nm at various pH values at 37 degrees C. The mutant proteins are substituted by Gln or Met in place of Glu at position 49. The single amino acid substitutions at position 49 significantly affected susceptibility of this protein to the three proteases. Dependence of protease susceptibility of the wild-type and the two mutant proteins on pH was characteristic of each protein and similar for the three proteases. Comparison of the present results with the conformational stabilities of the three proteins previously measured shows that the order of resistance to the proteases among the three proteins coincides with the order of the values of unfolding Gibbs energy change, suggesting that protein degradation depends upon the conformational stability of a protein.  相似文献   

9.
Inhibitor-induced enzyme activation in organic solvents   总被引:8,自引:0,他引:8  
The enzymatic activity of the protease subtilisin in anhydrous organic solvents can be dramatically increased by pretreating the enzyme before it is placed in the nonaqueous medium. For instance, lyophilization of subtilisin from aqueous solution containing competitive inhibitors (followed by their removal) created an enzyme which was up to 100 times more active than the enzyme lyophilized in the absence of such ligands. This phenomenon of ligand-induced "enzyme memory" also extends to the stability, affinity, and substrate specificity of subtilisin in organic solvents.  相似文献   

10.
Polyproline II (PPII) fold, an unusual structural element was detected in the serine protease from Nocardiopsis sp. NCIM 5124 (NprotI) based on far UV circular dichroism spectrum, structural transitions of the enzyme in presence of GdnHCl and a distinct isodichroic point in chemical and thermal denaturation. The functional activity and conformational transitions of the enzyme were studied under various denaturing conditions. Enzymatic activity of NprotI was stable in the vicinity of GdnHCl upto 6.0 M concentration, organic solvents viz. methanol, ethanol, propanol (all 90% v/v), acetonitrile (75% v/v) and proteases such as trypsin, chymotrypsin and proteinase K (NprotI:protease 10:1). NprotI seems to be a kinetically stable protease with a high energy barrier between folded and unfolded states. Also, an enhancement in the activity of the enzyme was observed in 1 M GdnHCl upto 8 h, in organic solvents (75% v/v) for 72 h and in presence of proteolytic enzymes. The polyproline fold remained unaltered or became more prominent under the above mentioned conditions. However, it diminished gradually during thermal denaturation above 60 °C. Thermal transition studies by differential scanning calorimetry (DSC) showed scan rate dependence as well as irreversibility of denaturation, the properties characteristic of kinetically stable proteins. This is the first report of PPII helix being the global conformation of a non structural protein, an alkaline serine protease, from a microbial source, imparting kinetic stability to the protein.  相似文献   

11.
We have previously isolated a solvent-stable protease from a novel solvent-tolerant strain of Pseudomonas aeruginosa (PseA). Here we report cloning and characterization of the gene coding for this solvent-tolerant protease. A homology search of the N-terminal amino acid sequence of the purified PseA protease revealed an exact match to a P. aeruginosa PST-01 protease gene, lasB. The c-DNA sequence of the PST-01 protease was used to design primers for the amplification of a 1,494-bp open reading frame encoding a 53.6-kDa, 498-amino-acid PseA LasB polypeptide. The deduced PseA LasB protein contained a 23-residue signal peptide (2.6 kDa) followed by a propeptide of 174 residues and a 33-kDa mature product of 301 residues. A phylogenetic analysis placed PseA lasB closest to the known zinc metalloproteases from P. aeruginosa. This gene was also found to contain a conserved HEXXH zinc-binding motif, characteristic of all zinc metallopeptidases. The 3D structure analysis of PseA protease revealed the presence of 7 alpha-helices (36% of the sequence). The molecule was found to have two disulfide bonds (between Cys-227 and Cys-255 and between Cys-467 and Cys-494) and had a number of hydrophobic clusters at the protein surface. These hydrophobic patches (21% of the sequence) and disulfide bonds may possibly be responsible for the solvent-stable nature of the enzyme.  相似文献   

12.
To investigate how the conformational flexibility of subtilisin affects its ability to discriminate between enantiomeric amino acid and ester substrates for the subtilisin-catalyzed reaction in an organic solvent, the flexibility around the active site and the surface of subtilisin was estimated from the mobility of a spin label bound to subtilisin by ESR spectroscopy. Many studies on enzyme flexibility focus on the active site. Both the surface and active site flexibility play an important role in the enantioselectivity enhancement of the enzyme-catalyzed reaction. It was found, however, that the different behavior observed for the enantioselectivity between the amino acid and ester substrates could be correlated with the flexibility around the surface rather than the flexibility at the active site of subtilisin. In other words, for the ester substrates, the greater flexibility around the surface of subtilisin induced by a conformational change resulting from the presence of an additive such as DMSO is essential for the enantioselectivity enhancement. This model is also supported by the Michaelis-Menten kinetic parameters for each enantiomeric substrate. Our findings provide insight into the enantioselectivity enhancement for the resolution of enantiomers for enzyme-catalyzed reactions in organic solvents.  相似文献   

