首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
In the recent years, the exploration of bioactive phytochemicals as natural feed additives has been of great interest among nutritionists and rumen microbiologists to modify the rumen fermentation favorably such as defaunation, inhibition of methanogenesis, improvement in protein metabolism, and increasing conjugated linoleic acid content in ruminant derived foods. Many phytochemicals such as saponins, essential oils, tannins and flavonoids from a wide range of plants have been identified, which have potential values for rumen manipulation and enhancing animal productivity as alternatives to chemical feed additives. However, their effectiveness in ruminant production has not been proved to be consistent and conclusive. This review discusses the effects of phytochemicals such as saponins, tannins and essential oils on the rumen microbial populations, i.e., bacteria, protozoa, fungi and archaea with highlighting molecular diversity of microbial community in the rumen. There are contrasting reports of the effects of these phytoadditives on the rumen fermentation and rumen microbes probably depending upon the interactions among the chemical structures and levels of phytochemicals used, nutrient composition of diets and microbial components in the rumen. The study of chemical structure–activity relationships is required to exploit the phytochemicals for obtaining target responses without adversely affecting beneficial microbial populations. A greater understanding of the modulatory effects of phytochemicals on the rumen microbial populations together with fermentation will allow a better management of the rumen ecosystem and a practical application of this feed additive technology in livestock production.  相似文献   

2.
New aspects and strategies for methane mitigation from ruminants   总被引:1,自引:0,他引:1  
The growing demand for sustainable animal production is compelling researchers to explore the potential approaches to reduce emissions of greenhouse gases from livestock that are mainly produced by enteric fermentation. Some potential solutions, for instance, the use of chemical inhibitors to reduce methanogenesis, are not feasible in routine use due to their toxicity to ruminants, inhibition of efficient rumen function or other transitory effects. Strategies, such as use of plant secondary metabolites and dietary manipulations have emerged to reduce the methane emission, but these still require extensive research before these can be recommended and deployed in the livestock industry sector. Furthermore, immunization vaccines for methanogens and phages are also under investigation for mitigation of enteric methanogenesis. The increasing knowledge of methanogenic diversity in rumen, DNA sequencing technologies and bioinformatics have paved the way for chemogenomic strategies by targeting methane producers. Chemogenomics will help in finding target enzymes and proteins, which will further assist in the screening of natural as well chemical inhibitors. The construction of a methanogenic gene catalogue through these approaches is an attainable objective. This will lead to understand the microbiome function, its relation with the host and feeds, and therefore, will form the basis of practically viable and eco-friendly methane mitigation approaches, while improving the ruminant productivity.  相似文献   

3.
Microbial ecosystem and methanogenesis in ruminants   总被引:1,自引:0,他引:1  
Ruminant production is under increased public scrutiny in terms of the importance of cattle and other ruminants as major producers of the greenhouse gas methane. Methanogenesis is performed by methanogenic archaea, a specialised group of microbes present in several anaerobic environments including the rumen. In the rumen, methanogens utilise predominantly H2 and CO2 as substrates to produce methane, filling an important functional niche in the ecosystem. However, in addition to methanogens, other microbes also have an influence on methane production either because they are involved in hydrogen (H2) metabolism or because they affect the numbers of methanogens or other members of the microbiota. This study explores the relationship between some of these microbes and methanogenesis and highlights some functional groups that could play a role in decreasing methane emissions. Dihydrogen ('H2' from this point on) is the key element that drives methane production in the rumen. Among H2 producers, protozoa have a prominent position, which is strengthened by their close physical association with methanogens, which favours H2 transfer from one to the other. A strong positive interaction was found between protozoal numbers and methane emissions, and because this group is possibly not essential for rumen function, protozoa might be a target for methane mitigation. An important function that is associated with production of H2 is the degradation of fibrous plant material. However, not all members of the rumen fibrolytic community produce H2. Increasing the proportion of non-H2 producing fibrolytic microorganisms might decrease methane production without affecting forage degradability. Alternative pathways that use electron acceptors other than CO2 to oxidise H2 also exist in the rumen. Bacteria with this type of metabolism normally occupy a distinct ecological niche and are not dominant members of the microbiota; however, their numbers can increase if the right potential electron acceptor is present in the diet. Nitrate is an alternative electron sinks that can promote the growth of particular bacteria able to compete with methanogens. Because of the toxicity of the intermediate product, nitrite, the use of nitrate has not been fully explored, but in adapted animals, nitrite does not accumulate and nitrate supplementation may be an alternative under some dietary conditions that deserves to be further studied. In conclusion, methanogens in the rumen co-exist with other microbes, which have contrasting activities. A better understanding of these populations and the pathways that compete with methanogenesis may provide novel targets for emissions abatement in ruminant production.  相似文献   

