首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The HIV-1 envelope (Env) glycoproteins play an essential role in the virus replication cycle by mediating the fusion between viral and cellular membranes during the entry process. The Env glycoproteins are synthesized as a polyprotein precursor (gp160) that is cleaved by cellular proteases to the mature surface glycoprotein gp120 and the transmembrane glycoprotein gp41. During virus assembly, the gp120/gp41 complex is incorporated as heterotrimeric spikes into the lipid bilayer of nascent virions. These gp120/gp41 complexes then initiate the infection process by binding receptor and coreceptor on the surface of target cells. Much is currently known about the HIV-1 Env glycoprotein trafficking pathway and the structure of gp120 and the extracellular domain of gp41. However, the mechanism by which the Env glycoprotein complex is incorporated into virus particles remains incompletely understood. Genetic data support a major role for the cytoplasmic tail of gp41 and the matrix domain of Gag in Env glycoprotein incorporation. Still to be defined are the identities of host cell factors that may promote Env incorporation and the role of specific membrane microdomains in this process. Here, we review our current understanding of HIV-1 Env glycoprotein trafficking and incorporation into virions.  相似文献   

2.
The HIV-1 Env spike is the main protein complex that facilitates HIV-1 entry into CD4+ host cells. HIV-1 entry is a multistep process that is not yet completely understood. This process involves several protein-protein interactions between HIV-1 Env and a variety of host cell receptors along with many conformational changes within the spike. HIV-1 Env developed due to high mutation rates and plasticity escape strategies from immense immune pressure and entry inhibitors. We applied a coevolution and residue-residue contact detecting method to identify coevolution patterns within HIV-1 Env protein sequences representing all group M subtypes. We identified 424 coevolving residue pairs within HIV-1 Env. The majority of predicted pairs are residue-residue contacts and are proximal in 3D structure. Furthermore, many of the detected pairs have functional implications due to contributions in either CD4 or coreceptor binding, or variable loop, gp120-gp41, and interdomain interactions. This study provides a new dimension of information in HIV research. The identified residue couplings may not only be important in assisting gp120 and gp41 coordinate structure prediction, but also in designing new and effective entry inhibitors that incorporate mutation patterns of HIV-1 Env.  相似文献   

3.
Retrocyclin-1, a -defensin, protects target cells from human immunodeficiency virus, type 1 (HIV-1) by preventing viral entry. To delineate its mechanism, we conducted fusion assays between susceptible target cells and effector cells that expressed HIV-1 Env. Retrocyclin-1 (4 microm) completely blocked fusion mediated by HIV-1 Envs that used CXCR4 or CCR5 but had little effect on cell fusion mediated by HIV-2 and simian immunodeficiency virus Envs. Retrocyclin-1 inhibited HIV-1 Env-mediated fusion without impairing the lateral mobility of CD4, and it inhibited the fusion of CD4-deficient cells with cells bearing CD4-independent HIV-1 Env. Thus, it could act without cross-linking membrane proteins or inhibiting gp120-CD4 interactions. Retrocyclin-1 acted late in the HIV-1 Env fusion cascade but prior to 6-helix bundle formation. Surface plasmon resonance experiments revealed that retrocyclin bound the ectodomain of gp41 with high affinity in a glycan-independent manner and that it bound selectively to the gp41 C-terminal heptad repeat. Native-PAGE, enzyme-linked immunosorbent assay, and CD spectroscopic analyses all revealed that retrocyclin-1 prevented 6-helix bundle formation. This mode of action, although novel for an innate effector molecule, resembles the mechanism of peptidic entry inhibitors based on portions of the gp41 sequence.  相似文献   

