首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Efficient lysogenization of Escherichia coli K12 by bacteriophage λ requires the high level of synthesis of the phage repressor shortly after infection. This high level of synthesis of repressor requires the action of the λ eII and cIII proteins. Certain mutants of λ (λcIIIs) appear to have excess cIIcIII activity and can lysogenize more efficiently than λ+. The basis for the enhanced lysogenization is that, while two or more infecting phage are necessary for λ+ to lysogenize, a single infecting λcIIIs particle is sufficient for lysogenization. Also, repressor levels in cells infected with λcIIIs are higher than in those infected with λ+. I report here that repressor overproduction by λcIIIs (1) is due to a much higher rate of repressor synthesis than that of λ+; (2) is most marked at low multiplicities of infection, possibly because λcIIIs produces repressor much more efficiently than λ+ as a singly infecting phage.  相似文献   

2.
From previous data on the first round of bacteriophage λcIIcIII DNA replication (Schnös & Inman, 1970) it is possible to estimate, by extrapolation, the position on circular λ DNA where bidirectional growing points meet. In the present study we have investigated whether this position occurs at a genetically defined site. To this end, replicative intermediates of λ mutants containing either deletions to the left of the replication origin, or one deletion plus a duplication to the right, were analyzed in the electron microscope. Our results indicate that: (i) leftward growing points can traverse the extrapolated termination point calculated from the λcIIcIII data, (ii) no discontinuity of either right or leftward growing fork position is observed, and (iii) the extrapolated termination points for these mutants are well removed from those calculated for λcIIcIII DNA. From these data we conclude that there is probably no unique termination site for the first round of λ DNA replication and that termination occurs simply by collision of the growing forks.  相似文献   

3.
The restriction endonuclease from Haemophilus parainfluenzae, endoR·HpaI cleaves λcI857s7 DNA into 14 fragments. The sizes of these fragments were determined and a physical map was constructed. The ordering of the fragments was carried out using different deletion and substitution mutants of λ phage, double cleavages with another restriction enzyme, endoR·BamHI, and partial protection of individual HpaI recognition sites by the antibiotics distamycin A and actinomycin D. HpaI produces fragments from the left arm of the λ DNA genome, which may help in investigating the structure and function of this part of the phage.  相似文献   

4.
Ultraviolet-induced restriction alleviation is an SOS function which partially relieves the K-12-specific DNA restriction in Escherichia coli. Restriction alleviation is determined by observing elevated survival of unmodified phage λ in cells irradiated with ultraviolet prior to infection. We demonstrate that restriction of λ is also relieved when log-phase cells are irradiated as late as 50 min after adsorption of λ. At this time more than 60% of the λ DNA is already released as acid-soluble material from the cells. Experiments involving reextraction of λ DNA from infected cells and a mild detergent treatment removing adsorbed phages from the cellular surface showed that only a small specific fraction of all λ infections is destined to escape restriction due to restriction alleviation. This fraction (10–20%) has a retarded mode of DNA injection (60 min or longer) after adsorption which allows the expression of the restriction alleviation function before the phage DNA is exposed to restriction endonucleases. This behaviour of a fraction of λ phages explains why the SOS function restriction alleviation could initially be discovered. We show that the retarded mode of DNA injection is not required for another SOS function acting on λ DNA, the increased repair of ultraviolet-irradiated DNA (Weigle reactivation).  相似文献   

5.
6.
Germinated seeds ofVicia faba were continuously irradiated at low dose rate of gamma rays (0.05 Gy h-1) up to a total accumulated dose of 2 Gy. The FPG (fluorescence plus Giemsa) technique of differential chromatid staining was used to monitor the frequency of sister chromatid exchanges (SCEs) in irradiated root tip meristem cells. The results of the experiments have demonstrated that SCE frequency is raised by continuous gamma irradiation only in plant cells containing BrdU in the chromosomal DNA. No effect concerning SCE formation was recorded at continuous irradiation of meristematic cells of Vicia faba with native, i. e. BrdU-nonsubstituted, DNA. In contrast to SCEs, a significant increase was found in the yield of chromosomal aberrations in all variants of irradiation.  相似文献   