4.
瘤胃甲烷菌及甲烷生成的调控   总被引:18,自引:0,他引:18  
甲烷菌属于古细菌 ,参与有机物的厌氧降解 ,生成甲烷。反刍动物瘤胃内甲烷的生成损耗 2 %~ 12 %的饲料能量 ,并且通过嗳气排入大气。甲烷不仅是温室气体之一 ,而且还会破坏大气臭氧层。每年全球反刍动物排放大量的甲烷 ,减少瘤胃内甲烷的生成对提高饲料能量利用率和改善环境具有重要意义。近年来 ,有关瘤胃甲烷菌及甲烷生成调控的报道日益增多。概述甲烷菌的特性以及瘤胃内甲烷生成的途径 ,综述甲烷生成的调控手段 ,主要包括去原虫、日粮配合、添加电子受体、增加乙酸生成菌等方法  相似文献   

5.
Concerns about the environmental effect and the economic burden of methane (CH4) emissions from ruminants are driving the search for ways to mitigate rumen methanogenesis. The use of direct-fed microbials (DFM) is one possible option to decrease CH4 emission from ruminants. Direct-fed microbials are already used in ruminants mainly to increase productivity and to improve health, and are readily accepted by producers and consumers alike. However, studies on the use of DFM as rumen CH4 mitigants are scarce. A few studies using Saccharomyces cerevisiae have shown a CH4-decreasing effect but, to date, there has not been a systematic exploration of DFM as modulators of rumen methanogenesis. In this review, we explored biochemical pathways competing with methanogenesis that, potentially, could be modulated by the use of DFM. Pathways involving the redirection of H2 away from methanogenesis and pathways producing less H2 during feed fermentation are the preferred options. Propionate formation is an example of the latter option that in addition to decrease CH4 formation increases the retention of energy from the diet. Homoacetogenesis is a pathway using H2 to produce acetate, however up to now no acetogen has been shown to efficiently compete with methanogens in the rumen. Nitrate and sulphate reduction are pathways competing with methanogenesis, but the availability of these substances in the rumen is limited. Although there were studies using nitrate and sulphate as chemical additives, use of DFM for improving these processes and decrease the accumulation of toxic metabolites needs to be explored more. There are some other pathways such as methanotrophy and capnophily or modes of action such as inhibition of methanogens that theoretically could be provided by DFM and affect methanogenesis. We conclude that DFM is a promising alternative for rumen methane mitigation that should be further explored for their practical usage.  相似文献   

6.
Aims: To determine the in‐vitro effect and mode of action of tea saponin on the rumen microbial community and methane production. Methods and Results: Saponin extracted from tea seeds was added to (1) an in‐vitro fermentation inoculated with rumen fluid and (2) a pure culture of Methanobrevibacter ruminantium. Methane production and expression of the methyl coenzyme‐M reductase subunit A (mcrA) were monitored in both cultures. Abundance of methanogens, protozoa, rumen fungi and cellulolytic bacteria were quantified using real‐time PCR, and bacterial diversity was observed using denaturing gradient gel electrophoresis. Addition of tea saponin significantly reduced methane production and mcrA gene expression in the ruminal fermentation but not with the pure culture of M. ruminantium. The abundance of protozoa and fungi were significantly decreased 50% and 79% respectively but methanogen numbers were not affected, and Fibrobacter succinogenes increased by 41%. Bacterial diversity was similar in cultures with or without tea saponin. Conclusions: Tea saponin appeared to reduce methane production by inhibiting protozoa and presumably lowering methanogenic activity of protozoal‐associated methanogens. Significance and Impact of the Study: Tea saponin may be useful as a supplement to indirectly inhibit methane production in ruminants without a deleterious effect on rumen function.  相似文献   

7.
The rumen is a highly diverse ecosystem comprising different microbial groups including methanogens that consume a considerable part of the ruminant’s nutrient energy in methane production. The consequences of methanogenesis in the rumen may result in the low productivity and possibly will have a negative impact on the sustainability of the ruminant’s production. Since enteric fermentation emission is one of the major sources of methane and is influenced by a number of environmental factors, diet being the most significant one, a number of in vitro and in vivo trials have been conducted with different feed supplements (halogenated methane analogues, bacteriocins, propionate enhancers, acetogens, fats etc.) for mitigating methane emissions directly or indirectly, yet extensive research is required before reaching a realistic solution. Keeping this in view, the present article aimed to cover comprehensively the different aspects of rumen methanogenesis such as the phylogeny of methanogens, their microbial ecology, factors affecting methane emission, mitigation strategies and need for further study.  相似文献   