4.
To become infectious, HIV-1 particles undergo a maturation process involving proteolytic cleavage of the Gag and Gag-Pol polyproteins. Immature particles contain a highly stable spherical Gag lattice and are impaired for fusion with target cells. The fusion impairment is relieved by truncation of the gp41 cytoplasmic tail (CT), indicating that an interaction between the immature viral core and gp41 within the particle represses HIV-1 fusion by an unknown mechanism. We hypothesized that the conformation of Env on the viral surface is regulated allosterically by interactions with the HIV-1 core during particle maturation. To test this, we quantified the binding of a panel of monoclonal antibodies to mature and immature HIV-1 particles by immunofluorescence imaging. Surprisingly, immature particles exhibited markedly enhanced binding of several gp41-specific antibodies, including two that recognize the membrane proximal external region (MPER) and neutralize diverse HIV-1 strains. Several of the differences in epitope exposure on mature and immature particles were abolished by truncation of the gp41 CT, thus linking the immature HIV-1 fusion defect with altered Env conformation. Our results suggest that perturbation of fusion-dependent Env conformational changes contributes to the impaired fusion of immature particles. Masking of neutralization-sensitive epitopes during particle maturation may contribute to HIV-1 immune evasion and has practical implications for vaccine strategies targeting the gp41 MPER.  相似文献   

5.
Shang L  Yue L  Hunter E 《Journal of virology》2008,82(11):5417-5428
The membrane-spanning domain (MSD) of the human immunodeficiency virus type 1 (HIV-1) gp41 glycoprotein is critical for its biological activity. Previous C-terminal truncation studies have predicted an almost invariant core structure of 12 amino acid residues flanked by basic amino acids in the HIV-1 MSD that function to anchor the glycoprotein in the lipid bilayer. To further understand the role of specific amino acids within the MSD core, we initially replaced the core region with 12 leucine residues and then constructed recovery-of-function mutants in which specific amino acid residues (including a GGXXG motif) were reintroduced. We show here that conservation of the MSD core sequence is not required for normal expression, processing, intracellular transport, and incorporation into virions of the envelope glycoprotein (Env). However, the amino acid composition of the MSD core does influence the ability of Env to mediate cell-cell fusion and plays a critical role in the infectivity of HIV-1. Replacement of conserved amino acid residues with leucine blocked virus-to-cell fusion and subsequent viral entry into target cells. This restriction could not be released by C-terminal truncation of the gp41 glycoprotein. These studies imply that the highly conserved core residues of the HIV Env MSD, in addition to serving as a membrane anchor, play an important role in mediating membrane fusion during viral entry.  相似文献   

6.
Both equilibrium and nonequilibrium factors influence the efficacy of pharmaceutical agents that target intermediate states of biochemical reactions. We explored the intermediate state inhibition of gp41, part of the HIV-1 envelope glycoprotein complex (Env) that promotes viral entry through membrane fusion. This process involves a series of gp41 conformational changes coordinated by Env interactions with cellular CD4 and a chemokine receptor. In a kinetic window between CD4 binding and membrane fusion, the N- and C-terminal regions of the gp41 ectodomain become transiently susceptible to inhibitors that disrupt Env structural transitions. In this study, we sought to identify kinetic parameters that influence the antiviral potency of two such gp41 inhibitors, C37 and 5-Helix. Employing a series of C37 and 5-Helix variants, we investigated the physical properties of gp41 inhibition, including the ability of inhibitor-bound gp41 to recover its fusion activity once inhibitor was removed from solution. Our results indicated that antiviral activity critically depended upon irreversible deactivation of inhibitor-bound gp41. For C37, which targets the N-terminal region of the gp41 ectodomain, deactivation was a slow process that depended on chemokine receptor binding to Env. For 5-Helix, which targets the C-terminal region of the gp41 ectodomain, deactivation occurred rapidly following inhibitor binding and was independent of chemokine receptor levels. Due to this kinetic disparity, C37 inhibition was largely reversible, while 5-Helix inhibition was functionally irreversible. The fundamental difference in deactivation mechanism points to an unappreciated asymmetry in gp41 following inhibitor binding and impacts the development of improved fusion inhibitors and HIV-1 vaccines. The results also demonstrate how the activities of intermediate state inhibitors critically depend upon the final disposition of inhibitor-bound states.  相似文献   

