首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Superoxide dismutase and catalase activity has been studied in isogenous strains of various radioresistance bacteria. In mutants Micrococcus radiodurans having defects in the systems of DNA repair the superoxide dismutase activity is lower than in cells of wild type. The changes of catalase and superoxide dismutase activity have not been revealed in investigated strains Escherichia coli differing in radioresistance. It has been concluded that the survival of bacteria exposed to ionizing radiation is determined by the effectiveness of DNA repair systems realiability of which depends on the catalase and superoxide dismutase activity.  相似文献   

2.
Superoxide dismutase, glutathione peroxidase and catalase activities were determined in isolated fetal rat hepatocytes of various ages and compared with the values of neonatal and adult cells. The developmental pattern of superoxide dismutase and glutathione peroxidase were very similar with a low constant activity in the fetal cells and a postnatal burst. On the contrary catalase begins to increase already since the 18th day of the fetal life. The results suggest a functional correlation of superoxide dismutase and glutathione peroxidase in the antioxidative enzyme defense of liver cells.  相似文献   

3.
Superoxide anion (O2-) is an active oxygen species found in virtually all cells grown in the presence of oxygen. In vivo, the highest concentration of this oxygen radical is found after granulocytes have been exposed to particles or the tumor promoter, phorbol myristate acetate. O2- is released from the cell as a "respiratory burst," which is followed shortly by the appearance of strand breaks in the DNA of the producing cell. In the present report, we have continued our investigation into the mechanism by which extracellular O2- causes breakage of intracellular DNA. Although hydrogen peroxide is present and could also cause strand breaks, its effects are eliminated by the addition of catalase. When the amount of O2- is increased threefold by adding glucose to the medium, the number of breaks increases only slightly, suggesting that the number of breaks that could be induced is limited. The strand-break process is abruptly interrupted by the addition of metabolic poisons such as ionophore A23187, fluoride, or 2-deoxyglucose, but ATP does not appear to be involved. The number of O2(-)-induced strand breaks is increased in the presence of sodium orthovanadate and decreased by A23187. Orthovanadate prevents the inhibition caused by A23187. Reaction of O2- with orthovanadate itself appears not to be responsible for the enhancement of breaks by orthovanadate. We propose that orthovanadate exerts its effect by acting as an inhibitor of a phosphoprotein phosphatase and that A23187 acts to deplete intracellular Ca2+. These data support our hypothesis that the O2- radical causes strand breaks not by attacking the DNA but rather by activating a specific metabolic DNA strand-break pathway.  相似文献   

4.
We have shown previously that alloxan and streptozotocin, two major diabetogenic agents, cause DNA strand breaks in rat pancreatic islets and stimulate nuclear poly(ADP-ribose) synthetase, thereby depleting intracellular NAD level and inhibiting proinsulin synthesis (Okamoto, H. (1981) Mol. Cell. Biochem. 37, 43-61; Yamamoto, H., Uchigata, Y., and Okamoto, H. (1981) Nature 294, 284-286). In the present study, superoxide dismutase and catalase, scavengers of radical oxygens, were found to protect against islet DNA strand breaks and inhibition of proinsulin synthesis induced by alloxan. The radical scavengers did not affect islet DNA strand breaks or inhibition of proinsulin synthesis induced by streptozotocin. On the other hand, compounds that inhibit islet nuclear poly(ADP-ribose) synthetase were found to protect against alloxan- as well as streptozotocin-induced inhibition of proinsulin synthesis. The poly(ADP-ribose) synthetase inhibitors were ineffective in protection against DNA strand breaks induced by the agents. These results may provide an important clue for elucidating the prevention of insulin-dependent diabetes as well as for understanding the cause of diabetes.  相似文献   

5.
Escherichia coli cells are inactivated by the products of the reaction between dialuric acid and oxygen, of which the primary product is Superoxide. The rate of inactivation is decreased by Superoxide dismutase, by catalase, and by EDTA, whereas it is increased by addition of cupric ions or hydrogen peroxide. It is concluded that a toxic product is formed in a reaction involving Superoxide, hydrogen peroxide, and metal ions, which might be the Haber-Weiss reaction, O2? + H2O2 → OH + OH? + O2. In radiation chemical experiments it is shown that this reaction does not occur in the absence of metal ions.  相似文献   

