首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 217 毫秒
1.
Summary

Red algae have the highest known selectivity factor (Srel) for CO2 over O2 of ribulose bisphosphate carboxylase-oxygenase (RUBISCO). This allows the prediction that a red alga relying on diffusive supply of CO2 to RUBISCO from air-equilibrated solution should have less O2 inhibition of photosynthesis than would an otherwise similar non-red alga with a lower Srel of RUBISCO. Furthermore, RUBISCO shows an increased Srel values at low temperatures. The prediction that O 2inhibition of photosynthesis should be small for marine red algae relying on diffusive CO2 entry growing in the North Sea with an annual temperature range of 4–16°C was tested in O2 electrode experiments at 12°C. Phycodrys rubens and Plocamium cartilagineum, which rely on diffusive CO2 entry showed, as predicted, only a small inhibition at lower inorganic C concentrations. Palmaria palmata, which has a CO2 concentrating mechanism, had the expected negligible O 2 inhibition of photosynthesis at any inorganic C concentration except (non-significantly) for saturating inorganic C.  相似文献   

2.
Enhanced soil respiration in response to elevated atmospheric CO2 has been demonstrated, and ectomycorrhizal (ECM) fungi are of particular interest since they partition host-derived photoassimilates belowground. Although a strong response of ECM fungi to elevated CO2 has been shown, little is still known about the functional diversity among species. We studied carbon (C) partitioning in mycorrhizal Scots pine seedlings in response to short-term CO2 enrichment, using seven ECM species with different ecological strategies. Mycorrhizal associations were synthesised and seedlings grown in large Petri dishes containing peat:vermiculite and nutrient solution for 10–15 weeks, after which half of the microcosms were exposed to elevated CO2 treatment (710 ppm) for 15 days and the other half were kept in ambient CO2 treatment. Partitioning of C was quantified by pulse labelling the seedlings with 14CO2 and examining the distribution of labelled assimilates in shoot, root and extraradical mycelial compartments by destructive harvest and liquid scintillation counting. Fungal biomass was determined with PLFA analysis. The respiratory loss of 14CO2 was on average greater in the elevated CO2 treatment for most species compared to the ambient CO2 treatment. More label was retrieved in the shoots in the ambient CO2 treatment compared to elevated CO2 (significant for P. involutus and P. fallax). Greater amounts of label were found in the extraradical mycelial compartment in all species (except P. involutus) in elevated CO2 compared to ambient CO2 (significant for L. bicolor, P. byssinum, P. fallax and R. roseolus). Fungal biomass production increased significantly with elevated CO2 for two species (H. velutipes and A. muscaria); three species (P. fallax, P. involutus and R. roseolus) showed a similar but non-significant trend, whereas L. bicolor and P. byssinum produced less biomass in elevated CO2 compared to ambient CO2. When 14C in the mycelial compartment and respiration was expressed per unit fungal PLFA the difference between CO2 treatments disappeared. We demonstrated that different ECM fungal isolates respond differently in C partitioning in response to CO2 enrichment. These results suggest that under certain growth conditions, when nutrients are not limiting, ECM fungi respond rapidly to increasing C-availability through changed biomass production and respiration.  相似文献   

3.
Canopy N and P dynamics of a southeastern US pine forest under elevated CO2   总被引:2,自引:1,他引:1  
Forest production is strongly nutrient limited throughout the southeastern US. If nutrient limitations constrain plant acquisition of essential resources under elevated CO2, reductions in the mass or nutrient content of forest canopies could constrain C assimilation from the atmosphere. We tested this idea by quantifying canopy biomass, foliar concentrations of N and P, and the total quantity of N and P in a loblolly pine (Pinus taeda) canopy subject to 4 years of free-air CO2 enrichment. We also used N:P ratios to detect N versus P limitation to primary production under elevated CO2. Canopy biomass was significantly higher under elevated CO2 during the first 4 years of this experiment. Elevated CO2 significantly reduced the concentration of N in loblolly pine foliage (5% relative to ambient CO2) but not P. Despite the slight reduction foliage N concentrations, there were significant increases in canopy N and P contents under elevated CO2. Foliar N:P ratios were not altered by elevated CO2 and were within a range suggesting forest production is N limited not P limited. Despite the clear limitation of NPP by N under ambient and elevated CO2 at this site, there is no evidence that the mass of N or P in the canopy is declining through the first 4 years of CO2 fumigation. As a consequence, whole-canopy C assimilation is strongly stimulated by elevated CO2 making this forest a larger net C sink under elevated CO2 than under ambient CO2. We discuss the potential for future decreases in canopy nutrient content as a result of limited changes in the size of the plant-available pools of N under elevated CO2.  相似文献   