8.
A meta-analysis was conducted to evaluate the effects of protozoa concentration on methane emission from ruminants. A database was built from 59 publications reporting data from 76 in vivo experiments. The experiments included in the database recorded methane production and rumen protozoa concentration measured on the same groups of animals. Quantitative data such as diet chemical composition, rumen fermentation and microbial parameters, and qualitative information such as methane mitigation strategies were also collected. In the database, 31% of the experiments reported a concomitant reduction of both protozoa concentration and methane emission (g/kg dry matter intake). Nearly all of these experiments tested lipids as methane mitigation strategies. By contrast, 21% of the experiments reported a variation in methane emission without changes in protozoa numbers, indicating that methanogenesis is also regulated by other mechanisms not involving protozoa. Experiments that used chemical compounds as an antimethanogenic treatment belonged to this group. The relationship between methane emission and protozoa concentration was studied with a variance−covariance model, with experiment as a fixed effect. The experiments included in the analysis had a within-experiment variation of protozoa concentration higher than 5.3 log10 cells/ml corresponding to the average s.e.m. of the database for this variable. To detect potential interfering factors for the relationship, the influence of several qualitative and quantitative secondary factors was tested. This meta-analysis showed a significant linear relationship between methane emission and protozoa concentration: methane (g/kg dry matter intake)=−30.7+8.14×protozoa (log10 cells/ml) with 28 experiments (91 treatments), residual mean square error=1.94 and adjusted R2=0.90. The proportion of butyrate in the rumen positively influenced the least square means of this relationship.  相似文献   

9.
Methane formation in the rumen is a major cause of greenhouse gas emission. Plant secondary compounds in ruminant diets, such as essential oils, saponins and tannins, are known to affect methane production. However, their methane-lowering properties have generally been associated with undesired side effects such as impaired feed digestibility. Here we show that microbial methane formation in diluted and buffered rumen fluid was significantly lowered in the presence of (+)-catechin, a natural polyphenol. This flavan-3-ol, a tannin precursor, decreased the production of methane in a dose-dependent manner, where 1.0 mol catechin prevented the emission of 1.2 mol methane. During methane mitigation, (+)-catechin was step-wise degraded via C- and A-ring cleavage and reductive dehydroxylation reactions, as indicated by LC-QToF-MS based metabolomic profiling and NMR-based metabolite identification. This accounted for the acceptance of six hydrogen atoms per catechin molecule. Consequently, catechin functions as an extensive hydrogen sink, thereby competing with methane production by rumen methanogens ( $ {\text{CO}}_{2} + 4{\text{H}}_{2} \Rightarrow {\text{CH}}_{4} + 2{\text{H}}_{2} {\text{O}} $ ). Catechin therefore acts as an antireductant under the anaerobic test conditions, in contrast to its well-known antioxidant role during oxidative stress. The reductive degradation of catechin had no impact on the formation of ruminal fermentation products such as short-chain fatty acids in this model system. These results highlight the potential of plant secondary compounds to replace methane precursors as hydrogen sinks, and justify future scientific screening programs for similar, potentially more effective organic compounds.  相似文献   

10.
Aims:  Investigation of the effects of saponin-rich fractions on rumen fermentation, methane production and the microbial community.
Methods and Results:  Saponins were extracted from Carduus , Sesbania and Knautia leaves and fenugreek seeds. Two levels of saponin-rich fractions with a substrate were incubated using the Hohenheim gas method. Methane was measured using an infrared-based methane analyser and microbial communities using quantitative PCR. On addition of saponin-rich fractions, methane and short-chain fatty acid production was not affected. The protozoal counts decreased by 10–39%. Sesbania saponins decreased methanogen population by 78%. Decrease in ruminal fungal population (20–60%) and increase in Fibrobacter succinogenes (21–45%) and Ruminococcus flavefaciens (23–40%) were observed.
Conclusions:  The saponins evaluated possessed anti-protozoal activity; however, this activity did not lead to methane reduction. Fenugreek saponins seemed to have potential for increasing rumen efficiency. The saponins altered the microbial community towards proliferation of fibre-degrading bacteria and inhibition of fungal population.
Significance and Impact of the Study:  The uni-directional relationship between protozoal numbers and methanogenesis, as affected by saponins, is not obligatory. All saponins might not hold promise for decreasing methane production from ruminants.  相似文献   