6.
A. Puppo  L. Dimitrijevic  J. Rigaud 《Planta》1982,156(4):374-379
Superoxide anion is able to oxidize oxyleghemoglobin prepared from soybean nodules. Furthermore, ferrileghemoglobin is oxidized to leghemoglobin (IV) by hydrogen peroxide and this irreversible reaction leads to a complete inactivation of the hemoprotein. In scavenging O 2 - and H2O2, superoxide dismutase (EC 1.15.1.1) and catalase (EC 1.11.1.6) are able to limit these oxidations. The occurrence of these enzymes within soybean nodules and their main characteristics are reported here. A general scheme taking into account their roles in leghemoglobin protection in vivo is proposed.Abbreviations Lb leghemoglobin - SOD superoxide dismutase  相似文献   

7.
Vanadate or molybdate strongly accelerate the cooxidation of NADH, or of reduced nicotinamide mononucleotide, by the xanthine oxidase plus xanthine reaction. Superoxide dismutase eliminated the effect of vanadate or molybdate, while catalase was without effect. It follows that vanadate or molybdate accelerate the oxidation of dihydropyridines by O-2. A stoichiometry of 4 NADH oxidized per O-2 introduced suggests a chain reaction for which a mechanism is proposed. These results provide an explanation for the reported stimulation, by vanadate, of NADH oxidation by biological membranes.  相似文献   

8.
Abstract:  Superoxide dismutase and catalase activity was found in the bird cherry-oat aphid, Rhopalosiphum padi (L.) and the grain aphid, Sitobion avenae (F.). Among the aphid morphs studied, the highest activity of the antioxidant enzymes was noted for winged adults (alatae) and the lowest for wingless (apterae) ones. Higher activity of superoxide dismutase and catalase was observed in the polyphagous species R. padi that alternates between woody host plants and grasses. On some ocassions, activity of superoxide dismutase in cereal aphids was increased by twofold, when aphids were exposed to toxic plant o -dihydroxyphenols. An opposite tendency was observed in case of activity of the catalase that was strongly reduced within body of phenolics-treated insects. Among the plant allelochemicals studied, caffeic acid showed the strongest effect on the activity of the antioxidant enzymes of the cereal aphids. The experiments carried out indicate that antioxidant enzymes might play an important role in interactions between cereal aphids and their host plants.  相似文献   

9.
1. Activities of superoxide dismutase (superoxide: superoxide oxidoreductase, EC 1.15.1.1) have been estimated in eye tissues. In rabbit eye, superoxide dismutase is present in corneal epithelium, corneal endothelium, lens, iris, ciliary body and retina. In lens the activity is in capsule epithelium. 2. Copper chelator diethyldithiocarbamate inhibited lens superoxide dismutase in vitro and in vivo in rabbit. 3. H2O2 caused inhibition of superoxide dismutase activity of lens extract, and this inhibition was potentiated by the catalase inhibitor 3-amino-1H-1,2,4-triazole (3-aminotriazole) or NaN3. 3-Aminotriazole or NaN3 had no effect on lens superoxide dismutase. Thus endogenous catalase of lens affords protection to the lens superoxide dismutase from inactivation by H2O2. 4. In rabbit having early cataract (vacuolar stage) induced by feeding-3-aminotriazole, there was a decrease in superoxide dismutase of lens, a fall in ascorbic acid of ocular humors and lens, and a 2--3-Fold increase in H2O2 of aqueous humor and vitreous humor. We conclude that catalase of eye affords protection to the lens from H2O2 and it also protects superoxide dismutase of lens from inactivation by H2O2. Superoxide dismutase, in turn, protects the lens from the superoxide radical, O2.-. It is likely that inhibition of these enzymes may lead to production of the highly reactive oxidant, the hydroxyl radical, under pathological conditions when H2O2 concentration in vivo exceeds physiological limits as in cataract induced by 3-aminotriazole. A scheme of reaction mechanism has been proposed to explain the relative functions of ocular catalase and superoxide dismutase. Such a mechanism may be involved in cataractogenic process in the human.  相似文献   

10.
Al(III) augments the oxidation of reduced nicotinamide adenine dinucleotide (NADH) by enzymatic or photochemical sources of O2-. Superoxide dismutase, but not catalase, inhibited this action of Al(III). It thus appears that Al(III) forms a complex with O2-, which is a stronger oxidant than is O2- itself and which may contribute to the adverse biological effects of Al(III).  相似文献   

11.
In Escherichia coli, the coordinate action of two antioxidant enzymes, superoxide dismutase and hydroperoxidase (catalase), protect the cell from the deleterious effects of oxyradicals generated during normal aerobic respiration. To evaluate the relative importance of these two classes of enzymes, strains of E. coli deficient in superoxide dismutase and (or) hydroperoxidase were constructed by generalized transduction and their physiological responses to oxygen and oxidant stress examined. Superoxide dismutase was found to be more important than hydroperoxidase in preventing oxygen-dependent growth inhibition and mutagenesis, and in reducing sensitivity to redox-active compounds known to generate the superoxide anion. However, both types of enzymes were required for an effective defense against chemical oxidants that generate superoxide radicals and hydrogen peroxide.  相似文献   

