首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
AIM: In the present work, we studied the effects of hypoxia and triiodothyronine (T(3)) on phosphoglycerate mutase (PGAM) activity and expression in rabbit liver, brain, and skeletal muscle under in vivo conditions. METHODS: Hypoxia was induced in a methacrylate cage with a mixture of 90% nitrogen and 10% oxygen. Hyperthyroidism was induced daily by T(3) injection (250 microg/kg). RESULTS: Hypoxia increases the PGAM activity in liver and brain, tissues which possess type PGAM-BB isozyme, but does not affect the PGAM activity in muscle which possesses type PGAM-MM isozyme. T(3) administration increases the PGAM activity in muscle and liver, but does not affect the enzyme activity in the brain. In all cases, the activity changes in parallel with those of PGAM mRNA levels. CONCLUSION: The tissue-specific effects of hypoxia and T(3) could be explained by the tissue-specific distribution of both PGAM isozyme and T(3) receptors.  相似文献   

2.
Nuclear location of phosphoglycerate mutase BB isozyme in rat tissues   总被引:1,自引:0,他引:1  
Summary We have previously reported (Ureña et al. Eur. J. Cell Biol. 1990) that in skeletal muscle, type MM phosphoglycerate mutase isozyme is present in the nucleus as well as in the cytosol. To determine whether type BB phosphoglycerate mutase isozyme is also present in nucleus, the subcellular location of this isozyme was studied in different rat tissues by cell fractionation and immunogold techniques. With the aid of high affinity-purified anti-phosphoglycerate mutase BB isozyme antibodies, the isozyme was located in the nucleus of neuronal, astroglial and liver cells but not in the nucleus of oligodendroglial and endothelial cells. Biochemical studies on purified nuclear fractions also demonstrated the presence of phosphoglycerate mutase activity in the nucleus. Both immunocytochemical and biochemical techniques showed that nuclear phosphoglycerate mutase-specific activity depended on the type of cell.Abbreviations PGAM phosphoglycerate mutase - PGAM-M(M) muscle specific subunit (isozyme) of PGAM - PGAM-B(B) brain type subunit (isozyme) of PGAM - ssDNA single stranded DNA - PBS 0.001 M phosphate buffer, pH 7.4, containing 0.15 M NaCl - kDa kilodalton  相似文献   

3.
OBJECTIVES: The effects of triiodothyronine (T(3)) and hypoxia on 2,3-bisphosphoglycerate (2,3-BPG) studied in vitro are unclear. To clarify these effects we selected a more physiologic approach: the in vivo study in rabbits. We also present the changes produced by T(3) and hypoxia on phosphoglycerate mutase (PGAM), which requires 2,3-BPG as a cofactor, and 2,3-BPG synthase (BPGS), the enzyme responsible for 2,3-BPG synthesis in erythroblasts and reticulocytes. METHODS: Hyperthyroidism was induced by daily T(3) injection (250 microg/kg), hypoxia by a mixture of 90% nitrogen and 10% oxygen and hypothyroidism by propylthiouracil (PTU) added to drinking water. RESULTS: Both T(3) administration and hypoxic conditions increased 2,3-BPG levels and BPGS mRNA levels and activity in erythroblasts but not in reticulocytes. Unlike BPGS, both PGAM mRNA levels and activity were increased in erythroblasts and reticulocytes under hyperthyrodism and hypoxia. The antihormone PTU produced opposite effects to T(3). CONCLUSION: The results presented here suggest that both hyperthyroidism and hypoxia modulate in vivo red cell 2,3-BPG content by changes in the expression of BPGS. Similarly, the changes in PGAM activity are also explained by changes in its expression.  相似文献   

4.
5.
6.
The differential effects of polyamines on the activity of AMP deaminase isozyme A (from rat muscle) and isozyme B (from rat liver) are reported. Polyamines activate isozyme B but inhibit isozyme A.  相似文献   

