首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several types of silks and silk protein coding genes have been characterized from orb-web weaving spiders. When the protein sequences of major ampullate, minor ampullate, and flagelliform silks from Nephila clavipes are compared, they can be summarized as sets of shared amino acid motifs. Four of these motifs and their likely secondary structures are described. Each structural element, termed a module, is then associated with its impact on the mechanical properties of a silk fiber. In particular, correlations are drawn between an alanine-rich 'crystalline module' and tensile strength and between a proline-containing 'elasticity module' and extensibility.  相似文献   

2.
Orb-weaving spiders produce webs using two types of silk that have radically different mechanical properties. The dragline silk used to construct the supporting frame and radii of the web is stiff and as strong as steel, while the capture spiral is much weaker but more than ten times as extensible. This remarkable divergence in mechanical properties has been attributed to the aqueous glue that coats the capture spiral, which is thought to decrease capture spiral stiffness and increase its extensibility. However, discerning the effect of the aqueous glue on fiber performance is complicated because dragline silk and the capture spiral are assembled from different proteins, which may also affect mechanical performance. Here, we use the sticky gumfooted lines of black widow cobwebs to test the effect of the addition of aqueous glue on the mechanical properties of dragline silk. We also surveyed orb-webs spun by a broad range of species for bundles of looped silk. Such bundles, termed windlasses, have been thought to increase capture spiral extensibility by "paying out" additional lengths of silk. Our results suggest that neither plasticization of silk by aqueous glue nor excess silk in windlasses can by themselves account for the remarkable extensibility of orb-weaver capture silk compared to other spider silks. This argues that the unique amino acid motifs of the flagelliform fibroins that constitute the core of the capture spiral play an essential role in capture silk's extreme extensibility.  相似文献   

3.
4.
Tian M  Lewis RV 《Biochemistry》2005,44(22):8006-8012
As a result of hundreds of millions of years of evolution, orb-web-weaving spiders have developed the use of seven different silks produced by different abdominal glands for various functions. Tubuliform silk (eggcase silk) is unique among these spider silks due to its high serine and very low glycine content. In addition, tubuliform silk is the only silk produced just during a short period of time, the reproductive season, in the spider's life. To understand the molecular characteristics of the proteins composing this silk, we constructed tubuliform-gland-specific cDNA libraries from three different spider families, Nephila clavipes, Argiope aurantia, and Araneus gemmoides. Sequencing of tubuliform silk cDNAs reveals the repetitive architecture of its coding sequence and novel amino acid motifs. The inferred protein, tubuliform spidroin 1 (TuSp1), contains highly homogenized repeats in all three spiders. Amino acid composition comparison of the predicted tubuliform silk protein sequence to tubuliform silk indicates that TuSp1 is the major component of tubuliform silk. Repeat unit alignment of TuSp1 among three spider species shows high sequence conservation among tubuliform silk protein orthologue groups. Sequence comparison among TuSp1 repetitive units within species suggests intragenic concerted evolution, presumably through gene conversion and unequal crossover events. Comparative analysis demonstrates that TuSp1 represents a new orthologue in the spider silk gene family.  相似文献   

5.
Spiders produce up to six different kinds of silk, each one for a specific biological function. Spider silks are also known for their unique mechanical properties. The possibility of producing new materials with similar properties motivated research on these silk proteins (spidroins). Using expression sequence tags, we identified four spidroins produced by major ampullate, minor ampullate, flagelliform and tubuliform silk glands from the Brazilian spider Nephilengys cruentata (Araneae: Nephilidae). The new protein sequences showed substantial similarity to other spidroins previously described, with high content of alanine and glycine due to the presence of the highly repetitive motifs (polyAla, (GA)n, (GGX)n, (GPGGX)n). Similarities among sequences were also observed between the different spidroins with the exception of tubuliform spidroin, which presents a unique complex amino acid sequence with high amounts of serine and low amounts of glycine.  相似文献   

6.
利用大腹园蛛基因组文库筛选获得一段693 bp基因片段,经分析该段基因处于鞭毛状丝基因重复区域,且其中包含了一个完整的重复框架。通过基因密码子优化,在其3′和5′端分别融合蛋白质亲和层析标签,克隆于pET30LIC表达载体中,在不同的大肠杆菌中进行表达试验。实验结果显示:经过密码子优化,融合目的蛋白基因在BL21(DE3)中得到了高效表达,产量达到25~30mg/L,纯化产物纯度达90%以上。SDS-PAGE和W estern-b lotting检测目的融合蛋白均与预期蛋白大小一致。  相似文献   