12.
The usual method of staining polyacrylamide gel electropherograms for superoxide dismutase activity utilizes a photochemical flux of O2- to reduce nitroblue tetrazolium. Superoxide dismutases intercept O2-, preventing formazan production and thus causing achromatic bands. In the presence of H2O2, catalases also yield achromatic bands during this staining procedure. This is due to local elevation of pO2 by the catalatic decomposition of H2O2. O2, in turn, inhibits the reduction of the tetrazolium by O2-. This phenomenon provides a new activity stain for catalase. A previously described activity stain for catalase has also been reexamined and significantly improved.  相似文献   

13.
Liu X  Lu J  Liu S 《Mutation research》1999,440(1):109-117
Chromium(VI) compounds and cigarette smoke are known human carcinogens. We found that K2Cr2O7 and cigarette smoke solution synergistically induced DNA single-strand breaks (0.23+/-0.04 breaks per DNA molecule) in pUC118 plasmid DNA. K2Cr2O7 alone or cigarette smoke solution alone induced much less strand breaks (0.03+/-0.01 or 0.07+/-0.02 breaks per DNA molecule, respectively). The synergistic effect was prevented by catalase and by hydroxyl radical scavengers such as deferoxamine, dimethylsulfoxide, d-mannitol, and Tris, but not by superoxide dismutase. Ascorbic acid enhanced the synergism. Glutathione inhibited strand breakage only at high concentrations. Electron spin resonance (ESR) studies using a hydroxyl radical trap demonstrated that hydroxyl radicals were generated when DNA was incubated with K2Cr2O7 and cigarette smoke solution. Hydroxyl radical adduct decreased dose-dependently when strand breakage was prevented by catalase, deferoxamine, dimethylsulfoxide, d-mannitol or Tris, but not significantly by superoxide dismutase. We also used ESR spectroscopy to study the effects of different concentration of ascorbic acid and glutathione. The results showed that hydroxyl radical, which is proposed as a main carcinogenic mechanism for both chromium(VI) compounds and cigarette smoke solution was mainly responsible for the DNA breaks they induced.  相似文献   

14.
The possible involvement of superoxide anions in the hydroxylation of tyrosine by mushroom tyrosinase was studied. Superoxide dismutase and scavengers of superoxide ions of smaller MW than superoxide dismutase, such as nitroblue tetrazolium and copper salicylate, had no direct effect on the monohydroxyphenolase activity of mushroom tyrosinase. The kinetics of tyrosine hydroxylation, but not of DOPA oxidation, by mushroom tyrosinase was atrected by the addition of a xanthine-xanthine oxidase system. In the presence of the xanthine-xanthine oxidase system, the lag period of tyrosine hydroxylation was shortened compared to the lag period in the absence of the xanthine-xanthine oxidase system. The xanthine- xanthine oxidase system alone (without mushroom tyrosinase) had no effect on tyrosine conversion to dopachrome. Superoxide dismutase, catalase and hydroxyl radical scavengers counteracted to some extent the shortening of the lag period of tyrosine hydroxylation by mushroom tyrosinase caused by the xanthin e-xanthine oxidase system. It is suggested that the shortening of the lag period is due mainly to hydroxyl radicals generated by the xanthine-xanthine oxidase system via interaction of O2?. and hydrogen paroxide (a Haber-Weiss type reaction). The data do not support the direct participation of superoxide anions in tyrosine hydroxylation by mushroom tyrosinase.  相似文献   

