首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
A simplified two-stage method for B-phycoerythrin (BPE) recovery from Porphyridium cruentum was developed. The proposed method involved cell disruption by sonication and primary recovery by aqueous two-phase partition. The evaluation of two different methods of cell disruption and the effect of increasing concentration of cell homogenate from P. cruentum culture upon aqueous two-phase systems (ATPS) performance was carried out to avoid the use of precipitation stages. Cell disruption by sonication proved to be superior over manual maceration since a five time increase in the concentration of B-phycoerythrin release was achieved. An increase in the concentration of crude extract from disrupted P. cruentum cells loaded to the ATPS (from 10 to 40%, w/w) proved to be suitable to increase the product purity and benefited the processing of highly concentrated disrupted extract. Kinetics studies of phase separation performed suggested the use of batch settlers with height/diameter (H/D) ratio less than one to reduce the necessary time for the phases to separate. The proposed ATPS stage comprising of 29% (w/w) polyethylene glycol (PEG) 1000g/mol, 9% (w/w) potassium phosphate, tie-line length (TLL) of 45% (w/w), volume ratio (V(R)) of 4.5, pH 7.0 and 40% (w/w) crude extract loaded in a batch settler with H/D ratio of 0.5 proved to be efficient for the recovery of 90% of B-phycoerythrin at the top PEG-rich phase. The purity of B-phycoerythrin increased up to 4.0 times after the two-stage method. The results reported here demonstrate the potential implementation of a strategy to B-phycoerythrin recovery with a purity of 3.2 (estimated by the absorbance relation of 545-280nm) from P. cruentum.  相似文献   

2.
The primary recovery of c‐phycocyanin and b‐phycoerythrin from Spirulina maxima and Porphyridium cruentum, respectively, using an established extraction strategy was selected as a practical model system to study the generic application of polyethylene glycol (PEG)‐phosphate aqueous two‐phase systems (ATPS). The generic practical implementation of ATPS extraction was evaluated for the recovery of colored proteins from microbial origin. A comparison of the influence of system parameters, such as PEG molecular mass, concentration of PEG as well as salt, system pH and volume ratio, on the partition behavior of c‐phycocyanin and b‐phycoerythrin was carried out to determine under which conditions target colored protein and contaminants concentrate to opposite phases. One‐stage processes are proposed for the primary recovery of the colored proteins. PEG1450‐phosphate ATPS extraction (volume ratio (VR) equal to 0.3, tie‐line length (TLL) of 34 % w/w and system pH 7.0) for the recovery of c‐phycocyanin from Spirulina maxima resulted in a primary recovery process that produced a protein purity of 2.1 ± 0.2 (defined as the relationship of 620 nm to 280 nm absorbance) and a product yield of 98 % [w/w]. PEG1000‐phosphate ATPS extraction (i.e., VR = 1.0, PEG 1000, TLL 50 % w/w and system pH 7.0) was preferred for the recovery of b‐phycoerythrin from Porphyridium cruentum, which resulted in a protein purity of 2.8 ± 0.2 (defined as the relationship of 545 nm to 280 nm absorbance) and a product yield of 82 % [w/w]. The purity of c‐phycocyanin and b‐phycoerythrin from the crude extract increased 3‐ and 4‐fold, respectively, after ATPS. The results reported herein demonstrated the benefits of the practical generic application of ATPS for the primary recovery of colored proteins from microbial origin as a first step for the development of purification processes.  相似文献   