7.
A cDNA coding for the C-terminus of spider flagelliform silk protein (AvFlag) was cloned from Araneus ventricosus. Analysis of the cDNA sequence shows that the C-terminus of AvFlag consists of 167 amino acids of a repetitive region and 87 amino acids of a C-terminal non-repetitive region. The peptide motifs found in spider flagelliform silk proteins, GPGGX and GGX, were conserved in the repetitive region of AvFlag. Phylogenetic analysis further confirmed that AvFlag belongs to the spider flagelliform silk proteins. The AvFlag cDNA was expressed as a 28 kDa polypeptide in baculovirus-infected insect cells. As a new expression approach for spider silk protein, the combination of polyhedrin and AvFlag creates a polyhedrin AvFlag fusion protein (61 kDa) that is produced as recombinant polyhedra; this provides a basis for the source of spider silk proteins for various applications.  相似文献   

8.
Modern spiders spin high-performance silk fibers with a broad range of biological functions, including locomotion, prey capture and protection of developing offspring 1,2. Spiders accomplish these tasks by spinning several distinct fiber types that have diverse mechanical properties. Such specialization of fiber types has occurred through the evolution of different silk-producing glands, which function as small biofactories. These biofactories manufacture and store large quantities of silk proteins for fiber production. Through a complex series of biochemical events, these silk proteins are converted from a liquid into a solid material upon extrusion.Mechanical studies have demonstrated that spider silks are stronger than high-tensile steel 3. Analyses to understand the relationship between the structure and function of spider silk threads have revealed that spider silk consists largely of proteins, or fibroins, that have block repeats within their protein sequences 4. Common molecular signatures that contribute to the incredible tensile strength and extensibility of spider silks are being unraveled through the analyses of translated silk cDNAs. Given the extraordinary material properties of spider silks, research labs across the globe are racing to understand and mimic the spinning process to produce synthetic silk fibers for commercial, military and industrial applications. One of the main challenges to spinning artificial spider silk in the research lab involves a complete understanding of the biochemical processes that occur during extrusion of the fibers from the silk-producing glands.Here we present a method for the isolation of the seven different silk-producing glands from the cobweaving black widow spider, which includes the major and minor ampullate glands [manufactures dragline and scaffolding silk] 5,6, tubuliform [synthesizes egg case silk] 7,8, flagelliform [unknown function in cob-weavers], aggregate [makes glue silk], aciniform [synthesizes prey wrapping and egg case threads] 9 and pyriform [produces attachment disc silk] 10. This approach is based upon anesthetizing the spider with carbon dioxide gas, subsequent separation of the cephalothorax from the abdomen, and microdissection of the abdomen to obtain the silk-producing glands. Following the separation of the different silk-producing glands, these tissues can be used to retrieve different macromolecules for distinct biochemical analyses, including quantitative real-time PCR, northern- and western blotting, mass spectrometry (MS or MS/MS) analyses to identify new silk protein sequences, search for proteins that participate in the silk assembly pathway, or use the intact tissue for cell culture or histological experiments.  相似文献   

9.
The microstructural characteristics of the capture thread production from silk glands in the orb web spiders were analyzed using scanning and transmission electron microscopes. Sticky and gluey capture threads of the web are originated from the silks of two flagelliform glands and four aggregate glands. They supply precursors of the secretory silks to a pair of characteristic “triad” spinning units on the posterior spinnerets. The aggregate gland is composed of large and multi‐lobed secretory region and thick excretory duct surrounded by large irregular nodules. The excretory duct of this gland basically consists of three superposed types of cells which are inner columnar epithelium, nodule forming cells and outer connectives. The nodules contain numerous mitochondria and glycogen particles within their cytoplasm and they are surrounded by the same sheath of thin connective tissues. Secretory region of the aggregate gland which produce water‐soluble components of the capture thread comprises discrete secretory vesicles and extensive rough endoplasmic reticulum. Characteristically, secretory droplets are formed without involvement of the Golgi complexes, suggesting that they do not play an important role in the processing of the capture threads. However the electron densities and internal textures of the granules are observed with diverse according to their maturation level. Finally, the secretory products are released by the mechanism of apocrine secretion losing part of their cytoplasm during this process.  相似文献   