13.
The folding of ervatamin C was investigated in the presence of various fluorinated and non-fluorinated organic solvents. The differences in the unfolding of the protein in the presence of various organic solvents and the stabilities of O-states were interpreted. At pH 2.0, non-fluorinated alkyl alcohols induced a switch from the native alpha-helix to a beta-sheet, contrary to the beta-sheet to alpha-helix conversion observed for many proteins. The magnitude of ellipticity at 215 nm, used as a measure of beta-content, was found to be dependent on the concentration of the alcohol. Under similar conditions of pH, fluorinated alcohol enhanced the intrinsic a-helicity of the protein molecule, whereas the addition of acetonitrile reduced the helical content. Ervatamin C exhibited high stability towards GuHCl induced unfolding in different O-states. Whereas the thermal unfolding of O-states was non-cooperative, contrary to the cooperativity seen in the absence of the organic solvents under similar conditions. Moreover, the differential scanning calorimetry endotherms of the protein acquired at pH 2.0 were deconvoluted into two distinct peaks, suggesting two cooperative transitions. With increase in pH, the shape of the thermogram changed markedly to exhibit a major and a minor transition. The appearance of two distinct peaks in the DSC together with the non-cooperative thermal transition of the protein in O-states indicates that the molecular structure of ervatamin C consists of two domains with different stabilities.  相似文献   

14.
Alcohol-induced conformational transitions of erv C, a highly stable cysteine protease, were followed by CD, fluorescence, and activity. At acidic pH, the addition of different alcohols caused two types of conformational transitions. Increasing the concentration of nonfluorinated alkyl alcohols induced a conformational switch from α-helix to β-sheet. Under these conditions, the protein lost its proteolytic activity and tertiary structure. The switch was a sudden one, observed in 50% methanol, 45% ethanol, and 40% propanol. Under similar conditions of pH and concentration, however, glycerol and TFE enhanced the α-helicity of the protein. Methanol-induced denaturation was observed to occur in two stages; the first is the β-sheet state stabilized at low alcohol concentrations, and the other is the β-sheet state with enhanced ellipticity stabilized at high alcohol concentrations. This β-sheet conformation can be attained from the native as well as 6 M GuHCl-denatured state by addition of methanol and exhibits properties different from the native or unfolded state. This state shows loss of tertiary structure and activity, enhanced nonnative secondary structure, noncooperative temperature unfolding, and higher stability toward denaturants as compared to the native state, which are characteristic of the molten globule-like state or O-state, and thus this state may be functioning as an intermediate in the folding pathway of erv C.  相似文献   

15.
In vivo formation and stability of engineered disulfide bonds in subtilisin   总被引:9,自引:0,他引:9  
Computer modeling suggested that a disulfide bond could be built into Bacillus amyloliquefaciens subtilisin between positions 22 (wild-type, Thr) and 87 (Ser) or between positions 24 (Ser) and 87 (Ser). Single cysteines were introduced into this cysteine-free protease at positions 22, 24, or 87 by site-directed mutagenesis of the cloned subtilisin gene. The corresponding double-cysteine mutants were constructed, and recombinant plasmids were expressed in Bacillus subtilis. Double-cysteine mutant enzymes were secreted as efficiently as wild-type, and disulfide bonds were formed quantitatively in vivo. These disulfide bonds were introduced approximately 24 A away from the catalytic site and had no detectable effect on either the specific activities or the pH optima of the mutant enzymes. The equilibrium constants for the reduction of the mutant disulfide bonds by dithiothreitol were determined to be 82 +/- 22 and 20 +/- 5 for Cys22/Cys87 and Cys24/Cys87, respectively. Studies of autoproteolytic inactivation of wild-type subtilisin support a relationship between autolytic stability and conformational stability of the protein. The stabilities of Cys24/Cys87 and wild-type enzymes to autolysis were essentially the same; however, Cys22/Cys87 was actually less stable to autolysis. Reduction of the disulfide cross-bridge lowered the autolytic stability of both double-cysteine mutants relative to their disulfide forms. This correlates with a lowered autolytic stability for the Cys22 and Cys87 single-cysteine mutants, and the fact that an intramolecular hydrogen bond between the hydroxyl groups of Thr22 and Ser87 is likely to be disrupted in the Cys22 and Cys87 single-cysteine mutant proteins.  相似文献   

16.
Pepsin exists as alkaline denatured state (Ip) in pH range 8–10, where the N-terminal domain of the protein is mostly unfolded while the C-terminal domain is intact. The effects of fluorinated (TFE) and non-fluorinated (methanol) organic solvents on this partially unfolded state (Ip) of pepsin were investigated using various spectroscopic methods. Both, fluorinated (TFE) and non-fluorinated (methanol) organic solvents induce secondary structure (α-helix) after a critical concentration. The Ip state of pepsin unfolds in cooperative manner but the transition was found to be non-cooperative in the presence of 40% methanol or TFE. The differences in the unfolding of the protein in the presence and the absence of these organic solvents were interpreted. Our results indicate that unfolding transitions in Ip state are mostly dominated by unfolding of C-terminal domain because the N-terminal domain is largely unstructured in this state. The organic solvents (TFE and methanol) induce more secondary structure in N-terminal domain and make it another unfolding entity with different stability compare to C-terminal resulting into sequential unfolding of the domain.  相似文献   