7.
Several enzymes that occur in multimolecular forms undergo transitions during myogenesis. Studies of such developmentally regulated isozymes (e.g. creatine kinase) indicate that muscle cells, cultured in the absence of neural tissue never develop fully mature isozyme patterns, but continue to express large amounts of 'housekeeping' isozymes that are characteristically present in fetal muscle. We studied two developmentally controlled isozymes, creatine kinase (CK) and phosphoglycerate mutase (PGAM) in normal human muscle, both aneurally cultured and co-cultured with fetal mouse spinal cord complex. Innervated cultures attain a greater degree of maturity than non-innervated cultures, as revealed by light and electron microscopy, showing well-developed sarcomeres and motor endplates after several weeks in vitro. During early stages of muscle regeneration in co-culture, characteristic fetal isozyme patterns of CK-BB and PGAM-BB activity predominate, as in aneural cultures. The muscle-specific isozymes (CK-MM; PGAM-MM) begin to appear as the muscle differentiates, and after 2-3 months in co-culture only, virtually all enzyme activity is due to the muscle-specific forms of CK and PGAM, as is normally observed in mature skeletal muscle in vivo.  相似文献   

8.
Activity patterns of cytosolic and mitochondrial enzymes of carbohydrate and amino acid metabolism have been measured in murine trisomy 19. In spite of marked hypoplasia, no significant alterations of the patterns (per gram of organ weight) were observed, with the exception of glutamate oxaloacetate transaminase (GOT-1), and phosphoglycerate mutase (PGAM). Clear-cut gene dosage effects in liver, brain, heart, skeletal muscle, and erythrocytes of fetal and newborn mice, confirm the assignment of GOT-1 to chromosome 19. Data obtained for PGAM demonstrate that one of the two different subunits leading to organ-specific isozyme patterns of the dimer enzyme protein is coded on chromosome 19 (gene Pgam-1). Dosage effects are fully expressed in liver, brain, and erythrocytes (AA-type isozyme), but not in skeletal muscle (BB-type isozyme). Dosage effects on the hybrid AA-AB-BB-isozyme pattern in the course of development of the heart muscle, were demonstrated by means of quantitative activity measurement after electrophoretic separation. The comparison of enzyme patterns of eusomic and trisomic erythrocytes, produced after injection of fetal stem cells into irradiated adult carriers (transplantation chimaeras), revealed enzyme activity ratios that were similar to those produced by erythrocytes of adult euploid and trisomic mice. This is in agreement with the chromosome assignments and dosage effects mentioned above.  相似文献   

9.
Expression of Na,K-ATPase catalytic alpha isoform (alpha 1, alpha 2, and alpha 3) and beta subunit genes in rodent muscle was investigated using the murine C2C12 myogenic cell line. RNA blot analyses of myoblasts revealed expression primarily of the alpha 1 mRNA and low levels of alpha 2 mRNA. Fusion of the proliferating myoblasts to form myotubes was accompanied by an approximate 12-fold induction of the alpha 2 mRNA. In contrast, expression of alpha 1 mRNA remained constant throughout myogenesis. The alpha 3 mRNA was not detected in either myoblasts or myotubes. The beta mRNA abundance also increased 2-3-fold during myotube formation. In rodent tissues, low and high affinity cardiac glycoside (e.g. ouabain) receptors have been shown to be associated with the Na,K-ATPase catalytic alpha 1 and alpha 2 isoform subunits, respectively. The existence of these two functional classes of Na,K-ATPase in myoblasts and myotubes correlated with the biphasic ouabain inhibition of Na,K-ATPase activity. Confluent myoblasts expressed primarily the alpha 1 isozyme (IC50 = 3.6 X 10(-5) M; 95% of total activity) and lesser amounts of the alpha 2 isozyme (IC50 = 1.1 X 10(-7) M; 5% of total activity). In contrast, the myotubes showed significant levels of the alpha 1 isozyme (IC50 = 4.0 X 10(-5) M; 68% of total activity) and, in addition, showed a 6-fold increase in the relative levels of the alpha 2 isozyme (IC50 = 1.1 X 10(-7) M; 32% of total activity). To quantitate further the expression of the high affinity, ouabain-sensitive alpha 2 isozyme, a whole cell [3H]ouabain-binding assay was used. Results revealed that myotubes have an approximately 6-fold greater concentration of [3H]ouabain-binding sites than myoblasts with an apparent dissociation constant (Kd) of 1.4 X 10(-7) M. The results indicate that muscle cells can express multiple isozymes of Na,K-ATPase and that expression of the alpha 2 isozyme is developmentally regulated during myogenesis.  相似文献   