4.
Allocation of allomones of transgenic Bacillus thuringiensis Gossypium hirsutum (Bt cotton) (cv. GK-12) and non-Bt-transgenic cotton (cv. Simian-3) grown in elevated CO2 in response to infestation by cotton aphid, Aphis gossypii Glover, was studied in a closed-dynamics CO2 chamber. Significant increases in foliar condensed tannin and carbon/nitrogen ratio for GK-12 and Simian-3 were observed in elevated CO2 relative to ambient CO2, as partially supported by the carbon nutrient balance hypothesis, owing to limiting nitrogen and excess carbon in cotton plants in response to elevated CO2. The CO2 level significantly influenced the foliar nutrients and allomones in the cotton plants. Aphid infestation significantly affected foliar nitrogen and allomone compounds in the cotton plants. Allomone allocation patterns in transgenic Bt cotton infested by A. gossypii may have broader implications across a range of plant and herbivorous insects as CO2 continues to rise. Gang Wu and Fa Jun Chen contributed equally to this work.  相似文献   

5.
We investigated microbial responses in a late successional sedge-dominated alpine grassland to four seasons of CO2 enrichment. Part of the plots received fertilizer equivalent to 4.5g N m−2 a−1. Soil basal respiration (R mic ), the metabolic quotient for CO2 (qCO2=R mic /C mic ), microbial C and N (C mic and N mic ) as well as total soil organic C and N showed no response to CO2 enrichment alone. However, when the CO2 treatment was combined with fertilizer addition R mic and qCO2 were statistically significantly higher under elevated CO2 than under ambient conditions (+57% and +71%, respectively). Fertilizer addition increased microbial N pools by 17%, but this was not influenced by elevated CO2. Microbial C was neither affected by elevated CO2 nor fertilizer. The lack of a CO2-effect in unfertilized plots was suprising in the light of our evidence (based on C balance) that enhanced soil C inputs must have occurred under elevated CO2 regardless of fertilizer treatment. Based on these data and other published work we suggest that microbial responses to elevated CO2 in such stable, late-successional ecosystems are limited by the availability of mineral nutrients and that results obtained with fertile or heavily disturbed substrates are unsuitable to predict future microbial responses to elevated CO2 in natural systems. However, when nutrient limitation is removed (e.g. by wet nitrogen deposition) microbes make use of the additional carbon introduced into the soil system. We believe that the response of natural ecosystems to elevated CO2 must be studied in situ in natural, undisturbed systems.  相似文献   

6.
Silvola  Jouko  Ahlholm  Urpo 《Plant and Soil》1995,(1):547-553
Birch seedlings (Betula pendula) were grown for four months in a greenhouse at three nutrient levels (fertilization of 0, 100 and 500 kg ha-1 monthy) and at four CO2 concentrations (350, 700, 1050 and 1400 ppm). The effect of CO2 concentration on the biomass production depended on the nutrient status. When mineralization of the soil material was the only source of nutrients (0 kg ha-1), CO2 enhancement reduced the biomass production slightly, whereas the highest production increase occurred at a fertilization of 100 kg ha-1, being over 100% between 350 and 700 ppm CO2. At 500 kg ha-1 the production increase was smaller, and the production decreased beyond a CO2 concentration of 700 ppm. The CO2 concentration had a slight effect on the biomass distribution, the leaves accounting for the highest proportion at the lowest CO2 concentration (350 ppm). An increase in nutrient status led to a longer growth period and increased the nutrient concentrations in the plants, but the CO2 concentration had no effect on the growth rhythm and higher CO2 reduced the nutrient concentrations.  相似文献   

7.