7.
The HIV-1 envelope glycoprotein (Env) undergoes conformational changes while driving entry. We hypothesized that some of the intermediate Env conformations could be represented in tethered constructs where gp120 and the ectodomain of gp41 are joined by flexible linkers. Tethered Envs with long linkers (gp140-14 with 15 aa and gp140-24 with 26 aa) were stable and recognized by conformationally dependent anti-gp120 and anti-gp41 monoclonal antibodies (mAbs). Surprisingly, these proteins potently inhibited membrane fusion mediated by R5, X4, and R5X4 Envs with 5-100-fold lower IC50 than a tethered Env with short linker (gp140-4 with 4 aa), gp120, gp140, soluble CD4, or DP178 (T20). Compared to gp140, gp140-14,24 exhibited increased binding to anti-gp41 cluster II mAbs but not to cluster I mAbs. Cluster II mAbs but not cluster I, IV, or V mAbs reversed the inhibitory effect of gp140-14,24 suggesting a role of exposed conserved gp41 structures for the mechanism of inhibition. These findings suggest the existence of conserved gp41 structures that are important for HIV-1 entry and can be stably exposed in the native environment of the Env even in the absence of receptor-mediated activation. Thus, tethered Envs with long linkers may not only be important as HIV-1 inhibitors but also for elucidation of viral entry mechanisms and development of novel vaccine immunogens.  相似文献   

8.
The loss of CD4(+) T cells in HIV-1 infections is hypothesized to be caused by apoptosis of bystander cells mediated by cell surface-expressed HIV-1 Env glycoprotein. However, the mechanism by which Env mediates this process remains controversial. Specifically, the role of HIV-1 gp120 binding to CD4 and CXCR4 versus the fusion process mediated by gp41 remains unresolved. Env-induced apoptosis in bystander cells has been shown to be gp41-dependent and correlates with the redistribution of membrane lipids between Env-expressing cells and target cells (hemifusion). Using a rational mutagenesis approach aimed at targeting Env function via the gp41 subunit, we examined the role of HIV gp41 in bystander apoptosis. A mutation in the fusion domain of gp41 (V513E) resulted in a fusion-defective Env that failed to induce apoptosis. A mutation in the gp41 N-terminal helix (G547D) reduced cell fusion capacity and apoptosis; conversely, an Env mutant with a deletion of the gp41 cytoplasmic tail (Ct Del) enhanced both cell-to-cell fusion and apoptosis. Most significantly, an Env mutant containing a substitution in the loop region of gp41 (D589L) mediated transfer of lipids (hemifusion) to bystander cells but was defective in cell-to-cell and to a lesser degree virus-to-cell fusion. This mutant was still able to induce apoptosis in bystander cells. Hence, we have provided the first direct evidence that gp41-mediated hemifusion is both required and sufficient for induction of apoptosis in bystander cells. These results may help to explain the mechanism of HIV-1 Env-induced T cell depletion.  相似文献   

9.
HIV-1 envelope (Env) glycoprotein is a trimer of heterodimer of gp120 and gp41, and derives from a trimeric glycoprotein precursor, gp160. Gp120 contains five conserved regions that are interspersed with 5 variable loop regions (V1–V5). Env variations in variable loop length and amino acid composition may associate with virus pathogenesis, virus sensitivity to neutralizing antibodies (nAbs) and disease progression. To investigate the role of each variable loop in Env function, we generated a panel of JRFL gp160 loop deletion mutants and examined the effects of each loop deletion on Env expression, Env cell surface display and Env-mediated virus entry into permissive cells. We found that deletion of V1 and V2 (ΔV1V2), or loop D (ΔlpD) abolished virus entry, the same effect as deletion of V3 (ΔV3), while deletion of V3 crown (ΔV3C) significantly enhanced virus assembly and entry. We further found that deletion of V4 (ΔV4) or V5 (ΔV5), or replacement of V4 or V5 with flexible linkers of the same lengths knocked out the receptor and coreceptor binding sites in gp120, but significantly enhanced the exposure of the N-trimer structure and the membrane proximal external region (MPER) in gp41. Although deletion of V4 or V5 did not affect Env expression, they negatively affected Env cell surface display, leading to the failure in virus assembly and subsequent entry. Taken together, we found that Env variable loops were indispensable for Env structural integrity and virus entry. Our findings may have implications for development of HIV-1 vaccine immunogens and therapeutics.  相似文献   