10.
The rat cDNA for the muscle-type (M) isozyme of 6-phosphofructo-2-kinase (PFK-2)/fructose-2,6-bisphosphatase (FBPase-2) contains two putative translation initiation sites. To determine whether the M isozyme expressed in rat skeletal muscle corresponds to the short (PFK2M-sf) or the long (PFK2M-lf) isoform, we have expressed them in Escherichia coli. A third construction was also expressed in which the second ATG codon was deleted (PFK2M-lf delta ATG) to ensure that initiation started at the first ATG. The properties of these recombinant proteins were compared with those of the PFK-2/FBPase-2 present in rat skeletal muscle and liver. The recombinant proteins displayed PFK-2 and FBPase-2 activities and the M(r) values of the subunits measured by SDS-polyacrylamide gel electrophoresis were compatible with the calculated ones. The purified recombinant lf form contained not only the expected lf band (54,500 M(r)) but also the sf band (52,000 M(r)), indicating that the expression system could synthesize the long and the short isoforms from the same mRNA. The kinetic properties of the recombinant sf form were not different from those of the rat muscle enzyme. By contrast, lf delta ATG PFK-2 displayed a higher Km for its substrates and a lower Vmax. Immunoblotting with an antibody directed against the long isoform revealed a 54,500 M(r) band both in the lf and the lf delta ATG recombinant, but no band in rat skeletal muscle extracts. In these extracts, one band of 52,000 and a minor one of 54,500 M(r) were detected by an anti PFK-2/FBPase-2 antibody. The 54,500 M(r) band was recognized by an antibody directed against the L isozyme, suggesting that a small amount of the latter is expressed in skeletal muscle. Thus, the M isozyme differs from the L isozyme by replacement of the first 32 amino acids of the L isozyme by an unrelated nonapeptide.  相似文献   

11.
Increased accumulation of muscle-specific isozyme (MSI) of creatine kinase (CK), lactate dehydrogenase (LDH), glycogen phosphorylase (GP), and phosphoglycerate mutase (PGAM) occurs with development and indicates muscle fiber maturation. The expression of MSIs of those four enzymes is greatly enhanced in innervated-contracting as compared to noninnervated and noncontracting cultured human muscle fibers. We have now studied the effect of contractile activity on developmental accumulation of MSIs in innervated-contracting, innervated-paralyzed (2 microM tetrodotoxin for 30 days), and noninnervated-noncontracting cultured human muscle fibers. Muscle acetylcholinesterase (AChE) and total enzyme activities were also studied under the same conditions. We observed a different dependency on contractile activity between total enzymatic activities of CK, LDH, and AChE, which were substantially reduced after paralysis, and GP and PGAM, which were unchanged. The expression of MSIs of CK, GP, PGAM, and LDH was always significantly increased in innervated as compared to noninnervated fibers. While the expression of MSIs of GP and PGAM was the same in contracting-innervated and paralyzed-innervated muscle fibers, the expression of MSIs of CK and LDH in paralyzed-innervated muscle fibers was very slightly decreased as compared to their contracting-innervated controls. Our studies demonstrate that in human muscle: (1) total enzymatic activities and the expression of MSIs of GP and PGAM are regulated by neuronal effect(s); (2) total enzymatic activities of CK, LDH, and AChE depend mainly on muscle contractile activity; and (3) MSIs of CK and LDH are regulated predominantly by neuronal factors and to a much lesser degree by muscle contractile activity.  相似文献   