Background

Rapid determination of which nutrients limit the primary production of macroalgae and seagrasses is vital for understanding the impacts of eutrophication on marine and freshwater ecosystems. However, current methods to assess nutrient limitation are often cumbersome and time consuming. For phytoplankton, a rapid method has been described based on short-term changes in chlorophyll fluorescence upon nutrient addition, also known as Nutrient-Induced Fluorescence Transients (NIFTs). Thus far, though, the NIFT technique was not well suited for macroalgae and seagrasses.

Methodology & Principal Findings

We developed a new experimental setup so that the NIFT technique can be used to assess nutrient limitation of benthic macroalgae and seagrasses. We first tested the applicability of the technique on sea lettuce (Ulva lactuca) cultured in the laboratory on nutrient-enriched medium without either nitrogen or phosphorus. Addition of the limiting nutrient resulted in a characteristic change in the fluorescence signal, whereas addition of non-limiting nutrients did not yield a response. Next, we applied the NIFT technique to field samples of the encrusting fan-leaf alga Lobophora variegata, one of the key algal species often involved in the degradation of coral reef ecosystems. The results pointed at co-limitation of L. variegata by phosphorus and nitrogen, although it responded more strongly to phosphate than to nitrate and ammonium addition. For turtle grass (Thalassia testudinum) we found the opposite result, with a stronger NIFT response to nitrate and ammonium than to phosphate.

Conclusions & Significance

Our extension of the NIFT technique offers an easy and fast method (30–60 min per sample) to determine nutrient limitation of macroalgae and seagrasses. We successfully applied this technique to macroalgae on coral reef ecosystems and to seagrass in a tropical inner bay, and foresee wider application to other aquatic plants, and to other marine and freshwater ecosystems.  相似文献   

8.
With the ability to symbiotically fix atmospheric N2, legumes may lack the N-limitations thought to constrain plant response to elevated concentrations of atmospheric CO2. The growth and photosynthetic responses of two perennial grassland species were compared to test the hypotheses that (1) the CO2 response of wild species is limited at low N availability, (2) legumes respond to a greater extent than non-fixing forbs to elevated CO2, and (3) elevated CO2 stimulates symbiotic N2 fixation, resulting in an increased amount of N derived from the atmosphere. This study investigated the effects of atmospheric CO2 concentration (365 and 700 mol mol–1) and N addition on whole plant growth and C and N acquisition in an N2-fixing legume (Lupinus perennis) and a non-fixing forb (Achillea millefolium) in controlled-chamber environments. To evaluate the effects of a wide range of N availability on the CO2 response, we incorporated six levels of soil N addition starting with native field soil inherently low in N (field soil + 0, 4, 8, 12, 16, or 20 g N m–2 yr–1). Whole plant growth, leaf net photosynthetic rates (A), and the proportion of N derived from N2 fixation were determined in plants grown from seed over one growing season. Both species increased growth with CO2enrichment, but this response was mediated by N supply only for the non-fixer, Achillea. Its response depended on mineral N supply as growth enhancements under elevated CO2 increased from 0% in low N soil to +25% at the higher levels of N addition. In contrast, Lupinus plants had 80% greater biomass under elevated CO2 regardless of N treatment. Although partial photosynthetic acclimation to CO2 enrichment occurred, both species maintained comparably higher A in elevated compared to ambient CO2 (+38%). N addition facilitated increased A in Achillea, however, in neither species did additional N availability affect the acclimation response of A to CO2. Elevated CO2 increased plant total N yield by 57% in Lupinus but had no effect on Achillea. The increased N in Lupinus came from symbiotic N2 fixation, which resulted in a 47% greater proportion of N derived from fixation relative to other sources of N. These results suggest that compared to non-fixing forbs, N2-fixers exhibit positive photosynthetic and growth responses to increased atmospheric CO2 that are independent of soil N supply. The enhanced amount of N derived from N2 fixation under elevated CO2 presumably helps meet the increased N demand in N2-fixing species. This response may lead to modified roles of N2-fixers and N2-fixer/non-fixer species interactions in grassland communities, especially those that are inherently N-poor, under projected rising atmospheric CO2.  相似文献   