7.
In a previous study, various intermediates in λ DNA packaging were visualized after lysis of λ-infected cells with osmotic shock and sedimentation through a sucrose formalin cushion onto electron microscope grids. Along this line, a systematic screening for intermediates accumulated in all head mutants available was performed. λA?-infected cells accumulate only empty spherical protein shells (petit λ) bound at an intermediate point along the DNA thread. In situ digestion experiments with restriction endonuclease EcoRI show that the petit λ-DNA complexes are formed at a fixed point on the DNA concatemer. In λNu1?-infected cells, however, most petit λ was not bound to DNA. In Fec? cells, which are defective in formation of concatemers but normal in head protein synthesis, most petit λ did not sediment onto the carbon film of the grid. In D? mutant, petit λ, partially full heads and empty heads with released DNA were observed. λFI?-infected cells also accumulate petit λ and partially full heads. The present studies suggest that protein pNu1 is required for complex formation between head precursors and DNA concatemers, pA for the initiation of DNA packaging, pD and pFI for the promotion of DNA packaging, and pD for stabilization of head structures. The results obtained with other head mutants involved in formation of mature proheads and head completion confirm earlier results obtained by different techniques.  相似文献   

8.
As a prerequisite to a quantitative study of the inactivation of phage repressors in vivo (Bailone et al., 1979), the cellular concentrations of the bacteriophage λ and 434 repressors have been measured in bacteria with varying repressor levels.Using the DNA-binding assay we have determined the conditions for optimal repressor titration. The sensitivity of the λ repressor assay was increased by adding magnesium ions to the binding mixture; this procedure was without effect on the titration of the 434 repressor. The measures of the cellular repressor concentrations varied with the method of cell disruption.The cellular concentration of λ repressor, about 140 active repressor molecules per monolysogen, was relatively constant under specific cultural conditions. The repressor concentration increased with the number of cI gene copies but not in direct proportion.The 434 repressor concentration, hardly detectable in extracts of lysogens carrying an imm434 prophage, was greatly enhanced in bacteria carrying the newly constructed plasmid pGY101, that encodes the 434 cI gene.The cellular repressor level produced by 434 is lower than that produced by λ: this indicates that the maintenance of the prophage state is ensured by a relatively small number of repressor molecules binding tightly to the operator sites.  相似文献   

9.
An Escherichia coli strain deleted for the primary λ attachment site was lysogenized with λ at secondary sites. Some lysogens became mutants because of prophage insertion in the affected gene. Mutagenesis by phage λ is not random with respect to the gene affected: most mutants were pro, although certain other genes could be mutated at lower frequencies. In the case of several independent ilv and gal mutants, the sites of prophage insertion were in the same segment of the ilv region and galT gene respectively. The galT location may also be a preferred site for the insertion of DNAs other than prophage λ. Insertion of prophage λ within an operon can reduce the expression of operator-distal genes. A trpC λ insertion mutant expresses the operator-distal trpB function constitutively at a low level. This expression probably derives from a promoter located in the left arm of the prophage.  相似文献   

10.
This paper refers to an earlier investigation on Cluster Analysis procedures based on general empirical density functions, in which the number of classes is controled by a positive parameter λ: the number of clusters, m, increases as λ →∞. Since there is no functional relationship between m and λ, upper and lower bounds of the parameter are of interest (see KOPP, 1976a). We now give a better value for the lower bound of λ in the case of the multivariate normal distribution.  相似文献   

11.
Knowledge of the three-dimensional structure of the bacteriophage λ Cro repressor, combined with an analysis of amino acid sequences and DNA coding sequences for this and other proteins that recognize and bind specific base sequences of double-helical DNA, suggests that a portion of the structure of the Cro repressor that is involved in DNA binding also occurs in the Cro protein from bacteriophage 434, the cII protein from bacteriophage λ, the Salmonella phage P22 c2 repressor and the cI repressor from bacteriophage λ. This α-helical super-secondary structure may be a common structural motif in proteins that bind double-helical DNA in a base sequence-specific manner.  相似文献   