10.
Macrophage tropism of human immunodeficiency virus type 1 (HIV-1) is distinct from coreceptor specificity of the viral envelope glycoproteins (Env), but the virus-cell interactions that contribute to efficient HIV-1 entry into macrophages, particularly via CXCR4, are not well understood. Here, we characterized a panel of HIV-1 Envs that use CCR5 (n = 14) or CXCR4 (n = 6) to enter monocyte-derived macrophages (MDM) with various degrees of efficiency. Our results show that efficient CCR5-mediated MDM entry by Env-pseudotyped reporter viruses is associated with increased tolerance of several mutations within the CCR5 N terminus. In contrast, efficient CXCR4-mediated MDM entry was associated with reduced tolerance of a large deletion within the CXCR4 N terminus. Env sequence analysis and structural modeling identified amino acid variants at positions 261 and 263 within the gp41-interactive region of gp120 and a variant at position 326 within the gp120 V3 loop that were associated with efficient CXCR4-mediated MDM entry. Mutagenesis studies showed that the gp41 interaction domain variants exert a significant but strain-specific influence on CXCR4-mediated MDM entry, suggesting that the structural integrity of the gp120-gp41 interface is important for efficient CXCR4-mediated MDM entry of certain HIV-1 strains. However, the presence of Ile326 in the gp120 V3 loop stem, which we show by molecular modeling is located at the gp120-coreceptor interface and predicted to interact with the CXCR4 N terminus, was found to be critical for efficient CXCR4-mediated MDM entry of divergent CXCR4-using Envs. Together, the results of our study provide novel insights into alternative mechanisms of Env-coreceptor engagement that are associated with efficient CCR5- and CXCR4-mediated HIV-1 entry into macrophages.  相似文献   

11.
Dimitrov AS  Rawat SS  Jiang S  Blumenthal R 《Biochemistry》2003,42(48):14150-14158
The N-terminal fusion peptide and the interfacial sequence preceding the transmembrane anchor of HIV-1 gp41 are required for viral fusion. Studies with synthetic peptides indicated that these regions function by destabilizing membranes, which is regarded as a crucial step in the membrane fusion reaction. However, it is not clear whether membrane destabilization is induced by these sequences in the intact gp41. We address this question by examining fusion and destabilization of membranes expressing HIV-1(IIIB) wild-type Env and two mutant Envs. (1) A Glu residue at position 2 of the gp41 fusion peptide is substituted for Val (V2E) to produce one mutant. (2) Residues 665-682 in the membrane-proximal domain are deleted to form the other. The process of membrane destabilization was monitored by the influx of Sytox, an impermeant fluorescent dye, into the Env-expressing cells following the interaction with CD4-CXCR4 complexes, and fusion was monitored by observing dye transfer between Env-expressing cells and appropriate target cells. We also monitored the conformational changes in the Envs following their interactions with CD4 and CXCR4 by immunofluorescence using an anti-gp41 mAb that reacts with the six-helix bundle. In contrast to the wild type, both Env mutants did not mediate cell fusion. The V2E Env did not mediate membrane destabilization. However, the Env with an unmodified fusion peptide but with a deletion of residues 665-682 in the membrane-proximal domain did mediate membrane destabilization. The wild type and both mutant Envs undergo conformational changes detected by the anti-gp41 six-helix bundle mAbs. Our results suggest that in intact HIV-1 Env the membrane-proximal domain is not required for membrane perturbations, but rather enables the bending of gp41 that is required for viral and target membranes to come together. Moreover, the observation that the Delta665-683 Env self-inserts its fusion peptide but does not cause fusion suggests that self-insertion of the fusion peptide is not sufficient for HIV-1 Env-mediated fusion.  相似文献   