11.
We determined the effect of plant oils (rapeseed, sunflower, linseed) and organic acids (aspartic and malic) on the fermentation of diet consisting of hay, barley and sugar beet molasses. Rumen fluid was collected from two sheep (Slovak Merino) fed with the same diet twice daily. Mixed rumen microorganisms were incubated in fermentation fluid, which contained rumen fluid and Mc Dougall's buffer. All supplemented diets significantly increased pH, molar proportion of propionate, and numerically decreased methane production. Lactate production was also decreased significantly (except with malate). Incorporation of plant oils into aspartate- and malate-treated incubations negated the decrease of butyrate, lactate and the increase of pH and ammonia with malate treatment, as well asin vitro dry matter digestibility and pH with aspartate treatment. The effect of combined additives on methane production and molar proportion of propionate was lower compared with additives supplemented separately. Combination of additives had no additive effect on rumen fermentation. All additives decreased total protozoan counts in rumen fluid.  相似文献   

12.
This mini-review summarizes the category, characteristics, and the application fields of the chemical methanogenic inhibitors. Usually, the chemical methanogenic inhibitors can be divided into “specific” and nonspecific inhibitors. The former group includes the structural analogs of coenzyme M and HMG-CoA inhibitors. The nonspecific group includes many chemicals which can inhibit the activity of both methanogens and non-methanogens. The chemical inhibitors of methanogenesis have been widely used in the fields of understanding methane production and consumption in pure culture or in complex natural environment, production of value-added substances, such as volatile fatty acids and hydrogen, and reduction of energy loss and improvement of the efficiency of ruminal energetic transformations. Finally, with an increasing understanding of the mechanistic effects of the chemical inhibitors of methanogenesis, it is possible that some could be used to develop into promising feed additives to reduce losses associated with enteric methane production or as useful tools to screen microbial consortia from various biotechnological applications to enhance hydrogen and acid production.  相似文献   

13.
AIMS: To assess the effect of protozoal species on rumen fermentation characteristics in vitro. METHODS AND RESULTS: Entodinium caudatum, Isotricha intestinalis, Metadinium medium, and Eudiplodinium maggii from monofaunated wethers and mixed protozoa from conventional wethers were obtained by centrifugation, re-suspended at their normal densities in rumen fluid supernatants from defaunated or conventional wethers and incubated in vitro. The presence of protozoa increased the concentration of ammonia and altered the volatile fatty acids balance with more acetate and butyrate produced at the expense of propionate. Differences among species were observed, notably in the production of methane, which increased with E. caudatum as compared to other ciliates and to defaunated and mixed protozoa treatments (P < 0.05). The increased methanogenesis was not correlated to protozoal biomass indicating that the metabolism of this protozoan and/or its influence on the microbial ecosystem was responsible for this effect. CONCLUSIONS: Entodinium caudatum stimulated the production of methane, a negative effect that was reinforced by a concomitant increase in protein degradation. SIGNIFICANCE AND IMPACT OF THE STUDY: Comparison of individual species of protozoa highlighted the particular influence of E. caudatum on rumen fermentation. Its elimination (targeted defaunation) from the rumen could reduce methane production without affecting feed degradation.  相似文献   

14.
Association of methanogenic bacteria with rumen protozoa   总被引:6,自引:0,他引:6  
Methanogenic bacteria superficially associated with rumen entodiniomorphid protozoa were observed by fluorescence microscopy. A protozoal suspension separated from strained rumen fluid (SRF) by gravity sedimentation exhibited a rate of methane production six times greater (per millilitre) than SRF. The number of protozoa (per millilitre) in the protozoal suspension was three times greater than that of SRF; however, the urease activity of this fraction was half that of SRF. The methanogenic activity of SRF and the discrete fractions obtained by sedimentation of protozoa correlated with the numbers of protozoa per millilitre in each fraction. Gravity-sedimented protozoa, washed four times with cell-free rumen fluid, retained 67-71% of the recoverable methanogenic activity. Thus it is evident from our observations that many methanogens adhere to protozoa and that the protozoa support methanogenic activity of the attached methanogens. When protozoa-free sheep were inoculated with rumen contents containing a complex population of protozoa, methanogenic activity of the microflora in SRF samples was not significantly enhanced.  相似文献   