12.
The sites on the left arm of bacteriophage λ DNA cleaved by the restriction endonucleases isolated from Hemophilus influenzae strain Rc (HincII) and Rd (HindII+III), and Hemophilus parainfluenzae (HpaI) were localized on the λ physical map, and the fragments resulting from these cleavages were identified by gel electrophoresis. The restriction sites within the b2 region of λ were mapped by analysis of the digestion profiles of deletion and substitution derivatives of λ, as well as by digesting individual fragments produced by one restriction endonuclease with another restriction endonuclease. The restriction sites on the λ genome between the left vegetative end and the b2 region were mapped entirely by successive digestion experiments. The restriction fragment map for the right arm of λ may be found in the accompanying paper (Robinson and Landy, 1977).  相似文献   

13.
14.
The size of DNA fragments complementary to ribosomal RNA was determined in SstI and HindIII restriction spectra from totally and partially cleaved yeast (Saccharomyces cerevisiae) DNA. The results indicated that the yeast ribosomal RNA gene cluster consists of 9000 base-pair long tandemly repeated units. Three different repeating units, which are overlapping with respect to their sequences, were cloned as SstI and HindIII fragments with λ vectors. The isolation of these clones was facilitated by genetic or physical preselection for those recombinant phage which contained DNA inserts in the expected size range. Both preselection methods gave about a 30-fold purification with respect to the λ-rDNA clones. A heteroduplex analysis of the clones obtained with a three-component HindIII vector showed that the center part of the λ genome carrying λ recombination and regulation genes (57 to 77% λ) can become inverted without apparent decrease of growth capacities.  相似文献   

15.
Adsorption and penetration, the first two steps in the life cycle of bacteriophage λ, were examined in vitro. As hosts for λ infection, the envelope and the cytoplasmic membrane, isolated from Escherichia coli K12 bacteria, were used. Lambda phage was found to adsorb and to inject its genetic material into the envelope-membrane complex, provided the envelope had been isolated from λ-sensitive cells; for the cytoplasmic membrane it is irrelevant whether it originates from λ-sensitive or from λ-resistant bacteria. No adsorption was found if either the envelope or the cytoplasmic membrane was separately infected. Following adsorption, λ DNA is rendered accessible to the hydrolytic action of DNase during the first six minutes. After that lambda DNA becomes DNase resistant. In this state it is found associated with the envelope-membrane complex.  相似文献   

16.
The genetic elements which control autonomous DNA replication differ in functional specificity among coliphage λ, the coliphages φ80 and 82, and the Salmonella phage P22. Hybrid phages derived by genetic recombination between λ and each of these related phages have been used to define and to localize specificity determinants for DNA replication.In λ-P22 hybrid phages (Hilliker & Botstein, 1976) the replication control elements segregate as an intact unit. By contrast, some viable λ-φ80 and λ.82 hybrid phages arise by recombination within the replication control region, in a small interval inside structural gene O. From the properties of such hybrid phages, we infer that the O gene product of λ and the functionally equivalent proteins of φ80 and 82 each interact with a specific nucleotide sequence in the cognate ori site, the DNA target for control of the origin of replication. With respect to this interaction, both the O products and the receptor sequences within ori show stringent type specificity. The donor and receptor specificity determinants for the ori-O interaction lie within an interval of less than 400 base-pairs.The O gene product also interacts with the product of replication gene P (Tomizawa, 1971). The O-P interaction displays limited type specificity; the P-like protein of φ80 can function together with the O protein of λ, but the P protein of λ cannot function with the O-like protein of φ80. The specificity determinants for the O-P interaction can be separated from those for the ori-O interaction.We propose that a chain of interactions between ori, O product, P product, and replication functions of the bacterial host, Escherichia coli, controls specific template selection and the assembly of the essential replication apparatus in the initiation of λ DNA replication.  相似文献   