12.
Tetraspanins CD9 and CD81 modulate HIV-1-induced membrane fusion   总被引:8,自引:0,他引:8  
Protein organization on the membrane of target cells may modulate HIV-1 transmission. Since the tetraspanin CD81 is associated to CD4, the receptor of HIV-1 envelope protein (Env; gp120/gp41), we have explored the possibility that this molecule may modulate the initial steps of HIV-1 infection. On the other hand, CD81 belongs to the tetraspanin family, which has been described as organizers of protein microdomains on the plasma membrane. Therefore, the role of CD81 and other related tetraspanin, CD9, on the cell-to-cell fusion process mediated by HIV-1 was studied. We found that anti-tetraspanin Abs enhanced the syncytia formation induced by HIV-1 envelope proteins and viral entry in human T lymphoblasts. In addition, anti-CD81 Abs triggered its clustering in patches, where CD4 and CXCR4 were included. Moreover, the knocking down of CD81 and CD9 expression resulted in an increase in syncytia formation and viral entry. Accordingly, overexpression of CD81 and CD9 rendered cells less susceptible to Env-mediated syncytia formation. These data indicate that CD9 and CD81 have an important role in membrane fusion induced by HIV-1 envelope.  相似文献   

13.
The expression of human immunodeficiency virus Nef increases the viral infectivity through mechanisms still not fully elucidated. Here we report that wild-type (wt) human immunodeficiency virus, type 1 (HIV-1), particles were neutralized by higher concentrations of either anti-Env glycoprotein (gp) 41 antibodies or recombinant soluble human CD4 compared with Deltanef HIV-1. This appeared to be the result of a Nef-induced increase of virion incorporation of both gp41 (transmembrane (TM)) and surface gp120 Env products likely originating from enhanced steady-state levels of cell membrane-associated Env products. This, in turn, seemed to be the consequence of a reduced retention of the Env precursor. Most interesting, we found that both the Nef-directed increase of Env membrane expression and the Nef-induced enhancement of HIV-1 infectivity relied on the presence of the intracytoplasmic domain of TM, supporting the hypothesis of a functional correlation between these effects. Mutagenesis studies allowed us to establish that the two leucine residues at the TM C terminus, which are part of a sorting motif involved in the control of Env membrane expression, and the 181-210-residue Nef C-terminal region were critically involved in the Nef/Env functional interaction. In conclusion, we propose that Nef increases the infectivity of HIV-1 at least in part by enhancing the amounts of Env products incorporated into virus particles.  相似文献   

14.
人类免疫缺陷病毒1型(HIV-1)通过其包膜糖蛋白(Env)介导侵入靶细胞.Env由受体特异性结合单位gp120和膜融合单位gp41组成.HIV-1的gp41分为3个功能区:膜外区、跨膜区和膜内区.膜外区是病毒感染时膜融合的主要结构基础;跨膜区通过疏水残基使Env锚定在脂质膜上;膜内区则表现多重功能,参与病毒的感染、复...  相似文献   

15.
The HIV-1 envelope glycoprotein (Env) mediates viral entry into host cells and is the sole target of neutralizing antibodies. Much of the sequence diversity in the HIV-1 genome is concentrated within Env, particularly within its gp120 surface subunit. While dramatic functional diversity exists among HIV-1 Env isolates—observable even in the context of monomeric gp120 proteins as differences in antigenicity and immunogenicity—we have little understanding of the structural features that distinguish Env isolates and lead to isolate-specific functional differences, as crystal structures of truncated gp120 “core” proteins from diverse isolates reveal a high level of structural conservation. Because gp120 proteins are used as prospective vaccine immunogens, it is critical to understand the structural factors that influence their reactivity with antibodies. Here, we studied four full-length, glycosylated gp120 monomers from diverse HIV-1 isolates by using small-angle X-ray scattering (SAXS) to probe the overall subunit morphology and hydrogen/deuterium-exchange with mass spectrometry (HDX-MS) to characterize the local structural order of each gp120. We observed that while the overall subunit architecture was similar among isolates by SAXS, dramatic isolate-specific differences in the conformational stability of gp120 were evident by HDX-MS. These differences persisted even with the CD4 receptor bound. Furthermore, surface plasmon resonance (SPR) and enzyme-linked immunosorbance assays (ELISAs) showed that disorder was associated with poorer recognition by antibodies targeting conserved conformational epitopes. These data provide additional insight into the structural determinants of gp120 antigenicity and suggest that conformational dynamics should be considered in the selection and design of optimized Env immunogens.  相似文献   