3.
Virus-like particles have a wide range of applications, including vaccination, gene therapy, and even as nanomaterials. Their successful utilization depends on the availability of selective and scalable methods of product recovery and purification that integrate effectively with upstream operations. In this work, a strategy based on aqueous two phase system (ATPS) was developed for the recovery of double-layered rotavirus-like particles (dlRLP) produced by the insect cell-baculovirus expression system. Polyethylene glycol (PEG) molecular mass, PEG and salt concentrations, and volume ratio (Vr, volume of top phase/volume of bottom phase) were evaluated in order to determine the conditions where dlRLP and contaminants concentrated to opposite phases. Two-stage ATPS consisting of PEG 400-phosphate with a Vr of 13.0 and a tie-line length (TLL) of 35% (w/w) at pH 7.0 provided the best conditions for processing highly concentrated crude extract from disrupted cells (dlRLP concentration of 5 microg/mL). In such conditions intracellular dlRLP accumulated in the top phase (recovery of 90%), whereas cell debris remained in the interface. Furthermore, dlRLP from culture supernatants accumulated preferentially in the interface (recovery of 82%) using ATPS with a Vr of 1.0, pH of 7.0, PEG 3350 (10.1%, w/w) and phosphate (10.9%, w/w). The purity of dlRLP from culture supernatant increased up to 55 times after ATPS. The use of ATPS resulted in a recovery process that produced dlRLP with a purity between 6 and 11% and an overall product yield of 85% (w/w), considering purification from intracellular and extracellular dlRLP. Overall, the strategy proposed in this study is simpler than traditional methods for recovering dlRLP, and represents a scalable and economically viable alternative for production processes of vaccines against rotavirus infection with significant scope for generic commercial application.  相似文献   

4.
The potential use of aqueous two-phase systems (ATPS) to establish a viable protocol for the recovery of laccase from the residual compost of Agaricus bisporus was evaluated. The evaluation of system parameters such as poly (ethylene glycol) (PEG) molecular mass, concentration of PEG as well as salt and system pH was carried out to determine under which conditions the laccase concentrates predominantly to the top PEG-rich phase. PEG 1000–phosphate ATPS proved to be suitable for the primary recovery of laccase. An extraction ATPS stage comprising volume ratio equal to 1.0, PEG 1000 18.2% (w/w), phosphate 15.0% (w/w), system pH of 7.0 and loaded with 5% (w/w) of crude extract from residual compost allowed the laccase recovery. The use of ATPS resulted in one-single primary recovery stage process that produced an overall yield of 95%. The results reported here demonstrated the potential application of ATPS for the valorisation of residual material and the potential establishment of a downstream process to obtain value added products with commercial application.  相似文献   

5.
The extraction of antibodies using a polyethylene glycol (PEG)‐citrate aqueous two‐phase system (ATPS) was investigated. Studies using purified monoclonal antibody (mAb) identified operating ranges for successful phase formation and factors that significantly affected antibody partitioning. The separation of antibody and host cell protein (HCP) from clarified cell culture media was examined using statistical design of experiments (DOE). The partitioning of antibody was nearly complete over the entire range of the operating space examined. A model of the HCP partitioning was generated in which both NaCl and citrate concentrations were identified as significant factors. To achieve the highest purity, the partitioning of HCP from cell culture fluid into the product containing phase was minimized using a Steepest Descent algorithm. An optimal ATPS consisting of 14.0% (w/w) PEG, 8.4% (w/w) citrate, and 7.2% (w/w) NaCl at pH 7.2 resulted in a product yield of 89%, an approximate 7.6‐fold reduction in HCP levels relative to the clarified cell culture fluid before extraction and an overall purity of 70%. A system consisting of 15% (w/w) PEG, 8% (w/w) citrate, and 15% (w/w) NaCl at pH 5.5 reduced product‐related impurities (aggregates and low molecular product fragments) from ~40% to less than 0.5% while achieving 95% product recovery. At the experimental conditions that were optimized in the batch mode, a scale‐up model for the use of counter‐current extraction technology was developed to identify potential improvements in purity and recovery that could be realized in the continuous operational mode. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