15.
Superoxide dismutase/catalase mimetics, such as salen Mn complexes and certain metalloporphyrins, catalytically neutralize reactive oxygen and nitrogen species, which have been implicated in the pathogenesis of many serious diseases. Both classes of mimetic are protective in animal models of oxidative stress. However, only AEOL11207 and EUK-418, two uncharged Mn porphyrins, have been shown to be orally bioavailable. In this study, EUK-418 and several new analogs (the EUK-400 series) were synthesized and shown to exhibit superoxide dismutase, catalase, and peroxidase activities in vitro. Some also protected PC12 cells against staurosporine-induced cell death. All EUK-400 compounds were stable in simulated gastric fluid, and most were substantially more lipophilic than the salen Mn complexes EUK-189 and EUK-207, which lack oral activity. Pharmacokinetics studies demonstrate the presence of all EUK-400 series compounds in the plasma of rats after oral administration. These EUK-400 series compounds are potential oral therapeutic agents for cellular damage caused by oxidative stress. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Waris G  Alam K 《Life sciences》2004,75(22):2633-2642
Superoxide anion radical (SAR) is formed in almost all aerobic cells and it is the most abundant species generated by several enzymatic and non-enzymatic pathways in mammalian tissues, leading to unfavorable alteration of biomolecules including DNA. The SAR-modified macromolecules have been implicated in several disease states including disorders of inflammation. The SAR-induced damage to DNA showed hyperchromicity, single strand breaks, decrease in melting temperature, and modification of bases. Superoxide modified-DNA in rabbits elicited high titer antibodies and showed diverse antigens binding characteristics. The induced antibodies recognized native DNA and other nucleic acid polymers. Anti-DNA IgG from SLE sera, purified on Protein-A-Sepharose matrix, exhibited increased recognition of superoxide anion radical modified-DNA than native DNA in competitive immunoassay. The visual formation of immune complex between induced antibodies and native DNA, and between SLE anti-DNA IgG and superoxide modified-DNA, is a clear indication of property sharing between SLE autoantibodies and experimentally induced antibodies against superoxide modified-DNA.  相似文献   

17.
Hematoxylin, a natural dye commonly used as a histological stain, generates superoxide upon oxidation to its quinonoid product, hematein. The parameters affecting this reaction were assessed in developing a new and versatile assay for superoxide dismutase. The autoxidation of hematoxylin to hematein was accompanied by an increase in absorbance between 400 and 670 nm. The autoxidation rate was proportional to hematoxylin concentration and increased with pH above 6.55. Trace metals accelerated the autoxidation and this effect was eliminated by EDTA. Superoxide dismutase inhibited the autoxidation 90-95% below pH 7.8, but above pH 8.1 the rate was augmented by superoxide dismutase. The rate inhibition at low pH was proportional to the superoxide dismutase concentration up to 70% inhibition. The rate acceleration at high pH was proportional to superoxide dismutase concentration up to approximately 200% acceleration. The autoxidation rate was not significantly affected by ethanol, cyanide, azide, hydrogen peroxide, or catalase. However, the reaction was inhibited by the reducing agents NADH, reduced glutathione, ascorbate, and dithiothreitol, and by undialyzed extracts of Escherichia coli B. When cell extracts were dialyzed prior to assay, the degree of inhibition observed was proportional to the concentration of superoxide dismutase in the extract. These observations form the basis for negative and positive assays of superoxide dismutase which are inexpensive and simple to perform. The negative assay has the added advantage of being applicable at physiological pH.  相似文献   

18.
1. Chloroplasts isolated from leaves of spinach-beet (Beta vulgaris L. ssp. vulgaris) do not catalyse the hydroxylation of p-coumaric acid in the dark unless a reductant (such as ascorbate, NADH or NADPH) is added. Superoxide dismutase has no effect on this reaction. 2. Illuminated chloroplasts catalyse the hydroxylation in the absence of added reductant. This reaction is completely inhibited by superoxide dismutase, but catalase has little effect. 3. Both hydroxylation in the light and hydroxylation in the dark in the presence of reductants are inhibited by diethyldithiocarbamate, EDTA, cyanide and 2-mercaptoethanol. 4. It is proposed that O-2- generated by illuminated chloroplasts is involved in the provision of a reductant to the enzyme phenolase.  相似文献   

19.
Superoxide dismutase (EC 1.15.1.1) activity was investigated in several types of neural cells cultivated in the presence of 100 mM ethanol. Superoxide dismutase was inhibited by acute treatment with ethanol. Chronic treatment with ethanol specifically inhibited superoxide dismutase in glial cells. In all instances withdrawal of ethanol produced a quick return to control values. Inhibition of superoxide dismutase by ethanol may increase toxic oxygen radicals in nervous tissue.  相似文献   

20.
The superoxide radical O2.-, whether produced by the xanthine/xanthine oxidase reaction or infused as KO2, solubilized by a crown ether in dry dimethyl sulphoxide, initiated a free-radical chain oxidation of anionic 2-nitropropane. Superoxide dismutase, but not catalase, inhibited oxidation of the nitroalkane. Xanthine oxidase suffered a syncatalytic inactivation, during the co-oxidation of 2-nitropropane, which was reversed by dialysis. Cyanide exacerbated this syncatalytic inactivation and rendered it irreversible. The frequently observed oxidations of nitroalkanes by flavoenzymes now need to be re-examined to clarify the extent to which O2.--initiated free-radical chain oxidation contributed to the overall nitroalkane oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号