16.
The envelope proteins (Env) of human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) form homo-oligomers in the endoplasmic reticulum. The oligomeric structure of Env is maintained, but is less stable, after cleavage in a Golgi compartment and transport to the surface of infected cells. Functional, virion-associated HIV-1 and SIV Env have an almost exclusively trimeric structure. In addition, a soluble form of SIV Env (gp140) forms a nearly homogeneous population of trimers. Here, we describe the oligomeric structure of soluble, uncleaved HIV-1 gp140 and modifications that promote a stable trimeric structure. Biochemical and biophysical analyses, including sedimentation equilibrium and scanning transmission electron microscopy, revealed that unmodified HIV-1 gp140 purified as a heterogeneous range of oligomeric species, including dimers and aggregates. Deletion of the V2 domain alone or, especially, both the V1 and V2 domains reduced dimer formation but promoted aggregation rather than trimerization. Expressing gp140 with mannose-only oligosaccharides did not eliminate heterogeneity. Replacement of the entire gp41 segment of HIV-1 gp140 or just the N-terminal half (85 amino acids) of this segment with the corresponding region of SIV was sufficient to confer efficient trimerization for gp140 derived from clade B and C isolates. Importantly, the relatively small segment of the HIV Env replaced by SIV sequences contains no known targets of neutralizing antibody. The soluble trimeric form of HIV-1 Env should prove useful for assessment of antigenic structure and immunogenicity.  相似文献   

17.
The cellular E2 Sumo conjugase, Ubc9 interacts with HIV-1 Gag, and is important for the assembly of infectious HIV-1 virions. In the previous study we demonstrated that in the absence of Ubc9, a defect in virion assembly was associated with decreased levels of mature intracellular Envelope (Env) that affected Env incorporation into virions and virion infectivity. We have further characterized the effect of Ubc9 knockdown on HIV Env processing and assembly. We found that gp160 stability in the endoplasmic reticulum (ER) and its trafficking to the trans-Golgi network (TGN) were unaffected, indicating that the decreased intracellular mature Env levels in Ubc9-depleted cells were due to a selective degradation of mature Env gp120 after cleavage from gp160 and trafficked out of the TGN. Decreased levels of Gag and mature Env were found to be associated with the plasma membrane and lipid rafts, which suggest that these viral proteins were not trafficked correctly to the assembly site. Intracellular gp120 were partially rescued when treated with a combination of lysosome inhibitors. Taken together our results suggest that in the absence of Ubc9, gp120 is preferentially degraded in the lysosomes likely before trafficking to assembly sites leading to the production of defective virions. This study provides further insight in the processing and packaging of the HIV-1 gp120 into mature HIV-1 virions.  相似文献   

18.
The HIV envelope (Env) glycoprotein mediates membrane fusion through sequential interactions with CD4 and coreceptors, followed by the refolding of the transmembrane gp41 subunit into the stable 6-helix bundle (6HB) conformation. Synthetic peptides derived from the gp41 C-terminal heptad repeat domain (C-peptides) potently inhibit fusion by binding to the gp41 pre-bundle intermediates and blocking their conversion into the 6HB. Our recent work revealed that HIV-1 enters cells by fusing with endosomes, but not with the plasma membrane. These studies also showed that, for the large part, gp41 pre-bundles progress toward 6HBs in endosomal compartments and are thus protected from external fusion inhibitors. Here, we examined the consequences of endocytic entry on the gp41 pre-bundle exposure and on the virus'' sensitivity to C-peptides. The rates of CD4 and coreceptor binding, as well as the rate of productive receptor-mediated endocytosis, were measured by adding specific inhibitors of these steps at varied times of virus-cell incubation. Following the CD4 binding, CCR5-tropic viruses recruited a requisite number of coreceptors much faster than CXCR4-tropic viruses. The rate of subsequent uptake of ternary Env-CD4-coreceptor complexes did not correlate with the kinetics of coreceptor engagement. These measurements combined with kinetic analyses enabled the determination of the lifetime of pre-bundle intermediates on the cell surface. Overall, these lifetimes correlated with the inhibitory potency of C-peptides. On the other hand, the basal sensitivity to peptides varied considerably among diverse HIV-1 isolates and ranked similarly with their susceptibility to inactivation by soluble CD4. We conclude that both the longevity of gp41 intermediates and the extent of irreversible conformational changes in Env upon CD4 binding determine the antiviral potency of C-peptides.  相似文献   