6.
A novel affinity separation method in an aqueous two-phase system (ATPS) is suggested, using protein conjugated IgG as a ligand. For verification of the proposed approach, horseradish peroxidase (HRP) and human IgG was used as a ligand carrier and affinity ligand, respectively. The partition of the affinity ligand, human IgG, was controlled by the conjugation of HRP. Two ATPSs, one consisting of potassium phosphate (15%, w/w) and polyethylene glycol (PEG, M.W. 1450, 10%, w/w) and the other of dextran T500 (5%, w/w) and PEG (M.W. 8000, 5%, w/w), were used. The conjugated human IgG-HRP favored a PEG-rich top phase, whereas human IgG, rabbit anti-human IgG and goat anti-mouse IgG preferred a salt or dextran-rich bottom phase. Using the conjugated human IgG-HRP, rabbit anti-human IgG was successfully separated into a PEG-rich top phase from the mixture with goat anti-mouse IgG. The appropriate molar ratio between human IgG-HRP and rabbit anti-human IgG was around 3:1 and 1:1 for the salt and dextran-based ATPS, respectively. The dextran-based ATPS showed a better recovery yield and purity than the salt-based ATPS for the range of test conditions employed in this experiment. The yield and purity of the recovered rabbit anti-human IgG were 90.8 and 87.7%, respectively, in the dextran-based ATPS, while those in the salt-based ATPS were 78.2 and 73.2%.  相似文献   

7.
In this paper we explore an alternative process for the purification of human antibodies from a Chinese hamster ovary (CHO) cell supernatant comprising a ligand-enhanced extraction capture step and cation exchange chromatography (CEX). The extraction of human antibodies was performed in an aqueous two-phase system (ATPS) composed of dextran and polyethylene glycol (PEG), in which the terminal hydroxyl groups of the PEG molecule were modified with an amino acid mimetic ligand in order to enhance the partition of the antibodies to the PEG-rich phase. This capture step was optimized using a design of experiments and a central composite design allowed the determination of the conditions that favor the partition of the antibodies to the phase containing the PEG diglutaric acid (PEG-GA) polymer, in terms of system composition. Accordingly, higher recovery yields were obtained for higher concentrations of PEG-GA and lower concentrations of dextran. The highest yield experimentally obtained was observed for an ATPS composed of 5.17% (w/w) dextran and 8% (w/w) PEG-GA. Higher purities were however predicted for higher concentrations of both polymers. A compromise between yield and purity was achieved using 5% dextran and 10% PEG-GA, which allowed the recovery of 82% of the antibodies with a protein purity of 96% and a total purity of 63%, determined by size-exclusion chromatography. ATPS top phases were further purified by cation exchange chromatography and it was observed that the most adequate cation exchange ligand was carboxymethyl, as the sulfopropyl ligand induced the formation of multi-aggregates or denatured forms. This column allowed the elution of 89% of the antibodies present in the top phase, with a protein purity of 100% and a total purity of 91%. The overall process containing a ligand-enhanced extraction step and a cation exchange chromatography step had an overall yield of 73%.  相似文献   

8.
Optimisation of aqueous two-phase extraction of human antibodies   总被引:1,自引:0,他引:1  
The purification of human antibodies in an aqueous two-phase system (ATPS) composed of polyethylene glycol (PEG) 6000 and phosphate was optimised by surface response methodology. A central composite design was used to evaluate the influence of phosphate, PEG and NaCl concentration and of the pH on the purity and extraction yield of IgG from a simulated serum medium. The conditions that maximise the partition of IgG into the upper phase were determined to be high concentrations of NaCl and PEG, low concentrations of phosphate and low pH values. An ATPS composed of 12% PEG, 10% phosphate, 15% NaCl at pH 6 was further used to purify human monoclonal antibodies from a Chinese Hamster Ovary (CHO) concentrated cell culture supernatant with a recovery yield of 88% in the upper PEG-rich phase and a purification factor of 4.3. This ATPS was also successfully used to purify antibodies from a hybridoma cell culture supernatant with a recovery yield of 90% and a purification factor of 4.1.  相似文献   

9.
The agarases were purified for the first time an using aqueous two-phase system (ATPS) consisting of polyethylene glycol (PEG) and phosphate salt. The three extracellular, alkaline agarases produced by Pseudomonas aeruginosa AG LSL-11 were efficiently extracted into the top PEG-rich layer. The influencing factors on the partition of agarases--molecular weight of the PEG, system pH, system temperature, and NaCl concentration--were investigated. All the factors were found to have a significant effect on the partition of agarases except NaCl. The optimal ATPS parameters for the partitioning and purification of agarases were found to be 12% PEG 600 and 11.9% (w/w) phosphate salt at pH 8.0 and 4°C. All three agarases were concentrated in the top PEG phase with 6.19-fold purity and 71.21% recovery. The ATPS was found to be more convenient and economical than the conventional ion-exchange chromatography (IEC) method for extraction of three agarases and could be significantly employed for the purification of agarases from fermentation broth.  相似文献   

