首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mycoparasitism of fungal plant pathogens by Trichoderma species is a complex process that involves the production and coordinated secretion of cell-wall degrading enzymes. Genes implicated in mycoparasitism by Trichoderma atroviride contain motifs in the promoter region, designated MYRE1-MYRE4, that are proposed to act as binding sites for a global inducer of the mycoparasitic response. The aim of our study was to establish whether these motifs also were present in Trichoderma hamatum and whether the presence of these motifs could predict co-expression when T. hamatum was confronted by a pathogen. Using a combination of targeted, degenerate and inverse PCR, homologues of the mycoparasitism-related genes ech42 (chit42), prb1 and lam1.3 (xbg1.3-110), which encode an endochitinase, proteinase, and β-1,3-glucanase, respectively, were cloned and sequenced from T. hamatum. Alignment of the promoter regions of the three genes revealed identical regions in the chit42 and prb1 promoters, which were 6-9 base pairs in length and conserved in position. Specifically, the regulator y motifs MYRE1-MYRE4 were fully conserved, together with a fifth motif, identified by this research. A substrate assay designed to investigate the response of these genes from T. harzianum and T. hamatum to a simple carbon source (glycerol) showed that, in contrast to chit42 and prb1, xbg1.3-110 was not expressed. Further comparison of the expression patterns of these three genes between T. harzianum and T. hamatum using the glycerol substrate assay showed that no chit42 or prb1 expression could be detected in T. harzianum when it was grown under the same conditions as T. hamatum. This showed that the response of these genes to glycerol was species specific and that a single expression pattern for these genes was not common to all Trichoderma species. Confrontation assays were used to investigate the response of the three T. hamatum genes to the more complex substrate posed by the fungal pathogen Sclerotinia sclerotiorum. Once again gene expression analysis showed that both chit42 and prb1 were co-expressed and moderately induced during confrontation against Sclerotinia sclerotiorum. Although xbg1.3-110 previously had been implicated in mycoparasitism by T. harzianum, this study detected no xbg1.3-110 expression during confrontation between T. hamatum and S. sclerotiorum. These findings show that the MYRE1-MYRE4 together with MYRE5 are present in two species of Trichoderma, T. atroviride and T. hamatum and that the presence of these motifs could predict co-expression in response to two carbon sources.  相似文献   

2.
3.
4.
5.
The mycoparasite Trichoderma harzianum has been extensively used in the biocontrol of a wide range of phytopathogenic fungi. Hydrolytic enzymes secreted by the parasite have been directly implicated in the lysis of the host. Dual cultures of Trichoderma and a host, with and without contact, were used as means to study the mycoparasitic response in Trichoderma. Northern analysis showed high-level expression of genes encoding a proteinase (prb1) and an endochitinase (ech42) in dual cultures even if contact with the host was prevented by using cellophane membranes. Neither gene was induced during the interaction of Trichoderma with lectin-coated nylon fibres, which are known to induce hyphal coiling and appressorium formation. Thus, the signal involved in triggering the production of these hydrolytic enzymes by T. harzianum during the parasitic response is independent of the recognition mediated by this lectin-carbohydrate interaction. The results showed that induction of prb1 and ech42 is contact-independent, and a diffusible molecule produced by the host is the signal that triggers expression of both genes in vivo. Furthermore, a molecule that is resistant to heat and protease treatment, obtained from Rhizoctonia solani cell walls induces expression of both genes. Thus, this molecule is involved in the regulation of the expression of hydrolytic enzymes during mycoparasitism by T. harzianum.  相似文献   

6.
The chitinase genes of Trichoderma spp. (ech42, chit33, nag1) contain one or more copies of a pentanucleotide element (5'-AGGGG-3') in their 5'-noncoding regions. In Saccharomyces cerevisiae, this motif is recognized and bound by the stress response regulator proteins Msn2p/Msn4p. To test whether this motif in the chitinase promoters is bound by a Trichoderma Msn2/4p homolog, we have cloned a gene (seb1) from T. atroviride which encodes a C2H2 zinc-finger protein that is 62 (64)% identical to S. cerevisiae Msn2p (Msn4p) in the zinc-finger region, and almost identical to the G-box binding protein from Haematonectria haematococca and to polypeptides encoded by uncharacterized ORFs from Neurospora crassa and Aspergillus nidulans. Its zinc-finger domain specifically recognizes the AGGGG sequence of the ech42 and nag1 promoter in band-shift assays. However, a cDNA clone of seb1, when overexpressed in S. cerevisiae, was unable to complement a Delta msn2/4 mutant of S. cerevisiae. Levels of seb1 mRNA increased under conditions of osmotic stress (sorbitol, NaCl) but not under other stress conditions (cadmium sulfate, pH, membrane perturbance). A T. atroviride Delta seb1 strain, produced by transformation with a seb1 copy disrupted by insertion of the A. nidulans amdS gene, showed strongly reduced growth on solid medium, but grew normally in liquid medium. In liquid medium, growth of the disruption strain was significantly more inhibited by the presence of 1 M sorbitol and 1 M NaCl than was that of the wild-type strain. Despite the presence of AGGGG elements in the promoter of the chitinase gene nag1, no differences in its expression were found between the parent and the disruption strain. EMSA analyses with cell-free extracts obtained from the seb1 disruption strain showed the presence of proteins that could bind to the AGGGG-element in nag1 and ech42. We therefore conclude that seb1 encodes a protein that is involved in the osmotic stress response, but not in chitinase gene expression, in T. atroviride.  相似文献   

7.
8.
The mycoparasite Trichoderma harzianum has been extensively used in the biocontrol of a wide range of phytopathogenic fungi. Hydrolytic enzymes secreted by the parasite have been directly implicated in the lysis of the host. Dual cultures of Trichoderma and a host, with and without contact, were used as means to study the mycoparasitic response in Trichoderma. Northern analysis showed high-level expression of genes encoding a proteinase (prb1) and an endochitinase (ech42) in dual cultures even if contact with the host was prevented by using cellophane membranes. Neither gene was induced during the interaction of Trichoderma with lectin-coated nylon fibres, which are known to induce hyphal coiling and appressorium formation. Thus, the signal involved in triggering the production of these hydrolytic enzymes by T. harzianum during the parasitic response is independent of the recognition mediated by this lectin-carbohydrate interaction. The results showed that induction of prb1 and ech42 is contact-independent, and a diffusible molecule produced by the host is the signal that triggers expression of both genes in vivo. Furthermore, a molecule that is resistant to heat and protease treatment, obtained from Rhizoctonia solani cell walls induces expression of both genes. Thus, this molecule is involved in the regulation of the expression of hydrolytic enzymes during mycoparasitism by T. harzianum. Received: 8 June 1998 / Accepted: 28 July 1998  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号