15.
Methane mitigation in ruminants: from microbe to the farm scale   总被引:3,自引:0,他引:3  
Decreasing enteric methane (CH4) emissions from ruminants without altering animal production is desirable both as a strategy to reduce global greenhouse gas (GHG) emissions and as a means of improving feed conversion efficiency. The aim of this paper is to provide an update on a selection of proved and potential strategies to mitigate enteric CH4 production by ruminants. Various biotechnologies are currently being explored with mixed results. Approaches to control methanogens through vaccination or the use of bacteriocins highlight the difficulty to modulate the rumen microbial ecosystem durably. The use of probiotics, i.e. acetogens and live yeasts, remains a potentially interesting approach, but results have been either unsatisfactory, not conclusive, or have yet to be confirmed in vivo. Elimination of the rumen protozoa to mitigate methanogenesis is promising, but this option should be carefully evaluated in terms of livestock performances. In addition, on-farm defaunation techniques are not available up to now. Several feed additives such as ionophores, organic acids and plant extracts have also been assayed. The potential use of plant extracts to reduce CH4 is receiving a renewed interest as they are seen as a natural alternative to chemical additives and are well perceived by consumers. The response to tannin- and saponin-containing plant extracts is highly variable and more research is needed to assess the effectiveness and eventual presence of undesirable residues in animal products. Nutritional strategies to mitigate CH4 emissions from ruminants are, without doubt, the most developed and ready to be applied in the field. Approaches presented in this paper involve interventions on the nature and amount of energy-based concentrates and forages, which constitute the main component of diets as well as the use of lipid supplements. The possible selection of animals based on low CH4 production and more likely on their high efficiency of digestive processes is also addressed. Whatever the approach proposed, however, before practical solutions are applied in the field, the sustainability of CH4 suppressing strategies is an important issue that has to be considered. The evaluation of different strategies, in terms of total GHG emissions for a given production system, is discussed.  相似文献   

16.

Background

Methane (CH4) is a potent greenhouse gas (GHG), having a global warming potential 21 times that of carbon dioxide (CO2). Methane emissions from agriculture represent around 40% of the emissions produced by human-related activities, the single largest source being enteric fermentation, mainly in ruminant livestock. Technologies to reduce these emissions are lacking. Ruminant methane is formed by the action of methanogenic archaea typified by Methanobrevibacter ruminantium, which is present in ruminants fed a wide variety of diets worldwide. To gain more insight into the lifestyle of a rumen methanogen, and to identify genes and proteins that can be targeted to reduce methane production, we have sequenced the 2.93 Mb genome of M. ruminantium M1, the first rumen methanogen genome to be completed.

Methodology/Principal Findings

The M1 genome was sequenced, annotated and subjected to comparative genomic and metabolic pathway analyses. Conserved and methanogen-specific gene sets suitable as targets for vaccine development or chemogenomic-based inhibition of rumen methanogens were identified. The feasibility of using a synthetic peptide-directed vaccinology approach to target epitopes of methanogen surface proteins was demonstrated. A prophage genome was described and its lytic enzyme, endoisopeptidase PeiR, was shown to lyse M1 cells in pure culture. A predicted stimulation of M1 growth by alcohols was demonstrated and microarray analyses indicated up-regulation of methanogenesis genes during co-culture with a hydrogen (H2) producing rumen bacterium. We also report the discovery of non-ribosomal peptide synthetases in M. ruminantium M1, the first reported in archaeal species.

Conclusions/Significance

The M1 genome sequence provides new insights into the lifestyle and cellular processes of this important rumen methanogen. It also defines vaccine and chemogenomic targets for broad inhibition of rumen methanogens and represents a significant contribution to worldwide efforts to mitigate ruminant methane emissions and reduce production of anthropogenic greenhouse gases.  相似文献   

17.
The amount and nature of dietary starch are known to influence the extent and site of feed digestion in ruminants. However, how starch degradability may affect methanogenesis and methanogens along the ruminant''s digestive tract is poorly understood. This study examined the diversity and metabolic activity of methanogens in the rumen and cecum of lambs receiving wheat or corn high-grain-content diets. Methane production in vivo and ex situ was also monitored. In vivo daily methane emissions (CH4 g/day) were 36% (P < 0.05) lower in corn-fed lambs than in wheat-fed lambs. Ex situ methane production (μmol/h) was 4-fold higher for ruminal contents than for cecal contents (P < 0.01), while methanogens were 10-fold higher in the rumen than in the cecum (mcrA copy numbers; P < 0.01). Clone library analysis indicated that Methanobrevibacter was the dominant genus in both sites. Diet induced changes at the species level, as the Methanobrevibacter millerae-M. gottschalkii-M. smithii clade represented 78% of the sequences from the rumen of wheat-fed lambs and just about 52% of the sequences from the rumen of the corn-fed lambs. Diet did not affect mcrA expression in the rumen. In the cecum, however, expression was 4-fold and 2-fold lower than in the rumen for wheat- and corn-fed lambs, respectively. Though we had no direct evidence for compensation of reduced rumen methane production with higher cecum methanogenesis, the ecology of methanogens in the cecum should be better considered.  相似文献   