12.
Expression of aldolase isozyme mRNAs in fetal rat liver   总被引:3,自引:0,他引:3  
The regulation of aldolase isozyme expression during development was studied by measuring the concentrations of mRNAs coding for aldolase A and B subunits in fetal and adult rat liver. Poly(A)-containing RNAs were extracted from livers at various stages of development of fetal rats, and the aldolase A and B subunits in the in vitro translation products of these RNAs were analyzed immunologically. The content of aldolase B mRNA in 14-day fetal liver, measured quantitatively as translational activity, was somewhat smaller than that of aldolase A mRNA; immunologically precipitable aldolase B and A amounted to 0.06% and 0.25% respectively, of the total products. Similar experiments using RNAs from fetuses at later stages, however, showed that aldolase B mRNA increased during development, whereas aldolase A mRNA decreased. In newborn rat liver, aldolase B constituted 0.56% of the total translation products of mRNA, but there was little detectable aldolase A (0.03%). The changes of aldolase mRNA levels were analyzed further by northern blot and dot-blot hybridization experiments using cloned aldolase A and B cDNAs. The content of aldolase B mRNA increased in the fetal stage, and that in newborn rat liver was about 12 times that in 14-day fetal liver. In contrast, the aldolase A mRNA content decreased during gestation and that in newborn rat liver was about one-eighth of that in 14-day fetal liver. These observations suggest that the switch of aldolase isozyme expression in fetal liver is controlled by the levels of the respective mRNAs.  相似文献   

13.
Immunological properties of rat phosphoglycerate mutase isozymes   总被引:1,自引:0,他引:1  
In mammalian tissues three phosphoglycerate mutase (D-phosphoglycerate 2,3-phosphomutase, EC 5.4.2.1) isozymes result from the homo-dimeric and hetero-dimeric combinations of two subunits (types M and B). Whereas rabbit antisera against type M subunit (purified from rat muscle) and against type BB isozyme (purified from rat brain) possessed a high degree of specificity, both antisera reacted with type BB and MM isozymes, as demonstrated by immunoneutralization and ELISA. Both the M subunit and B subunit were more immunoreactive than their respective dimeric isozymes. Subunits type M and B may possess common antigenic determinants, and some of these determinants may be sterically hindered in their dimeric structures.  相似文献   

14.
Expression of the endogenous human GH (hGH) gene in response to glucocorticoids, thyroid hormone, and insulin was studied in cultures of dispersed GH-secreting human pituitary adenomas. Results were compared to those obtained when the hGH gene was transfected into rat pituitary tumor cells (GC). In the human pituitary cells the glucocorticoid dexamethasone [(Dex) 10(-6) M] increased the release of GH and the levels of GH mRNA by 2 to 4-fold (P less than 0.05). T3 (10(-8) M) had no effect on GH mRNA but increased hGH release by 2- to 6-fold (P less than 0.01). Insulin (5 x 10(-9) M) alone had no significant effect on either hGH mRNA or protein, but blunted the effect of Dex. Among 11 of 18 GC cell clones transfected with the hGH gene with detectable hGH mRNA expression, Dex increased hGH mRNA levels in seven and T3 treatment reduced hGH mRNA levels in eight. Conversely, rat GH mRNA levels from the endogenous rat gene were increased by either Dex or T3 in all 18 clones. Insulin alone or in combination with T3 or Dex was found to increase hGH mRNA levels in some cell lines and to decrease hGH mRNA levels in others; these effects were correlated strongly (r = 0.88; P less than 0.001) with the influence of insulin on the endogenous rat GH gene, implying that individual cellular differences can simultaneously affect the insulin responsiveness of both genes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Mammalian glycogen phosphorylases comprise a family of isozymes that are expressed selectively in a variety of cell types. As an initial step towards understanding the molecular processes that regulate the differential expression of the phosphorylase family, we have begun a quantitative examination of isozyme expression in vivo. In this paper, we report quantitative estimates of the amounts of the muscle (M) isozyme and its mRNA in adult rat tissues. Quantitative estimates of the amount of M-phosphorylase were obtained by an analysis involving electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose filters and sequential treatment with M-isozyme specific antibody and radioactively- labeled protein A. M-phosphorylase mRNA amounts were determined by an analysis involving transfer of RNA from agarose gels to nitrocellulose filters and subsequent hybridization with radioactively labelled rat M-phosphorylase cDNA. These studies indicate that M-phosphorylase is present in all tissues tested with the possible exception of liver. These are skeletal muscle, heart, brain, stomach, lung, kidney, spleen and testis. Quantitation of M-phosphorylase amounts indicate that there is a wide spectrum of variation (over 1000-fold range) in the relative amounts of the M-isozymes in these tissues. Relative mRNA levels parallel isozyme levels indicating that the major control of expression of this isozyme is governed by mRNA accumulation.  相似文献   