9.
Lenssen  G. M.  Lamers  J.  Stroetenga  M.  Rozema  J. 《Plant Ecology》1993,(1):379-388
The growth response of Dutch salt marsh species (C3 and C4) to atmospheric CO2 enrichment was investigated. Tillers of the C3 speciesElymus athericus were grown in combinations of 380 and 720 11-1 CO2 and low (O) and high (300 mM NaCl) soil salinity. CO2 enrichment increased dry matter production and leaf area development while both parameters were reduced at high salinity. The relative growth response to CO2 enrichment was higher under saline conditions. Growth increase at elevated CO2 was higher after 34 than 71 days. A lower response to CO2 enrichment after 71 days was associated with a decreased specific leaf area (SLA). In two other experiments the effect of CO2 (380 and 720 11-1) on growth of the C4 speciesSpartina anglica was studied. In the first experiment total plant dry weight was reduced by 20% at elevated CO2. SLA also decreased at high CO2. The effect of elevated CO2 was also studied in combination with soil salinity (50 and 400 mM NaCl) and flooding. Again plant weight was reduced (10%) at elevated CO2, except under the combined treatment high salinity/non-flooded. But these effects were not significant. High salinity reduced total plant weight while flooding had no effect. Causes of the salinity-dependent effect of CO2 enrichment on growth and consequences of elevated CO2 for competition between C3 and C4 species are discussed.  相似文献   

10.
M. F. Cotrufo  P. Ineson 《Oecologia》1996,106(4):525-530
The effect of elevated atmospheric CO2 and nutrient supply on elemental composition and decomposition rates of tree leaf litter was studied using litters derived from birch (Betula pendula Roth.) plants grown under two levels of atmospheric CO2 (ambient and ambient +250 ppm) and two nutrient regimes in solar domes. CO2 and nutrient treatments affected the chemical composition of leaves, both independently and interactively. The elevated CO2 and unfertilized soil regime significantly enhanced lignin/N and C/N ratios of birch leaves. Decomposition was studied using field litter-bags, and marked differences were observed in the decomposition rates of litters derived from the two treatments, with the highest weight remaining being associated with litter derived from the enhanced CO2 and unfertilized regime. Highly significant correlations were shown between birch litter decomposition rates and lignin/N and C/N ratios. It can be concluded, from this study, that at levels of atmospheric CO2 predicted for the middle of the next century a deterioration of litter quality will result in decreased decomposition rates, leading to reduction of nutrient mineralization and increased C storage in forest ecosystems. However, such conclusions are difficult to generalize, since tree responses to elevated CO2 depend on soil nutritional status.  相似文献   

11.
Susan Marks  Keith Clay 《Oecologia》1990,84(2):207-214
Summary Increasing atmospheric carbon dioxide (CO2) concentration is expected to increase plant productivity and alter plant/plant interactions, but little is known about its effects on symbiotic interactions with microorganisms. Interactions between perennial ryegrass, Lolium perenne (a C3 plant), and purpletop grass, Tridens flavus (a C4 plant), and their clavicipitaceous fungal endophytes (Acremonium lolii and Balansia epichloe, respectively) were investigated by growing the grasses under 350 and 650 l l 1 CO2 at two nutrient levels. Infected and uninfected perennial ryegrass responded with increased growth to both CO2 enrichment and nutrient addition. Biomass and leaf area of infected and uninfected plants responded similarly to CO2 enrichment. When growth analysis parameters were calculated, there were significant increases in relative growth rate and net assimilation rate of infected plants compared to uninfected plants, although the differences remained constant across CO2 and nutrient treatments. Growth of purpletop grass did not increase with CO2 enrichment or nutrient addition and there were no significant differences between infected and uninfected plants. CO2 enrichment did not alter the interactions between these two host grasses and their endophytic-fungal symbionts.  相似文献   