17.
Conformational diversity within unique amino acid sequences is observed in diseases like scrapie and Alzheimer's disease. The molecular basis of such diversity is unknown. Similar phenomena occur in subtilisin, a serine protease homologous with eukaryotic pro-hormone convertases. The subtilisin propeptide functions as an intramolecular chaperone (IMC) that imparts steric information during folding but is not required for enzymatic activity. Point mutations within IMCs alter folding, resulting in structural conformers that specifically interact with their cognate IMCs in a process termed "protein memory." Here, we show a mechanism that mediates conformational diversity in subtilisin. During maturation, while the IMC is autocleaved and subsequently degraded by the active site of subtilisin, enzymatic properties of this site differ significantly before and after cleavage. Although subtilisin folded by Ile-48 --> Thr IMC (IMCI-48T) acquires an "altered" enzymatically active conformation (SubI-48T) significantly different from wild-type subtilisin (SubWT), both precursors undergo autocleavage at similar rates. IMC cleavage initiates conformational changes during which the IMC continues its chaperoning function subsequent to its cleavage from subtilisin. Structural imprinting resulting in conformational diversity originates during this reorganization stage and is a late folding event catalyzed by autocleavage of the IMC.  相似文献   

18.
In the presence of methanol 50S ribosomal subunits reveal two independents sites for binding of deacylated tRNA and/or AcPhe-tRNA. The site with lower affinity was identified with the donor (P') site as the dissociation constant (Ka) for AcPhe-tRNA was equal to the Michaelis constant for its reaction with puromycin both at 0 degrees C and 25 degrees C. Log Ka increases linearly with methanol concentration. This suggests that there are no conformational transitions of the interacting components, the affinity increases only quantatively due to lowering of the dielectric constant of water, and the site can exist even in the absence of methanol, but its Ka may be too low to be measured. It follows from these data that the higher-affinity site, which is observed both in the absence and presence of methanol, cannot be the P' site as it was generally believed. By all its properties it is more like the additional E site, which has been recently found on 70S ribosomes. Specifically, its affinity for deacylated tRNA is about 1000-fold higher than for AcPhe-tRNA (in the P'-site they are almost the same).  相似文献   

19.
M J Bogusky  C M Dobson  R A Smith 《Biochemistry》1989,28(16):6728-6735
Human urinary-type plasminogen activator (urokinase) and proteolytic fragments corresponding to the kringle, EGF-kringle, and protease domains have been examined by 1H NMR spectroscopy. The intact protein shows a very well-resolved spectrum for a molecule of this size (MW 54,000), with resonance line widths not greatly increased from those of the isolated domains. On increasing the temperature, the protein at pH values close to 4 was found to undergo two distinct and reversible conformational transitions. These were identified, by comparison with spectra of the proteolytic fragments, as the unfolding of the kringle (and EGF) domains (at approximately 42 degrees C) and of a segment of the protease domain (at approximately 60 degrees C). The remaining segment of the protease domain showed persistent structure to at least 85 degrees C at pH 4; only at lower pH values could complete unfolding be achieved. The results indicate that the structures and stabilities of the isolated domains are closely similar to those in the intact protein and suggest that there is a degree of independent motion at least between the kringle and protease domains.  相似文献   

20.
The dramatic activation of serine proteases in nonaqueous media resulting from lyophilization in the presence of KCl is shown to be unrelated to relaxation of potential substrate diffusional limitations. Specifically, lyophilizing subtilisin Carlsberg in the presence of KCl and phosphate buffer in different proportions, ranging from 99% (w/w) enzyme to 1% (w/w) enzyme in the final lyophilized solids, resulted in biocatalyst preparations that were not influenced by substrate diffusion. This result was made evident through use of a classical analysis whereby initial catalytic rates, normalized per weight of total enzyme in the catalyst material, were measured as a function of active enzyme for biocatalyst preparations containing different ratios of active to inactive enzyme. The active enzyme content of a given biocatalyst preparation was controlled by mixing native subtilisin with subtilisin preinactivated with PMSF, a serine protease inhibitor, and lyophilizing the enzyme mixture in the presence of different fractions of KCl and phosphate buffer. Plots of initial reaction rates as a function of percent active subtilisin in the biocatalyst were linear for all biocatalyst preparations. Thus, enzyme activation (reported elsewhere to be as high as 3750-fold in hexane for the transesterification of N-Ac-L-Phe-OEt with n-PrOH) is a manifestation of intrinsic enzyme activation and not relaxation of diffusional limitations resulting from diluted enzyme preparations. Similar activation is reported herein for thermolysin, a nonserine protease, thereby demonstrating that enzyme activation due to lyophilization in the presence of KCl may be a general phenomenon for proteolytic enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号