16.
Myosin isozyme pattern in adult rat cardiac ventricular muscle cells in long-term culture was investigated. The myosin isozymes profile of cultured cardiac myocytes underwent a change in a serum-containing medium from two weeks onward, showing an embryonic rat ventricular myosin isozymes pattern that contained predominant isozyme V3. When adult cardiac myocytes were grown in a serum-containing medium supplemented with T4, these cells contained a predominant V1 band whose electrophoretic mobility and Ca2+-ATPase activity were comparable to those of the adult rat ventricle in vivo. This study has demonstrated that the adult cardiac ventricular muscle cells in long-term culture contain a predominant myosin isozyme V3 unlike their counterparts in vivo. Supplemented T4 modulated the embryonic type isozyme V3 to the adult type V1.  相似文献   

17.
The aim of this work was to identify the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2) isozyme(s) present in white adipose tissue. Ion-exchange chromatography of PFK-2 from rat epididymal fat pads yielded an elution pattern compatible with the presence of both the L (liver) and M (muscle) isozymes. This was consistent with a study of the phosphorylation of the purified adipose tissue enzyme by cAMP-dependent protein kinase, by specific labelling of the preparation with [2-32P]fructose 2,6-bisphosphate and by reaction with antibodies. Characterization of the PFK-2/FBPase-2 mRNAs showed that mature adipocytes express the mRNA that codes for the L isozyme and the two mRNAs that code for the M isozyme. Preadipocytes expressed mRNA that codes for the M isozyme. Incubation of rat epididymal fat pads with adrenaline stimulated glycolysis but decreased fructose 2,6-bisphosphate concentrations without significant inactivation of PFK-2. These results support previous findings showing that fructose 2,6-bisphosphate is not involved in the adrenaline-induced stimulation of glycolysis in white adipose tissue.  相似文献   

18.
19.
3 specific cDNA clones for human aldolase A were isolated from a human muscle library. One of them was subcloned in M 13 phage, then used as a probe to investigate the patterns and the levels of aldolase A mRNA in various human tissues. Two mRNA species differing in length were observed. The lighter one -1550 bases- was found specific to skeletal muscle; its amount increased during muscle development. The heavier aldolase A mRNA -1650 bases- accounted for foetal and ubiquitous presence of aldolase A isozyme. The resurgence of aldolase A in hepatomas occurred through this latter mRNA species.  相似文献   

20.
The kinetic properties of type A and type B monoamine oxidase (MAO) were examined in guinea pig striatum, rat striatum, and autopsied human caudate nucleus using 3,4-dihydroxyphenylethylamine (dopamine, DA) as the substrate. MAO isozyme ratio in guinea pig striatum (28% type A/72% type B) was similar to that in human caudate nucleus (25% type A/75% type B) but different from that in rat striatum (76% type A/24% type B). Additional similarities between guinea pig striatum and human caudate nucleus were demonstrated for the affinity constants (Km) of each MAO) isozyme toward DA. Endogenous concentrations of DA, 3-methoxytyramine, 3,4-dihydroxyphenylacetic acid, and homovanillic acid were also measured in guinea pig and rat striatum following selective type A (clorgyline-treated) and type B (deprenyl-treated) MAO inhibition. In guinea pig, DA metabolism was equally but only partially affected by clorgyline or deprenyl alone. Combined treatment with clorgyline and deprenyl was required for maximal alterations in DA metabolism. By contrast, DA metabolism in rat striatum was extensively altered by clorgyline but unaffected by deprenyl alone. Finally, the deamination of DA in synaptosomes from guinea pig striatum was examined following selective MAO isozyme inhibition. Neither clorgyline nor deprenyl alone reduced synaptosomal DA deamination. However, clorgyline and deprenyl together reduced DA deamination by 94%. These results suggest that the isozyme localization and/or isozyme affinity for DA, rather than the absolute isozyme content, determines the relative importance of type A and type B MAO in synaptic DA deamination. Moreover, based on the enzyme kinetic properties of each MAO isozyme, guinea pig striatum may serve as a suitable model of human DA deamination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号