10.
11.
Spiders can produce up to seven different types of silks or glues with different mechanical properties. Of these, flagelliform (Flag) silk is the most elastic, and aciniform (AcSp1) silk is the toughest. To produce a chimeric spider silk (spidroin) FlagR-AcSp1R, we fused one repetitive module of flagelliform silk from Araneus ventricosus and one repetitive module of aciniform silk from Argiope trifasciata. The recombinant protein expressed in E. coli formed silk-like fibers by manual-drawing. CD analysis showed that the secondary structure of FlagR-AcSp1R spidroin remained stable during the gradual reduction of pH from 7.0 to 5.5. The spectrum of FTIR indicated that the secondary structure of FlagR-AcSp1R changed from α-helix to β-sheet. The conformation change of FlagR-AcSp1R was similar to other spidroins in the fiber formation process. SEM analysis revealed that the mean diameter of the fibers was around 1 ~ 2 μm, and the surface was smooth and uniform. The chimeric fibers exhibited superior toughness (~33.1 MJ/m3) and tensile strength (~261.4 MPa). This study provides new insight into design of chimeric spider silks with high mechanical properties.  相似文献   

12.
The mechanical properties of spider silks have diverged as spiders have diversely speciated. Because the main components of silks are proteins, it is valuable to investigate their sequences. However, silk sequences have been regarded as difficult information to analyze due to their imbalance and imperfect tandem repeats (ITR). Here, an in silico approach is applied to systemically analyze a group of silk sequences. It is found that every time new spider groups emerge, unique trimer motifs appear. These trimer motifs are used to find additional clues of evolution and to determine relationships with mechanical properties. For the first time, crucial evidence is provided that shows silk sequences coevolved with spider species and the mechanical properties of their fibers to adapt to new living environments. This novel approach can be used as a platform for analyzing other groups of ITR‐harboring proteins and to obtain information for the design of tailor‐made fibrous protein materials.  相似文献   

13.
Male hilarine flies (Diptera: Empididae: Empidinae) present prospective mates with silk-wrapped gifts. The silk is produced by specialised cells located in the foreleg basitarsus of the fly. In this report, we describe 2.3 kbp of the silk gene from a hilarine fly (Hilara spp.) that was identified from highly expressed mRNA extracted from the prothoracic basitarsus of males. Using specific primers, we found that the silk gene is expressed in the basitarsi and not in any other part of the male fly. The silk gene from the basitarsi cDNA library matched an approximately 220 kDa protein from the silk-producing basitarsus. Although the predicted silk protein sequence was unlike any other protein sequence in available databases, the architecture and composition of the predicted protein had features in common with previously described silks. The convergent evolution of these features in the Hilarini silk and other silks emphasises their importance in the functional requirements of silk proteins.  相似文献   

14.
《朊病毒》2013,7(4):145-153
Insect silks are secreted from diverse gland types; this chapter deals with the silks produced by labial glands of Holometabola (insects with pupa in their life cycle). Labial silk glands are composed of a few tens or hundreds of large polyploid cells that secrete polymerizing proteins which are stored in the gland lumen as a semi?liquid gel. Polymerization is based on weak molecular interactions between repetitive amino acid motifs present in one or more silk proteins; cross?linking by disulfide bonds may be important in the silks spun under water. The mechanism of long?term storage of the silk dope inside the glands and its conversion into the silk fiber during spinning is not fully understood. The conversion occurs within seconds at ambient temperature and pressure, under minimal drawing force and in some cases under water. The silk filament is largely built of proteins called fibroins and in Lepidoptera and Trichoptera coated by glue?type proteins known as sericins. Silks often contain small amounts of additional proteins of poorly known function. The silk components controlling dope storage and filament formation seem to be conserved at the level of orders, while the nature of polymerizing motifs in the fibroins, which determine the physical properties of silk, differ at the level of family and even genus. Most silks are based on fibroin β?sheets interrupted with other structures such as α?helices but the silk proteins of certain sawflies have predominantly a collagen?like or polyglycine II arrangement and the silks of social Hymenoptera are formed from proteins in a coiled coil arrangement.  相似文献   

15.
16.
Huang W  Lin Z  Sin YM  Li D  Gong Z  Yang D 《Biochimie》2006,88(7):849-858
Spider silks are renowned for their excellent mechanical properties. Although several spider fibroin genes, mainly from dragline and capture silks, have been identified, there are still many members in the spider fibroin gene family remain uncharacterized. In this study, a novel silk cDNA clone from the golden web spider Nephila antipodiana was isolated. It is serine rich and contains two almost identical fragments with one varied gap region and one conserved spider fibroin-like C-terminal domain. Both in situ hybridization and immunoblot analyses have shown that it is specifically expressed in the tubuliform gland. Thus, it likely encodes the silk fibroin from the tubuliform gland, which supplies the main component of the inner egg case. Unlike other silk proteins, the protein encoded by the novel cDNA in water solution exhibits the characteristic of an alpha-helical protein, which implies the distinct property of the egg case silk, though the fiber of tubuliform silk is mainly composed of beta-sheet structure. Its sequence information facilitates elucidation of the evolutionary history of the araneoid fibroin genes.  相似文献   