12.
A burst of net CO2 uptake was observed during the first 3–4 min after the onset of illumination in both wild-type Chlamydomonas reinhardii in which carbonic anhydrase was chemically inhibited with ethoxyzolamide and in a mutant of C. reinhardii (ca-1-12-1C) deficient in carbonic anhydrase activity. The burst was followed by a rapid decrease in the CO2 uptake rate so that net evolution often occurred. After a 2–3 min period of CO2 evolution, net CO2 uptake again increased and ultimately reached a steady-state, positive rate. From [14CO2]-tracer studies it was determined that CO2 fixation proceeded at a nearly linear rate throughout the period of illumination. Thus, prior to reaching a steady state, there was a rapid accumulation of inorganic carbon inside the cells which apparently reached a supercritical concentration and the excess was excreted, causing a subsequent efflux of CO2. A post illumination burst of net CO2 efflux was also observed in ethoxyzolamide-inhibited wild type and ca-1 mutant cells, but not in the unihibited wild type. [14CO2]-tracer experiments revealed that this burst was the result of a collapse of a large internal inorganic carbon pool at the onset of darkness rather than a photorespiratory post-illumination burst. These results indicate that upon illumination, chemical or genetic inhibition of carbonic anhydrase initially causes an accumulation of excess inroganic carbon in C. reinhardii cells, and that unknown regulatory mechanisms correct for this imbalance by first excreting the excess inorganic carbon and then, after several dampened oscillations, achieving an equilibrium between bicarbonate uptake, bicarbonate dehydration, and CO2 fixation.  相似文献   

13.
The effect of D-(+)-mannose, inorganic phosphate (Pi) and mannose-6-phosphate on net mesophyll CO2 assimilation rate (A) and stomatal conductance (gs) of wheat (Triticum aestivum L.) leaves was studied. The compounds were supplied through the transpiration stream of detached leaves from plants grown in sand in growth cabinets or glasshouses, with different concentrations of Pi (0.25, 1.0 and 4.0 mM) supplied during growth. In all cases, 10 mM D-(+)mannose caused 40–60% reduction of A within 30 min, though the time courses differed for flag leaves and the sixth leaf on the mainstem of glasshouse- and cabinet-grown plants. D-(+)Mannose had a similar effect on A in leaves having a fourfold range in total phosphate content. Effects of D-(+)mannose in reducing gs were always slower than on A. When the CO2 concentration in the leaf chamber was adjusted to maintain intercellular CO2 concentration (Ci) constant as A declined after mannose supply, gs still declined indicating that stomatal closure was not caused by changing Ci. Supplying mannose-6-phosphate at 10 and 1 mM and Pi at 5 and 10 mM concentrations caused rapid reductions in gs and also direct reductions in A. The observed effects of mannose and Pi on assimilation are consistent with the proposed regulatory role of cytoplasmic Pi in determining mesophyll carbon assimilation that has been derived previously using leaf discs, protoplasts and chloroplasts.Abbreviations and symbols A net mesophyll CO2-assimilation rate - Ca, Ci external (assimilation-chamber) and intercellular CO2 concentration, respectively - gs stomatal conductance - Man6P mannose-6-phosphate - Pi orthophosphate  相似文献   

14.
Response of Aphanizomenon ovalisporum to certain environmental parameters was studied to gain a better understanding of the conditions which may have stimulated its autumnal bloom in Lake Kinneret. Optimal temperature for A. ovalisporum growth was 26–30?°C, resulting in growth rates of 0.2–0.3?day?1, similar to those observed in the lake. Maximal rate of CO2 fixation (assimilation numbers of 6–8?μg?C?μg?1?Chl?h?1) was obtained at low irradiances (I k of 40–100?μmol?photons?m?2?s?1), 200?μM Pi and low N:Pi ratios. Growth was strongly affected by phosphorus availability, reaching a maximum at Pi concentrations above 40?μM. The high demand for phosphorus was indicated by an increase in alkaline phosphatase activity. The relative abundance of Pi in the cells increased by 4-fold in Pi-rich compared with Pi-limited cultures. Uptake of Pi was faster in Pi-depleted compared with Pi-sufficient cells. Maximal photosynthetic rates and K1/2(HCO3 ?) were 140–220?μmol?O2?mg?1?Chl?h?1 and 10–24?μM, respectively. At pH 7.0 the K 1/2(CO2) was 2.2 and fell to 0.04?μM at pH 9.0. These data indicated that A. ovalisporum is a HCO3 ? user, and can explain its high photosynthetic rates during the bloom, under high pH and low dissolved CO2 conditions. Na+ concentrations of about 5?mM were essential for A. ovalisporum growth at high pH approaching values in the lake.  相似文献   