19.
The mature human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer is produced by proteolytic cleavage of a precursor and consists of three gp120 exterior and three gp41 transmembrane subunits. The metastable Env complex is induced to undergo conformational changes required for virus entry by the binding of gp120 to the receptors, CD4 and CCR5/CXCR4. An isoleucine-to-proline change (I559P) in the gp41 ectodomain has been used to stabilize soluble forms of HIV-1 Env trimers for structural characterization and for use as immunogens. In the native membrane-anchored HIV-1BG505 Env, the I559P change modestly decreased proteolytic maturation, increased the non-covalent association of gp120 with the Env trimer, and resulted in an Env conformation distinctly different from that of the wild-type HIV-1BG505 Env. Compared with the wild-type Env, the I559P Env was recognized inefficiently by polyclonal sera from HIV-1-infected individuals, by several gp41-directed antibodies, by some antibodies against the CD4-binding site of gp120, and by antibodies that preferentially recognize the CD4-bound Env. Some of the gp120-associated antigenic differences between the wild-type HIV-1BG505 Env and the I559P mutant were compensated by the SOS disulfide bond between gp120 and gp41, which has been used to stabilize cleaved soluble Env trimers. Nonetheless, regardless of the presence of the SOS changes, Envs with proline 559 were recognized less efficiently than Envs with isoleucine 559 by the VRC01 neutralizing antibody, which binds the CD4-binding site of gp120, and the PGT151 neutralizing antibody, which binds a hybrid gp120-gp41 epitope. The I559P change completely eliminated the ability of the HIV-1BG505 Env to mediate cell-cell fusion and virus entry, and abolished the capacity of the SOS Env to support virus infection in the presence of a reducing agent. These results suggest that differences exist between the quaternary structures of functional Env spikes and I559P Envs.  相似文献   

20.

Background

The generation of broadly neutralizing antibodies is a priority in the design of vaccines against HIV-1. Unfortunately, most antibodies to HIV-1 are narrow in their specificity, and a basic understanding of how to develop antibodies with broad neutralizing activity is needed. Designing methods to target antibodies to conserved HIV-1 epitopes may allow for the generation of broadly neutralizing antibodies and aid the global fight against AIDS by providing new approaches to block HIV-1 infection. Using a naturally occurring HIV-1 Envelope (Env) variant as a template, we sought to identify features of Env that would enhance exposure of conserved HIV-1 epitopes.

Methods and Findings

Within a cohort study of high-risk women in Mombasa, Kenya, we previously identified a subtype A HIV-1 Env variant in one participant that was unusually sensitive to neutralization. Using site-directed mutagenesis, the unusual neutralization sensitivity of this variant was mapped to two amino acid mutations within conserved sites in the transmembrane subunit (gp41) of the HIV-1 Env protein. These two mutations, when introduced into a neutralization-resistant variant from the same participant, resulted in 3- to >360-fold enhanced neutralization by monoclonal antibodies specific for conserved regions of both gp41 and the Env surface subunit, gp120, >780-fold enhanced neutralization by soluble CD4, and >35-fold enhanced neutralization by the antibodies found within a pool of plasmas from unrelated individuals. Enhanced neutralization sensitivity was not explained by differences in Env infectivity, Env concentration, Env shedding, or apparent differences in fusion kinetics. Furthermore, introduction of these mutations into unrelated viral Env sequences, including those from both another subtype A variant and a subtype B variant, resulted in enhanced neutralization susceptibility to gp41- and gp120-specific antibodies, and to plasma antibodies. This enhanced neutralization sensitivity exceeded 1,000-fold in several cases.

Conclusions

Two amino acid mutations within gp41 were identified that expose multiple discontinuous neutralization epitopes on diverse HIV-1 Env proteins. These exposed epitopes were shielded on the unmodified viral Env proteins, and several of the exposed epitopes encompass desired target regions for protective antibodies. Env proteins containing these modifications could act as a scaffold for presentation of such conserved domains, and may aid in developing methods to target antibodies to such regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号