10.
The agarases were purified for the first time an using aqueous two-phase system (ATPS) consisting of polyethylene glycol (PEG) and phosphate salt. The three extracellular, alkaline agarases produced by Pseudomonas aeruginosa AG LSL-11 were efficiently extracted into the top PEG-rich layer. The influencing factors on the partition of agarases—molecular weight of the PEG, system pH, system temperature, and NaCl concentration—were investigated. All the factors were found to have a significant effect on the partition of agarases except NaCl. The optimal ATPS parameters for the partitioning and purification of agarases were found to be 12% PEG 600 and 11.9% (w/w) phosphate salt at pH 8.0 and 4°C. All three agarases were concentrated in the top PEG phase with 6.19-fold purity and 71.21% recovery. The ATPS was found to be more convenient and economical than the conventional ion-exchange chromatography (IEC) method for extraction of three agarases and could be significantly employed for the purification of agarases from fermentation broth.  相似文献   

11.
A novel aqueous two phase system (ATPS) using trimethylamine-polyethylene glycols (TMA-PEG) to promote the extraction of C-phycocyanin (C-PC) from S.platensis was introduced. The purity of C-PC (EP) obtained in the ATPS of PEG1000/Na3PO4 was increased 2.1 times by the addition of TMA-PEG1000. The purification factor was enhanced from 2.9 to 10.1 when 65% TMA-PEG1000 was added in the system. The ATPS operation must be carried out in the pH range of 6.0-7.0 and at temperatures less than 35 °C for maintaining the stability of C-PC. The partition coefficient and recovery ratio of C-PC increased with the increasing concentration of TMA-PEG. The system parameters like TMA-PEG1000 content, tie line length (TLL), pH, temperature and phase volume ratio (Vr) were screened and optimized using the fractional factorial design and Box-Behnken experiment design. The optimized system is composed of 11.8% PEG1000/TMA-PEG1000 (w/w), 64.42% TMA-PEG1000 (w/w PEG1000) and 9.5% Na3PO4 (w/w) with 38.19% TLL (w/w) and 0.89 Vr at pH 6.5 and 25 °C. The obtained value of EP was 5.21 in one-stage ATPS and 6.7 in two-stage ATPS. The recovery ratio of C-PC in the new ATPS extraction system was more than 97%.  相似文献   

12.
Aqueous two-phase systems (ATPS) formed by polymer and salt have been utilized to enrich the desired biomolecule into one of the phase with higher yield and purity. The eco-friendly, biodegradable poly ethylene glycol (PEG) and different citrate salts were chosen as ATPS phase components to investigate the partitioning behavior of α-lactalbumin (α-La). System factors and process parameters such as type and concentration of salt, molecular weight and concentration of PEG, pH, temperature and the effect of additives were studied and the results are discussed in detail. PEG 1000–tri-potassium citrate system yields high partition coefficient of 20 with a better yield of 98 % in the top phase. The addition of NaCl as an additive and acidic pH lowers the yield of α-La in the top phase. Influence of phase volume ratio (V r) on partitioning was studied and found that the partition coefficient remains almost constant along the tie line. High yield was achieved at a V r of 3.5 at the tie line length of 50.63 (%, w/w).  相似文献   

13.
Aqueous two-phase partition systems (ATPS) have been widely used for the separation of a large variety of biomolecules. In the present report, the application of a polyethylene glycol/phosphate (PEG/phosphate) ATPS for the separation of anti-HIV monoclonal antibodies 2G12 (mAb 2G12) and 4E10 (mAb 4E10) from unclarified transgenic tobacco crude extract was investigated. Optimal conditions that favor opposite phase partitioning of plant debris/mAb as well as high recovery and purification were found to be 13.1% w/w (PEG 1500), 12.5% w/w (phosphate) at pH 5 with a phase ratio of 1.3 and 8.25% w/w unclarified tobacco extract load. Under these conditions, mAb 2G12 and mAb 4E10 were partitioned at the bottom phosphate phase with 85 and 84% yield and 2.4- and 2.1-fold purification, respectively. The proposed ATPS was successfully integrated in an affinity-based purification protocol, using Protein A, yielding antibodies of high purity and yield. In this study, ATPS was shown to be suitable for initial protein recovery and partial purification of mAb from unclarified transgenic tobacco crude extract.  相似文献   