15.
Human activities have resulted in increased nitrogen deposition and atmospheric CO2 concentrations in the biosphere, potentially causing significant changes in many ecological processes. In addition to these ongoing perturbations of the abiotic environment, human-induced losses of biodiversity are also of major concern and may interact in important ways with biogeochemical perturbations to affect ecosystem structure and function. We have evaluated the effects of these perturbations on plant biomass stoichiometric composition (C:N:P ratios) within the framework of the BioCON experimental setup (biodiversity, CO2, N) conducted at the Cedar Creek Natural History Area, Minnesota. Here we present data for five plant species: Solidago rigida, Achillea millefolium, Amorpha canescens, Lespedeza capitata, and Lupinus perennis. We found significantly higher C:N and C:P ratios under elevated CO2 treatments, but species responded idiosyncratically to the treatment. Nitrogen addition decreased C:N ratios, but this response was greater in the ambient CO2 treatments than under elevated CO2. Higher plant species diversity generally lowered both C:N and C:P ratios. Importantly, increased diversity also led to a more modest increase in the C:N ratio with elevated CO2 levels. In addition, legumes exhibited lower C:N and higher C:P and N:P ratios than non-legumes, highlighting the effect of physiological characteristics defining plant functional types. These data suggest that atmospheric CO2 levels, N availability, and plant species diversity interact to affect both aboveground and belowground processes by altering plant elemental composition.  相似文献   

16.
In order to investigate the effects of anticipated increased precipitation and changing soil nutrient levels on soil CO2 efflux from high arctic semi desert, a field experiment was carried out in Northeast Greenland. Water, phosphorus, and nitrogen were added to plots in a fully factorial design. Soil microbial biomass carbon was analysed after one year, and respiration from soil plus roots was measured in situ throughout the third growing season after initiation of the experiment. Soil plus root respiration was enhanced by up to 47%, and the microbial biomass by 24%, by the weekly water additions, but not by nutrient additions. The direct effect of increased soil moisture on CO2 efflux suggests that future changes of precipitation levels and patterns may strongly affect below-ground respiration in arctic semi deserts, with direction of responses depending upon amounts and frequencies of precipitation events. Morover, low CO2 emission at low light intensities regardless of treatment suggests that the major part of the below-ground respiration originated from turnover of recently fixed C. Hence, the more recalcitrant soil organic matter C pool may not change in proportion to changes in below-ground respiration rate.  相似文献   

17.
Vascular plant responses to experimental enrichment with atmospheric carbon dioxide (CO2), using MINIFACE technology, were studied in a Dutch lowland peatland dominated by Sphagnum and Phragmites for 3 years. We hypothesized that vascular plant carbon would accumulate in this peatland in response to CO2 enrichment owing to increased productivity of the predominant species and poorer quality (higher C/N ratios) and consequently lower decomposability of the leaf litter of these species. Carbon isotope signatures demonstrated that the extra 180 ppmv CO2 in enriched plots had been incorporated into vegetation biomass accordingly. However, on the CO2 sequestration side of the ecosystem carbon budget, there were neither any significant responses of total aboveground abundance of vascular plants, nor of any of the individual species. On the CO2 release side of the carbon budget (decomposition pathway), litter quantity did not differ between ambient and CO2 treatments, while the changes in litter quality (N and P concentration, C/N and C/P ratio) were marginal and inconsistent. It appeared therefore that the afterlife effects of significant CO2-induced changes in green-leaf chemistry (lower N and P concentrations, higher C/N and C/P) were partly offset by greater resorption of mobile carbohydrates from green leaves during senescence in CO2-enriched plants. The decomposability of leaf litters of three predominant species from ambient and CO2-enriched plots, as measured in a laboratory litter respiration assay, showed no differences. The relatively short time period, environmental spatial heterogeneity and small plot sizes might explain part of the lack of CO2 response. When our results are combined with those from other Sphagnum peatland studies, the common pattern emerges that the vascular vegetation in these ecosystems is genuinely resistant to CO2-induced change. On decadal time-scales, water management and its effects on peatland hydrology, N deposition from anthropogenic sources and land management regimes that arrest the early successional phase (mowing, tree and shrub removal), may have a greater impact on the vascular plant species composition, carbon balance and functioning of lowland Sphagnum–Phragmites reedlands than increasing CO2 concentrations in the atmosphere.  相似文献   