18.
This study investigated the effects of disodium fumarate (DF) on methane emission, ruminal fermentation and microbial abundance in goats under different forage (F) : concentrate (C) ratios and fed according to maintenance requirements. Four ruminally fistulated, castrated male goats were used in a 4 × 4 Latin square design with a 2 × 2 factorial arrangement of treatments and the main factors being the F : C ratios (41 : 59 or 58 : 42) and DF supplementation (0 or 10 g/day). DF reduced methane production (P < 0.05) on average by 11.9%, irrespective of the F : C ratio. The concentrations of total volatile fatty acids, acetate and propionate were greater in the rumen of goats supplemented with DF (P < 0.05), whereas the abundance of methanogens was lower (P < 0.05). In high-forage diets, the abundance of Selenomonas ruminantium, a fumarate-reducing bacterium, was greater in the rumen of goats supplemented with DF. The abundance of fungi, protozoa, Ruminococus flavefaciens and Fibrobacter succinogenes were not affected by the addition of DF. Variable F : C ratios affected the abundance of methanogens, fungi and R. flavefaciens (P < 0.05), but did not affect methane emission. The result implied that DF had a beneficial effect on the in vivo rumen fermentation of the goats fed diets with different F : C ratios and that this effect were not a direct action on anaerobic fungi, protozoa and fibrolytic bacteria, the generally recognized fiber-degrading and hydrogen-producing microorganisms, but due to the stimulation of fumarate-reducing bacteria and the depression of methanogens.  相似文献   

19.
Targeting methanopterin biosynthesis to inhibit methanogenesis   总被引:5,自引:0,他引:5  
This paper describes the design, synthesis, and successful employment of inhibitors of 4-(beta-D-ribofuranosyl)aminobenzene-5'-phosphate (RFA-P) synthase, which catalyzes the first committed step in the biosynthesis of methanopterin, to specifically halt the growth of methane-producing microbes. RFA-P synthase catalyzes the first step in the synthesis of tetrahydromethanopterin, a key cofactor required for methane formation and for one-carbon transformations in methanogens. A number of inhibitors, which are N-substituted derivatives of p-aminobenzoic acid (pABA), have been synthesized and their inhibition constants with RFA-P synthase have been determined. Based on comparisons of the inhibition constants among various inhibitors, we propose that the pABA binding site in RFA-P synthase has a relatively large hydrophobic pocket near the amino group. These enzyme-targeted inhibitors arrest the methanogenesis and growth of pure cultures of methanogens. Supplying pABA to the culture relieves the inhibition, indicating a competitive interaction between pABA and the inhibitor at the cellular target, which is most likely RFAP synthase. The inhibitors do not adversely affect the growth of pure cultures of the bacteria (acetogens) that play a beneficial role in the rumen. Inhibitors added to dense ruminal fluid cultures (artificial rumena) halt methanogenesis; however, they do not inhibit volatile fatty acid (VFA) production and, in some cases, VFA levels are slightly elevated in the methanogenesis-inhibited cultures. We suggest that inhibiting methanopterin biosynthesis could be considered in strategies to decrease anthropogenic methane emissions, which could have an environmental benefit since methane is a potent greenhouse gas.  相似文献   

20.
Interspecies hydrogen transfer between rumen holotrich ciliate protoza and methanogenic bacteria has been demonstrated. As a result of the metabolic interaction with Methanosarcina barkeri , the metabolite profile of Isotricha spp. was altered and the production of butyrate and lactate was suppressed in the presence of the methanogen.
Use of membrane-inlet mass spectrometry confirmed that the presence of rumen holotrich ciliates reduced the apparent sensitivity of methanogenesis to the inhibitory effects of oxygen; a gas phase concentration of 7·4 kPa oxygen was required to inhibit methanogenesis in the presence of protozoa, while in pure cultures of M. barkeri , methanogenesis was inhibited by a gas phase oxygen concentration of 1·0 kPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号