14.
《Process Biochemistry》2010,45(8):1432-1436
In this paper, a two-step process for initial capture of plasmid DNA (pDNA) and partial removal of RNA using polyethylene glycol (PEG) and di-potassium hydrogen phosphate aqueous two-phase systems (ATPS) has been investigated. A Kühni-type ATPS extraction column was prepared with 50 ml (12% (w/w) PEG 1450, 12% (w/w) phosphate) of stationary phase and loaded with crude mobile phase (26% (w/w) PEG 1450, 4% (w/w) phosphate and 70% (w/w) lysate) at a flow rate of 6 ml min−1 at an impeller speed of 200 rpm. The experiment was terminated after 100 min, and after complete resettling of the phases, 45 ml of stationary phase was harvested. During a subsequent second extraction step contained 18% (w/w) PEG 300 and 14% (w/w) phosphate, a proportion of RNA, which was also concentrated during the column process, was removed. It was demonstrated that the recovery of pDNA in the second bottom phase was 89.4%, which was similar to the initial recovery after column extraction (92.1%).  相似文献   

15.
Potato peel from food industrial waste is a good source of polyphenol oxidase (PPO). This work illustrates the application of an aqueous two-phase system (ATPS) for the extraction and purification of PPO from potato peel. ATPS was composed of polyethylene glycol (PEG) and potassium phosphate buffer. Effect of different process parameters, namely, PEG, potassium phosphate buffer, NaCl concentration, and pH of the system, on partition coefficient, purification factor, and yield of PPO enzyme were evaluated. Response surface methodology (RSM) was utilized as a statistical tool for the optimization of ATPS. Optimized experimental conditions were found to be PEG1500 17.62% (w/w), potassium phosphate buffer 15.11% (w/w), and NaCl 2.08 mM at pH 7. At optimized condition, maximum partition coefficient, purification factor, and yield were found to be 3.7, 4.5, and 77.8%, respectively. After partial purification of PPO from ATPS, further purification was done by gel chromatography where its purity was increased up to 12.6-fold. The purified PPO enzyme was characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), followed by Km value 3.3 mM, and Vmax value 3333 U/mL, and enzyme stable ranges for temperature and pH of PPO were determined. These results revealed that ATPS would be an attractive option for obtaining purified PPO from waste potato peel.  相似文献   

16.
Commercial production of aroma compounds by de novo microbial biosynthesis has been principally limited by the low productivity so far achieved. Production of 6-pentyl-alpha-pyrone (6PP), a coconut-like aroma compound, by Trichoderma harzianum has been limited by the toxic effect that occurs even at low concentration (<100 ppm). This work evaluated the feasibility of the use of aqueous-two phase systems (ATPS), as in situ extraction systems, in order to overcome the toxic effects of 6PP and to improve culture productivity. The partition behaviour of 6-pentyl-alpha-pyrone and Trichoderma harzianum mycelium in polyethylene glycol (PEG)-salt and PEG-dextran two-phase systems was investigated and it is reported for the first time. The evaluation of system parameters such as PEG molecular mass, concentration of PEG as well as salt, volume ratio (Vr) and dextran molecular mass, was carried out to determine under which conditions the 6PP partitions to the opposite phase that mycelium does. PEG-dextran systems proved to be unsuitable for the in situ recovery of 6PP because either 6PP and biomass partitioned to the same phase or a large extraction phase was required for the process. ATPS extraction comprising Vr = 0.26, PEG 1450 (7.2% w/w) and sulphate (16.6% w/w) provided the best conditions for the maximum accumulation of the biomass into the bottom phase and concentrated the 6PP in the opposite phase (i.e. 86% of biomass and 56% of 6PP of the total amount loaded from the fermentation extract into the ATPS) for ex situ bioseparation. However, this system caused complete inhibition of the growth of the microorganism during the in situ bioseparation, probably as a consequence of the high ionic strength resulting from the salt concentration. Consequently, two ATPS PEG 8000-sulphate (12%/7% and 6%/14%) were evaluated and proved to be more suitable in the potential application for the in situ recovery of 6PP.  相似文献   