18.
ABSTRACT

Birch (Betula pendula Roth.) seedlings were kept for two growing seasons under ambient (~350 µmol mol-1) and elevated (~700 µmol mol-1) [CO2]. The present study was designed to examine the effects of [CO2] and pot size on growth and carbon allocation under conditions of non-limiting water and nutrient supply, in order to separate the effects of source-sink interaction from the effects of nutrient deficiency. The manipulation of the source-sink relations had a strong influence on the growth response to elevated [CO2]. When the rooting volume was inadequate, it resulted in a source-sink imbalance which constrained growth under elevated [CO2]. When root exploration was unconstrained, total dry mass was significantly increased (by about 24%) under elevated [CO2]. However, the allometric relationships in allocation pattern and in morphogenetic development were not affected by either [CO2] or pot treatments when the saplings were of the same size. Thus, by constraining dry mass production, small sinks affected the magnitude of the growth responses to elevated [CO2], but did not affect the plant allocation pattern and allometric relationships when nutrient supply was non-limiting. However, by slowing down growth, sink restrictions counteract the speed-up of ontogeny which is the main effect of elevated [CO2] on tree growth.  相似文献   

19.
Populus × euramericana, P. alba, and P. nigra clones were exposed to ambient or elevated (about 550 ppm) CO2 concentrations under field conditions (FACE) in central Italy. After three growing seasons, the plantation was coppiced. FACE was continued and in addition, one-half of each experimental plot was fertilised with nitrogen. Growth and anatomical wood properties were analysed in secondary sprouts. In the three poplar clones, most of the growth and anatomical traits showed no uniform response pattern to elevated [CO2] or N-fertilisation. In cross-sections of young poplar stems, tension wood amounted to 2–10% of the total area and was not affected by elevated CO2. In P. nigra, N-fertilisation caused an about twofold increase in tension wood, but not in the other clones. The formation of tension wood was not related to diameter or height growth of the shoots. In P. × euramericana N-fertilisation resulted in significant reductions in fibre lengths. In all three genotypes, N-fertilisation caused significant decreases in cell wall thickness. In P. × euramericana and P. alba elevated [CO2] also caused decreases in wall thickness, but less pronounced than nitrogen. In P. nigra and P. × euramericana elevated [CO2] induced increases in vessel diameters. These results show that elevated [CO2] and N-fertilisation affect wood structural development in a clone specific manner. However, the combination of these environmental factors resulted in overall losses in cell wall area of 5–12% in all three clones suggesting that in future climate scenarios negative effects on wood quality are to be anticipated if increases in atmospheric CO2 concentration were accompanied by increased N availability.  相似文献   

20.
The effects of elevated [CO2] on the C:N and C:P mass ratios of plant tissues   总被引:11,自引:0,他引:11  
The influence of elevated CO2 concentration ([CO2]) during plant growth on the carbon:nutrient ratios of tissues depends in part on the time and space scales considered. Most evidence relates to individual plants examined over weeks to just a few years. The C:N ratio of live tissues is found to increase, decrease or remain the same under elevated [CO2]. On average it increases by about 15% under a doubled [CO2]. A testable hypothesis is proposed to explain why it increases in some situations and decreases in others. It includes the notion that only in the intermediate range of N-availability will C:N of live tissues increase under elevated [CO2]. Five hypotheses to explain the mechanism of such increase in C:N are discussed; none of these options explains all the published results. Where elevated [CO2] did increase the C:N of green leaves, that response was not necessarily expressed as a higher C:N of senesced leaves. An hypothesis is explored to explain the observed range in the degree of propogation of a CO2 effect on live tissues through to the litter derived from them. Data on C:P ratios under elevated [CO2] are sparse and also variable. They do not yet suggest a generalising-hypothesis of responses. Although, unlike for C:N, there is no theoretical expectation that C:P of plants would increase under elevated [CO2], the average trend in the data is of such an increase. The processes determining the C:P response to elevated [CO2] seem to be largely independent of those for C:N. Research to advance the topic should be structured to examine the components of the hypotheses to explain effects on C:N. This involves experiments in which plants are grown over the full range of N and of P availability from extreme limitation to beyond saturation. Measurements need to: distinguish structural from non-structural dry matter; organic from inorganic forms of the nutrient in the tissues; involve all parts of the plant to evaluate nutrient and C allocation changes with treatments; determine resorption factors during tissue senescence; and be made with cognisance of the temporal and spatial aspects of the phenomena involved. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号