17.
Raspy crickets (Orthoptera: Gryllacrididae) are unique among the orthopterans in producing silk, which is used to build shelters. This work studied the material composition and the fabrication of cricket silk for the first time. We examined silk-webs produced in captivity, which comprised cylindrical fibers and flat films. Spectra obtained from micro-Raman experiments indicated that the silk is composed of protein, primarily in a beta-sheet conformation, and that fibers and films are almost identical in terms of amino acid composition and secondary structure. The primary sequences of four silk proteins were identified through a mass spectrometry/cDNA library approach. The most abundant silk protein was large in size (300 and 220 kDa variants), rich in alanine, glycine and serine, and contained repetitive sequence motifs; these are features which are shared with several known beta-sheet forming silk proteins. Convergent evolution at the molecular level contrasts with development by crickets of a novel mechanism for silk fabrication. After secretion of cricket silk proteins by the labial glands they are fabricated into mature silk by the labium-hypopharynx, which is modified to allow the controlled formation of either fibers or films. Protein folding into beta-sheet structure during silk fabrication is not driven by shear forces, as is reported for other silks.  相似文献   

18.
19.
Summary The excretory ducts of the silk glands which produce the viscid spiral of the webs ofAraneus diadematus show a complex structure. The duct of aggregate glands consists of three superposed types of cells. Several connective layers cover large and irregular nodule-forming cells which are rich in glycogen and mitochondria surrounded by invaginations of the plasma membranes. The internal cells, whose apical poles are lined by a cuticular intima, would be quite ordinary if not for the fact that they often carry large vacuoles which seem to empty themselves by exocytosis. Activity in the nodule cells is perceived from variations in the glycogen level and from the appearance of the mitochondria. Internal cells of the duct, when within the posterior spinneret, gradually acquire the characteristics of absorbing cells.The duct of flagelliform glands consists of two types of cells. The external cells, bounded by a simple basal lamina, are rich in mitochondria, glycogen, and invaginations of the plasma membranes; their activity is shown by variations in glycogen level and the extent of the extracellular spaces. The internal cells show numerous mitochondria either at the apical or basal poles, variable glycogen levels, long microvilli, and signs of apical absorption by pinocytosis; the sub-cuticular layer of the intima is particularly thick.We propose a functional interpretation of the aspects described above, and discuss it in terms of recent data on the chemical composition of silks. The excretory ducts are held to modify, by their activity, the secretory products of both types of glands. Solutes, especially phosphate ions, cross both cells and intima and would enter the glue of the aggregate glands which then undergoes partial dehydration in the posterior spinnerets. The product of the flagelliform glands seems to all appearance dehydrated during its passage in the duct and up to about the half-way through the posterior spinnerets. The liquid would flow through an extracellular path below the apical septate junctions of the internal cells. This study therefore favours attributing important role to the excretory ducts of silk glands in the final phase of the formation of silk fibres by spiders.  相似文献   

20.
Spider dragline (major ampullate) silk outperforms virtually all other natural and manmade materials in terms of tensile strength and toughness. For this reason, the mass-production of artificial spider silks through transgenic technologies has been a major goal of biomimetics research. Although all known arthropod silk proteins are extremely large (>200 kiloDaltons), recombinant spider silks have been designed from short and incomplete cDNAs, the only available sequences. Here we describe the first full-length spider silk gene sequences and their flanking regions. These genes encode the MaSp1 and MaSp2 proteins that compose the black widow's high-performance dragline silk. Each gene includes a single enormous exon (>9000 base pairs) that translates into a highly repetitive polypeptide. Patterns of variation among sequence repeats at the amino acid and nucleotide levels indicate that the interaction of selection, intergenic recombination, and intragenic recombination governs the evolution of these highly unusual, modular proteins. Phylogenetic footprinting revealed putative regulatory elements in non-coding flanking sequences. Conservation of both upstream and downstream flanking sequences was especially striking between the two paralogous black widow major ampullate silk genes. Because these genes are co-expressed within the same silk gland, there may have been selection for similarity in regulatory regions. Our new data provide complete templates for synthesis of recombinant silk proteins that significantly improve the degree to which artificial silks mimic natural spider dragline fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号