17.
Abstract

Aqueous two-phase extraction of wedelolactone from Eclipta alba was studied using the polymer-salt system. The system consisted of polyethylene glycol (PEG) as a top phase (polymer) and sodium citrate as a bottom phase (salt). Process parameters such as PEG concentration, PEG molecular weight, salt concentration, and pH have been optimized using response surface methodology (RSM) with the help of central composite design (CCD). The optimized conditions for aqueous two-phase system (ATPS), in the case of one factor at a time approach, were found as PEG 6000, PEG concentration 18% (w/v), salt concentration 16% (w/v), and pH 7; with maximum extraction yield of 6.52?mg/g. While, RSM studies showed maximum extraction yield of 6.73?mg/g with the optimized parameters as PEG 6000, PEG concentration 18% (w/v), salt concentration 17.96% (w/v), and pH 7. ATPS was found to give a 1.3 fold increase in the extraction yield of wedelolactone as compared to other conventional extraction methods.  相似文献   

18.
An aqueous two-phase purification process was employed for the recovery of Burkholderia pseudomallei lipase from fermentation broth. The partition behavior of B. pseudomallei lipase was investigated with various parameters such as phase composition, tie-line length (TLL), volume ratio (VR), sample loading, system pH, and addition of neutral salts. Optimum conditions for the purification of lipase were obtained in polyethylene glycol (PEG) 6000-potassium phosphate system using TLL of 42.2% (w/w), with VR of 2.70, and 1% (w/w) NaCl addition at pH 7 for 20% (w/w) crude load. Based on this system, the purification factor of lipase was enhanced to 12.42 fold, with a high yield of 93%. Hence, the simplicity and effectiveness of aqueous two-phase systems (ATPS) in the purification of lipase were proven in this study.  相似文献   

19.
The current shortages in human plasma products at global levels justify the development of new, cost effective plasma fractionation methods. We have developed a fractionation process to obtain immunoglobulin G (IgG) and albumin‐enriched fractions based on polymer‐salt aqueous two phase system (ATPS). A small‐scale (0.02 L) ATPS composed of polyethyleneglycol 3350 (PEG), potassium phosphate and sodium chloride, at pH 6.1, was evaluated and subjected to 50‐fold scale‐up (1 L). Further purification of the fractions was performed using caprylic acid precipitation and ion exchange chromatography. Similar yield and purity were obtained at both small and large scales. IgG precipitated in the PEG rich upper phase at 83% recovery and 2.75‐fold purification factor. An 81% pure albumin fraction was obtained in the salt rich bottom phase with a 91% yield. After polishing, IgG was obtained at a recovery of 70% and a purity of 92%. Corresponding values for albumin were 91% and 90%. This IgG and albumin fractionation technology deserves further evaluation as it may represent a potential alternative to conventional plasma fractionation methods. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 28: 1005–1011, 2012  相似文献   

20.
Li C  Bai J  Li W  Cai Z  Ouyang F 《Biotechnology progress》2001,17(2):366-368
The bacteriocin nisin was extracted in PEG/salt aqueous two-phase systems (ATPS) using the property that the systems can extract hydrophobic proteins. The concentrations of the phase-forming components, PEG 4000 and Na(2)SO(4), were optimized for nisin recovery by means of statistical experimental designs, and it was found that they strongly influenced nisin recovery. The optimal composition of ATPS was found to be 15.99% (w/w) PEG 4000 and 15.85% (w/w) Na(2)SO(4) (pH 2), and the optimal ATPS allowed an 11.60% increase of nisin recovery compared to the standard method of nisin assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号