17.
The rate of production of tandem duplications in phage λ has been measured in the presence and absence of known recombination systems. Two deletion phages have been used: tdel33, a deletion derivative of a φ80-λ hybrid phage, and λb221, which carries a large deletion of the central portion of the λ chromosome. Both phages are int, and tdel33 is also red, by virtue of their deletions. Stocks of these phages can be prepared free of long tandem duplication derivatives by CsCl density gradient purification. After a single cycle of lytic growth, lysates from these purified phage stocks contain tandem duplications at a frequency of 10−3 in the case of tdel33 and 10−5 in the case of λb221. These frequencies are unaffected by the presence of mutations in the host Rec system or the phage Red system. To investigate the difference in duplication frequency between tdel33 and λb221, the phages were grown in mixed infection. The result indicates that a trans-active product of tdel33 is responsible for its high frequency of duplication production.Tandem duplications have been detected by banding the phage lysates in CsCl density gradients. Long DNA addition mutants can be detected in this way if they arise with a frequency of at least 10−5 and if the duplication length is at least 0.14 λ lengths. To accomplish this it is necessary to distinguish them from contaminating parental phage and from dense phages with aberrant structures which arise at roughly comparable frequencies. The former can be done by rebanding and the latter by growth and rebanding. To distinguish these types we have also made use of a new mutant of Escherichia coli which does not plate λ deletion phages. All of the DNA addition mutants we have detected in this way are tandem duplications; evidently mutants with long insertions arise more rarely.  相似文献   

18.
Single, 824 bp repeating units of Xenopus laevis oocyte-type 5S DNA were inserted into the recombination vectors, λrva and λrvb. When the inserts had the same orientation with respect to the λ chromosomes, Spi-imm434 recombinants were recovered by selection on a P2, λ double lysogenic host. Because of the structure of the vectors, the crossover point in each recombinant must lie completely within the 5S DNA insert. The physical characteristics of these recombinants were determined by examination of restriction enzyme digests. By use of RecA mutant hosts and the Red- vector, λrvc, recombination frequencies were measured separately for the bacterial and phage systems.Some of the recombination events resulted in 5S DNA inserts of altered length due to unequal crossovers within repeated sequences in the 5S DNA spacer. The occurrence of just such events in frog 5S DNA had been predicted, based on the structure of 5S DNA and evolutionary considerations.  相似文献   

19.
《Process Biochemistry》2007,42(3):486-490
Three λ mutants were constructed based on the Q mutant in order to enhance their productivity and stability in an Escherichia coli/bacteriophage λ system. The newly constructed bacteriophage mutants named λSNU1, λSNU2, and λSNU3 were QS, QWE, and QSWE mutants, respectively. Compared to all of the mutants, λSNU1 turned out to be the best with regards to higher protein expression and better genetic stability. Mechanisms by which these attributes are achieved have been discussed. The high productivity of P90c/λSNU1 for the recombinant protein was due to the high copy number of λ DNA and high translational efficiency. This mutant phage λSNU1 can be used to provide a high level of stability and productivity of the cloned gene particularly for long-term continuous operation.  相似文献   

20.
The FI gene of bacteriophage λ functions in head assembly, but its exact role is not well understood. FI mutants are leaky, producing between 0.1 and 0.5 viable particles per infected cell. In order to investigate the function of the FI product (gpFI) in vivo, mutants of λ were isolated that are able to grow in the absence of gpFI. These mutants, called fin (for FI independence) map in the region of gene Nul and the beginning of gene A.Proteins made in cells infected with the fin mutants were labelled with [35S]methionine and analysed by polyacrylamide gel electrophoresis. In addition, the levels of activity of the A product were measured in the in vitro DNA packaging assay. As a result of these experiments, the fin mutants can be classified in two groups. Upon infection, fin mutants of one group selectively produce three to fivefold more gpA than do wild-type phage fin mutants of the second group do not overproduce any λ late gene product detectable by the autoradiographic technique.gpA overproducers can also be isolated by selecting for λAam Wam phages that can plate on a weak suII cell strain. The mutation responsible for this pseudoreversion is called Aop and maps in the Nu1-A region. Aop is also a fin mutation, since its presence in λFI? enables it to plate on non-permissive hosts.Therefore, it seems that one condition sufficient for normal growth of FI? phage is the overproduction of gpA. The nature of the fin mutations that do not result in gpA overproduction is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号